TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4802 ~ 4
8
0
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.552
5
4802
Re
cei
v
ed
De
cem
ber 3
0
, 2013; Re
vi
sed
March 12, 20
14; Accepted
March 28, 20
14
Deployment of TinyOS for Online Water Sensing
Xin Wang*, Pan Xu
Ke
y
Lab
orator
y of Advance
d
Process Co
ntrol
fo
r Light Ind
u
str
y
(Min
i
str
y
of
Educati
on),
Jian
gna
n Un
iv
ersit
y
, W
u
xi 2
1
412
2, PR Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
w
a
ng
xin@
jia
ngn
an.e
du.cn
A
b
st
r
a
ct
Current
qua
lity
assess
me
nt meth
ods
of w
a
ter par
a
m
eters
are mai
n
ly la
boratory bas
ed
,
requir
e
fresh supp
lies
of che
m
ica
l
s, train
ed staff an
d are time
con
s
umin
g. Senso
r
netw
o
r
ks are great alter
nativ
es
for such requ
ir
ements. W
e
present a pr
actic
a
l ap
plic
at
io
n o
f
w
i
reless netw
o
rks: a
remote water m
o
nitoring
system
r
u
nning TinyOS. The contents of several c
h
em
icals in the water
are sensed and trans
m
i
tted.
The
sensor
d
a
ta
are co
llecte
d
an
d trans
mitted v
i
a Z
i
gBee
a
n
d
GPRS. Instead
of foc
u
sin
g
on
theor
etic
issu
e
s
such as r
outi
n
g al
gorith
m
s, n
e
tw
ork lifetime
and s
o
o
n
,
w
e
inv
e
stigat
e s
peci
a
l tech
ni
qu
es inv
o
lve
d
i
n
the
imple
m
entati
o
n
of the system w
h
ile e
m
p
l
oyi
n
g
TinyOS and i
t
s special pr
ogr
amming l
a
n
g
u
age.
Ke
y
w
ords
: Tin
y
OS, hierarchi
c
al netw
o
rk, emb
e
d
ded
oper
ating syste
m
, w
a
ter sensing
1. Introduc
tion
TinyOS is a
n
op
en
so
urce, BSD-li
c
e
n
se
d o
perating
system
d
e
sig
ned
for l
o
w-po
we
r
wirel
e
ss d
e
vice
s, su
ch a
s
those u
s
e
d
in
sen
s
o
r
networks, ubi
quito
us
comp
uting
,
personal a
r
ea
netwo
rks,
sm
art b
u
ilding
s
,
and
smart
meters. To
confront
the
water p
o
llutio
n
, vario
u
s water
monitori
ng systems ba
se
d on cellul
a
r mobile net
work have b
een develo
p
ed [1, 2]. T
hese
sy
st
em
s may
assi
st
env
ir
o
n
ment
al
p
r
ote
c
tion ag
en
cie
s
in providing
continu
o
u
s
water m
onito
ring
with mi
nimu
m interactio
n
of ma
n i
n
terferen
ce. B
u
t, with
su
ch sy
stem
s, t
he
rare
ch
a
nnel
resou
r
ces
an
d ha
rd
ware a
r
e g
r
eatly wa
sted
whe
n
th
e monito
ring
node
s a
r
e
distributed i
n
hig
her
den
sity. The
hiera
r
chi
c
al
o
r
gani
zatio
n
[3
], grou
ping
of the m
onitori
ng n
ode
s
bef
ore t
r
an
sferri
ng
the se
nsor
data to hig
h
e
r level
s
, is one of
th
e
mechani
sm
s p
r
op
osed
to deal
with
that
extravagan
ce
and is
co
mm
only refe
rre
d
to as
cluste
ri
ng [4]. This p
aper i
s
to
sho
w
a hie
r
a
r
chi
c
al
architectu
re,
whi
c
h i
s
lo
w i
n
cost, ea
sy t
o
cons
t
r
u
c
t, less de
pen
de
nt upon
net
work infra
s
truct
u
re,
is
im
pleme
n
ted
by empl
o
y
ing
ZigBe
e
and GPRS d
e
vice
s, an
d
esp
e
ci
ally wit
h
TinyOS
as the
sen
s
o
r
net
w
o
rk
s’ ope
rat
i
n
g
sy
st
em.
2. Rese
arch
Metho
d
Stru
cture a
nd Co
mposition of the Sy
stem
TinyOS is de
sign
ed to run
on sm
all, wireless
sen
s
o
r
s.
Net
w
orks of
these sen
s
ors have
the pote
n
tial
to revolutio
n
ize
a
wid
e
rang
e of
disciplin
es, fiel
d
s
, an
d te
chn
o
logie
s
.
Re
cent
example u
s
e
s
of the
s
e d
e
v
ices i
n
cl
ude
Golde
n
Gate
Bridge
safety, volcani
c mo
n
i
toring a
nd d
a
t
a
cente
r
provisi
oning.
The
hierarchi
c
al
network i
s
m
ade
up
of
one
Ba
se St
ation a
nd
so
me mo
nitorin
g
no
de
s,
as is sho
w
n i
n
Figure 1. T
hese monitori
ng node
s
are
resp
on
sible for sa
mpling t
he wate
r, sin
g
le-
hoppi
ng the data to the base stati
on
by ZigBee chann
el, while
the Base Station is set for
coo
r
din
a
tion
betwe
en the
node
s, se
ndi
ng the sen
s
o
r
data which is coll
ecte
d from the nod
e
s
to
the remote m
anag
ement pl
atform.
The Ba
se St
ation is com
posed of
onli
ne mo
nitorin
g
device, G
P
RS (G
ene
ral pa
cket
radio
se
rvice) DT
U and
Zig
B
ee Mod
u
le (worke
d a
s
a
coo
r
din
a
tor,
FFD), as i
s
shown in Fig
u
re 2.
The
o
n
line monitori
ng
d
e
vice whi
c
h use
s
CP1
H
PLC
ma
de b
y
OMRO
N a
s
the co
ntroll
er
i
s
respon
sibl
e f
o
r te
sting
the
con
c
e
n
tration
of
NO
3
-
, PO
43- an
d P
H
v
a
lue. GP
RS
DTU impl
eme
n
ts
the tran
smission of the rem
o
te sign
als by
GPRS netwo
rk.
GPRS i
s
a
pa
cket o
r
i
ented
mobil
e
dat
a
serv
ice
on th
e
2G a
nd
3G
cell
ular
comm
uni
cati
on sy
stem'
s
global
syste
m
for mo
bile
comm
uni
cati
ons
(GSM
)
while ZigBe
e
i
s
ne
w
spe
c
ification
for a
suite of
high level
communi
catio
n
proto
c
ol
s u
s
ed to
creat
e perso
nal a
r
ea
netwo
rks built
from small, l
o
w-po
we
r dig
i
tal radio
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Depl
oym
ent of TinyOS for On
line Water Sensing
(Xin
Wang
)
4803
M
a
n
agem
e
n
t
Pl
a
t
f
o
r
m
Da
t
a
C
ent
e
r
Mo
n
i
t
o
r
C
ent
e
r
S
Q
L Q
uer
y
In
te
r
n
e
t
GP
R
S
Figure 1. Top
o
logy of the Network and
Remote
M
a
n
ageme
n
t Platform. The Di
sc Stand
s for
Base Station,
Circl
e
for Mo
nitoring
Nod
e
s
ZigBee mo
du
le is m
ade u
p
of MSP430
cont
rolle
r an
d CC24
20
RF chi
p
. It is use
d
to
read th
e data
of the wate
r in PLC, colle
cts the
data
of water i
n
th
e other m
onit
o
ring
nod
es
and
excha
nge
s th
e data
with th
e re
mote m
a
nagem
ent pl
a
tform. Differe
nt from th
e B
a
se
Station, the
monitori
ng n
ode, on the o
t
her ha
nd, do
es not in
clud
e GPRS DT
U, and its Zi
gBee mod
u
le
is a
Red
u
ced Fun
c
tion Device (RFD).
GPR
S
DTU
Z
i
gB
ee M
o
dule
On
li
ne
M
easuring
I/
O
A/D
Seri
al
Ca
b
l
e
PLC
Se
ri
al
Cable
TinyOS
MC
U
DT
U
Re
l
a
y
s
Sensors
Figure 2. Co
mpone
nts of the Ha
rd
wa
re
of the Base Station
3. Zigbee Mo
dule
Both FFD
an
d RF
D a
r
e b
u
ilt with Tiny
OS ope
rating
system. Ti
n
y
OS is an
e
m
bedd
ed
system fo
r
wirel
e
ss n
e
twork, with
a
set of
co
m
pone
nts that
are in
clu
d
e
d
as-ne
ede
d
in
appli
c
ation
s
[5].
D
T
U
A
ct
i
v
e
M
es
sageC
D
T
U
A
c
t
i
v
eM
ess
ageC
Wa
t
e
r
M
o
n
i
t
o
r
C
Ma
i
n
C
T
i
m
e
r
M
i
lli
C
P
L
C
A
c
t
i
v
eM
es
s
ageC
C
C
2
420A
c
t
i
v
eM
es
s
ageC
P
L
C
A
M
S
end-
>
A
M
S
e
n
d
P
L
C
R
e
c
e
i
v
e-
>
R
e
c
ei
v
e
C
C
2
420A
M
S
e
nd-
>A
M
S
end
C
C
2
420
R
e
cei
v
e
-
>R
ecei
ve
Figure 3. Co
mpone
nts u
s
ed for FF
D a
nd RF
D.
A so
lid box is for a singl
eton compon
ent, a
dashed b
o
x for a gen
eri
c
compon
ent, while dou
ble-li
ne box is only
used in FF
D.
An arro
w is a
n
interface
At a high l
e
vel, TinyOS p
r
ovides th
re
e t
h
in
g
s
to ma
ke writing
syst
ems
and
appl
ication
s
easi
e
r: (1
) A comp
one
nt model, whi
c
h d
e
fines h
o
w yo
u write
small,
reu
s
abl
e pie
c
e
s
of co
de a
n
d
comp
ose the
m
into larger abst
r
actio
n
s;
(2) A
co
ncurrent exe
c
utio
n model,
whi
c
h d
e
fine
s h
o
w
comp
one
nts
interleave th
eir comp
utations
as
well
as h
o
w i
n
terrupt an
d no
n-inte
rru
pt cod
e
intera
ct; (3)
Applicatio
n p
r
og
rammi
ng i
n
terfaces
(A
PIs), se
rvice
s
, com
pone
n
t
librarie
s
an
d an
overall comp
onent st
ructu
r
e that simplify
writing ne
w a
pplication
s
an
d servi
c
e
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4802 – 4
807
4804
As is illustrat
ed in Figure. 3, WaterM
oni
torC
i
s
com
p
osed of five components of
which,
MainC impl
e
m
ents the
b
oot sequ
en
ce of a
no
de
and
p
r
ovide
s
the
Boot i
n
terface
so
that
Wate
rMonito
rC can b
e
n
o
tified wh
en a
n
ode h
a
s fully
booted. In o
u
r
ap
plicatio
n,
Wate
rMonito
rC
need
s to
sa
m
p
le pe
rio
d
ical
ly, so we
can
use sta
r
tPeri
odic(60
000
)
comman
d
, whi
c
h
will
sign
al
a
fired event
once a min
u
te. It's worth mentioni
n
g
that there
are thre
e ActiveMessa
geC
components whi
c
h l
o
ok similar
but have entirely different
re
sponsibilities.
For instance,
PLCActiveMe
s
sage
C is u
s
ed for le
arning the
sta
t
es of auxiliary relay
s
in
PLC and the
con
c
e
n
tration
of NO3-, P
O
43-
and P
H
value. Com
m
unication b
e
twee
n FFD
and RFDs is the
duty of
CC24
20ActiveMe
s
sag
e
C.
DT
UActiveMessa
geC, used
on
ly
in FF
D,
se
nds data
p
a
ckets
to remote ma
nagem
ent pla
tform by GRP
S
chann
el.
3.1. RFD
RFD
ha
s two
main fun
c
tio
n
s: 1. Re
ad t
he concentration of NO
3-,
PO43-
and P
H
value
(as Sen
s
o
r
Data) in
PLC;
2. Send Se
n
s
or Data to t
he FF
D. Th
e
Sensor
Data
is
rea
d
thro
ugh
HOSTLI
NK in
stru
ction.
HO
STLINK
is O
m
ron'
s
propri
e
tary p
r
oto
c
ol
, by whi
c
h th
e
external
devi
c
e
can
comm
uni
cate with
Om
ron PL
C thro
ugh serial
po
rt. By HOSTLINK proto
c
o
l
, RFD can visit
DM (Data Me
mory) an
d ot
her regi
sters in PLC [6].
In
our sy
stem, the Sensor
Data, starting f
r
om
0012
unit, is
stored in the
DM area of P
L
C, ea
ch bei
ng represent
ed by an
8-byte ASCII. In order
to read th
e Senso
r
Data, TinyOS sen
d
s
the
HOS
T
LINK in
stru
ction "
@
00
RD00
120
0065
3*
↙
",
and th
en PL
C
sen
d
s ba
ck a
HOSTLINK instructio
n
as
re
spo
n
se
whi
c
h
co
ntain
s
Se
nso
r
Dat
a
. It
is
to
be
noted that PLC
s
t
ores
the Sens
or
Data
as a double-byte
ASCII, of the
8 bytes only t
he
late half are valid.
Figure 4(a
)
is a subset of
the RF
D state
diagram, the
advance
d
op
eration
s
bei
n
g
elided
for simpli
city. WaterMo
n
itorC initiat
e
s
pe
riodi
c samplin
g
in its booted event
b
y
Timer.
startPe
r
iodi
c co
mma
nd. Timer.fire
d req
uest
s
a
new PL
C sa
mpling by se
nding
HOSTL
I
NK
instru
ction
s
usin
g
the
PLCAMSen
d
inte
rfa
c
e,
and
a PL
CAM p
a
cke
t
stored i
n
a
plc_
se
nsor_
d
a
ta_t pa
cket buffer.
The
p
l
c_
sen
s
o
r
_d
a
t
a_t hold
s
th
e cu
rrent Se
nso
r
Data after
HOSTLI
NK resp
on
se arri
ves. Then we resto
r
e the
Senso
r
Dat
a
into node
_
s
en
so
r_p
a
cket_t
(Figu
r
e. 5
)
, a
nd send it to
FFD by
CC2
420AMSen
d i
n
terface. Thu
s
, the pa
cket
is sm
aller
a
n
d
easi
e
r to tran
smit; besid
es,
it identifies which mo
nitori
ng nod
e it wa
s born of.
B
oot.bo
o
ted
PL
CA
M
S
en
d.
s
e
n
d
C
C
242
0A
MS
end.sen
d
T
i
m
e
r
.
fire
d
P
L
C
R
ec
ei
ve.receive
CC
24
20
A
M
S
S
en
d.send
Done
(a)
Time
r.
fired
Bo
ot.boote
d
PL
CAM
S
en
d.
sen
d
DT
UAM
S
e
nd.send
PLCRecei
v
e.
recei
v
e
DTU
A
M
S
e
n
d
.
send
Done
CC2420
Receiv
e
.
receive
(b)
Figure 4. (a)
RFD o
p
e
r
atin
g scena
ri
o; (b
) FFD o
perating scen
ario.
3.2. FFD
FFD
ha
s fun
c
tion
s a
s
foll
ows: 1.
Re
ce
ive
nod
e_
sen
s
or_pa
cket_t
variable
sent
from
a
RFD; 2. Re
a
d
the Senso
r
Data in PLC; 3.
Send every node
_se
n
so
r_p
a
cket_
t
variable to th
e
remote ma
na
gement platfo
rm. The rem
o
te transmi
ssi
on function i
s
implemented
by GRPS DTU.
GPRS
DTU is
a devic
e
for c
o
nvers
i
on between
s
e
rial data and IP
pack
e
t. It has the PPP
dial-up
and T
C
P/IP proto
c
ol
en
ca
psul
ated in
G
P
RS DT
U, e
nablin
g tra
n
spare
n
t tran
smissi
on
between
seri
al devices and rem
o
te compute
r
s [7].
Different from
RF
D, PLCReceive.receive doe
s
not retransmit HOS
T
LINK respons
e
, but
sen
d
s th
e re
store
d
n
ode_
sen
s
o
r
_p
acket_t variable
to the re
mo
te mana
gem
ent platform
by
DTUAMS
end
interface. CC242
0Re
c
e
i
ve forw
a
r
d
s
the node
_
s
en
so
r_p
a
cket_t variable
by
DTUAMS
end
interfa
c
e
after
re
ceiving
i
t
from
RF
D. Wh
en thi
s
i
s
d
one, th
e
TinyOS sy
stem
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Depl
oym
ent of TinyOS for On
line Water Sensing
(Xin
Wang
)
4805
returns to
th
e ori
g
inal
sta
t
e waiting fo
r next Ti
mer.fi
red
event. T
he FF
D o
perating sce
n
a
r
io is
s
h
ow
n
in
F
i
gu
r
e
4(
b
)
.
00
RD
00
nu
l
l
ni
t
r
at
e
nul
l
nu
l
l
ph
os
p
h
a
t
e
ph
fc
s
*
@
T
O
S_
NODE_
I
D
ni
t
r
at
e
ph
osp
hat
e
ph
p
l
c_sen
s
o
r
_d
at
a_
t
n
o
de_s
en
so
r
_
p
a
c
k
e
t
_
t
Figure 5. Rel
a
tionship bet
wee
n
plc_se
n
s
or_data
_
t an
d node
_sen
sor_p
a
cket_t
4. Remote M
a
nageme
nt
Platform
The archite
c
t
u
re of re
mote
manage
ment
platform is shown in Figu
re 6.
Vi
rtual
Se
r
i
al Po
r
t
Se
r
v
ic
e
IP Datagr
am
Lab
VIE
W
Data
P
r
oc
ess
Se
r
i
al
Dat
a
MySQ
L
Data
base
S
ens
or
Data
S
ens
or D
a
ta
and C
o
m
m
and
L
abV
IE
W M
onitor
C
e
n
t
er
H
i
sto
r
y D
a
ta
Figure 6. Architecture of Re
mote Management Platform
4.1. Virtual Serial Port Ser
v
ice
The remote
manag
eme
n
t comp
uter
re
ceives t
he IP p
a
cket which
contain
s
Sen
s
or Data.
For ea
sy op
e
r
ation, the IP packet
is
co
nverted into
seri
al data b
y
Virtual Serial Port Servic
e.
Then th
e serial data i
s
u
s
ed to
comm
unicate with
uppe
r p
r
o
c
ed
ure
s
throug
h
the virtuali
z
ed
seri
al po
rt.
4.2. Data Pro
cess Proc
ed
ure
The Data Proce
s
s Proce
dure, i
m
plem
ented
by
Lab
VIEW softwa
r
e, is respon
sible
for
bindin
g
the virtual se
rial po
rt
and re
ceive
s
Sensor Data from GPRS
DTU. As floa
t in CP1H PLC
is stored a
s
two 16-bit
words in a
scendin
g
ord
e
r, LabVIEW must convert
it before be
ing
transfo
rme
d
i
n
to float. The
obtaine
d sen
s
or data i
s
stored
into the
databa
se
and
displ
a
yed in t
h
e
monitori
ng ce
nter. This
proce
s
s is impl
emented
by
a pro
ducer-consume
r
pattern. In this way,
the Sen
s
or
Data
can
be
stored i
n
to
MySQL data
base imme
di
ately in prod
uce
r
cycle,
a
nd is
displ
a
yed in a
con
s
tant sp
e
ed in co
nsum
er cy
cle.
4.3. Data Pro
cess Proc
ed
ure
MySQL, an o
pen
sou
r
ced
relation
al dat
aba
se
with hi
gh pe
rform
a
n
c
e, can run i
n
most
operating sy
stems. LabVI
E
W con
n
e
c
ts MySQL vi
a
Datab
a
se Co
nne
ctivity To
olkit and O
D
BC
interface. Th
e Monito
rin
g
Ce
nter i
s
n
o
t only resp
onsi
b
le fo
r d
i
splayin
g
the
Sensor Data of
monitori
ng
no
des in
re
al ti
me b
u
t al
so
achi
eves
the
function
s
of h
i
stori
c
al i
nqui
ry an
d a
bno
rmal
alarm.
5. Other op
e
r
ating s
y
stems for WS
N
Beside
s the
TinyOS, there a
r
e
so
me
o
t
her
embe
dd
ed
o
p
e
r
ating
system
s de
si
gned
for
the sen
s
o
r
ne
tworks.
Conti
k
i i
s
a
n
op
en
so
urce
ope
rating
sy
s
t
em fo
r n
e
t
wo
rk
e
d
,
me
mor
y
-c
on
s
t
r
a
in
ed
system
s with
a particular f
o
cu
s on lo
w-power wi
re
l
e
ss Inte
rnet of
Thing
s
devices. Example
s
o
f
whe
r
e Contiki
is used in
clu
de stre
et lighting system
s, sou
nd monito
ring for
sma
r
t cities, radi
atio
n
monitori
ng sy
stem
s, and al
arm sy
stems.
Contiki
was
cre
a
ted by Adam Du
nkels
in 2002 an
d h
a
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4802 – 4
807
4806
been fu
rthe
r
develop
ed b
y
a wo
rld
-
wi
de team
of
develop
ers from Atmel,
Ci
sco, Enea, E
T
H
Zuri
ch, Redwire, RWT
H
Aachen Uni
v
ersity,
Ox
ford
University, SAP, Sensi
node, SICS,
ST
Microele
c
tro
n
i
cs, Zole
rtia, and many ot
hers. The
na
me Conti
k
i comes from T
hor Heyerda
h
l's
famous
Kon-Tik
i
raft.
ERIKA Enterprise i
s
an
open-
source and
royalty-free O
SEK/VDX
Kernel. Thi
s
RT
OS
inclu
d
e
s
also
RT-Druid, which i
s
a
dev
elopme
n
t en
vironme
n
t distributed a
s
a
set of Eclip
se
plugin
s
. ERIKA Enterprise implement
s variou
s
co
nforma
nce cl
asse
s,
includ
ing the stan
dard
OSEK/VDXconformanc
e
class
e
s
BCC1,
BCC2, E
CC1, ECC2, CCCA, CCCB.
Moreover, E
R
IKA
provide
s
oth
e
r
custom
con
f
orman
c
e
cla
s
ses
nam
ed FP
(Fixed pri
o
rity),
EDF (Earlie
st
dea
dl
ine
first sche
dulin
g), and F
R
SH (an implem
e
n
tati
on of resource reserva
t
ion proto
c
ol
s).
Nan
o
-RK is
a
real
-time o
p
e
rating
sy
ste
m
from
Carn
egie Mell
on
University de
sign
ed to
run on mi
cro
-
co
ntroll
ers for use in se
nso
r
netwo
rks. Nano
-RK sup
port
s
a fixed-p
r
iority fully
pree
mptive sche
dule
r
with
fine-grai
ned
timing prim
iti
v
es to supp
o
r
t real-tim
e task
sets. "Na
n
o
"
implies that t
he RT
OS is small, con
s
um
ing 2KB
of RAM and usi
n
g 18KB of flash, whil
e "RK
"
is
sho
r
t
f
o
r
re
s
our
ce
ke
rnel.
A
re
sou
r
ce
ke
rnel
provides re
se
rvati
ons
on
ho
w often
syste
m
resou
r
ces ca
n be
con
s
um
ed. Fo
r exam
ple, a ta
sk mi
ght only
be
allowe
d to
exe
c
ute
10m
s ev
ery
150m
s (CP
U
reservatio
n), or a node mi
ght only be allowe
d to transmit 10 network p
a
cket
s pe
r
minute (network re
se
rvatio
n). The
s
e
re
servation
s
form a virtual
en
ergy b
udget t
o
en
su
re a
n
ode
meets it
s d
e
si
gned
battery l
i
fetime as wel
l
as
protectin
g
a fail
ed
nod
e from
ge
nerating ex
ce
ssi
ve
netwo
rk traffi
c. Nano
-RK i
s
o
pen
so
urce, is
wr
itten
in C
and
ru
ns on the
Atme
l-ba
sed
FireF
l
y
sen
s
o
r
netwo
rkin
g platform
, the MicaZ m
o
tes a
s
well a
s
the MSP43
0
pro
c
e
s
sor.
LiteOS is a
real
-time ope
rating
syste
m
from
Univ
ersity of Illinois for u
s
e i
n
sen
s
o
r
netwo
rks.
LiteOS i
s
a
UNIX-lik
e o
perating
system
that fits
on
memo
ry-con
strain
ed
se
n
s
o
r
node
s. This
operating sy
stem allows u
s
ers to ope
ra
te wirele
ss sensor net
wo
rks li
ke ope
rat
i
ng
Unix, whi
c
h i
s
ea
sie
r
for
peopl
e with
adeq
uate
Un
i
x
backgroun
d. LiteOS provides
a fam
iliar
prog
ram
m
ing
environm
ent
base
d
on UNIX, thread
s, and C. It follows a hybri
d
prog
ram
m
i
ng
model that al
lows both ev
ent-d
riven an
d threa
d
-d
riv
en programm
i
ng. Li
teOS i
s
ope
n source,
written in C a
nd run
s
on th
e Atmel base
d
MicaZ a
nd IRIS sen
s
o
r
n
e
tworkin
g
pla
tform.
OpenT
ag i
s
a
DASH7 p
r
ot
ocol
stack a
n
d
minimal Re
al-Time
Ope
r
ating System, written
in the
C prog
rammin
g
la
ng
uage. It i
s
de
sign
ed to
run
on
micro
c
ont
rolle
rs o
r
radi
o System
s
on
a
Chip
(SoC). OpenT
ag
wa
s engi
nee
red
to be a very
comp
act software pa
ckag
e. However,
with
prop
er
co
nfig
uration, it
ca
n also run in
any
POSIX environm
ent. OpenT
ag
ca
n also p
r
ovid
e all
function
ality required for a
n
y type of D
ASH7
Mode
2 device, rat
her
than ju
st the eponymous
“tag”-type en
dpoint devi
c
e
6. Conclusio
n
As a re
al time
operating sy
stem optimi
z
ed for
WSN,
TinyOS is first employed in
the field
of water
qual
ity monitoring
in our
syste
m
to
achi
eve
the goal
s of
water
quality
data coll
ecti
on
and it
s remot
e
tran
smi
s
sio
n
. The
sy
ste
m
sugge
sts
t
he comp
one
n
t
-based programming
meth
od
and the eve
n
t-drive
n
ope
rating me
ch
a
n
ism, which
is inde
pen
de
nt of network infra
s
tru
c
tu
re,
flexible and a
ffordable to b
e
implemente
d
and ha
s a promi
s
in
g pro
s
pe
ct. Ho
wever, the syste
m
is far from
b
e
ing p
e
rfe
c
t. More research i
s
n
eed
ed
co
ncerni
ng
hidde
n termi
nal, out-of-o
r
der
packet an
d other issu
es in the future. Besi
de
s, the bala
n
ce
betwe
en sy
stem lifetime and
transmissio
n rate is un
de
rd
con
s
ide
r
atio
n.
Ackn
o
w
l
e
dg
ements
This
wo
rk was
sup
p
o
r
ted
by the National
Na
tu
ral Scien
c
e
F
o
u
ndation of
China (No.
61273070), the Programm
e of Intr
oduci
ng Talents
of Discipli
ne
to
Universities (B12018), PAPD
of Jiang
su
Hi
gher Ed
ucation Institution
s
and th
e Fu
ndame
n
tal Rese
arch Fu
n
d
s for the
Ce
ntral
Universitie
s
(JUS
RP11
132
).
Referen
ces
[1] Z
hao
X.
Res
e
arch on env
ironment
system for
water m
o
nitor
. Internati
o
n
a
l C
onfer
enc
e
on Inte
lli
ge
nt
S
y
stem Des
i
g
n
and Eng
i
n
eeri
ng App
lic
ati
on.
Chan
gsh
a
. 20
10; 2: 197-
199.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Depl
oym
ent of TinyOS for On
line Water Sensing
(Xin
Wang
)
4807
[2]
Alex
A, Jenny DR.
Des
i
gn
in
g an
auto
m
ate
d
w
a
ter qu
ality
mo
nitor
i
ng
sy
stem for W
e
st
and
Rh
od
e
Rivers
. Proce
e
d
in
gs of the 2009 IEEE S
y
s
t
ems and In
for
m
ation En
gin
e
e
rin
g
Desi
gn
S
y
mp
osi
u
m.
Charl
o
ttesvil
l
e.
2009; 1
31-1
3
6
.
[3]
Joa-N
g
Mar
i
o,
Lu
I-T
a
i. A p
eer-to-p
eer z
o
ne-b
a
sed
t
w
o-
l
e
vel
li
nk state
routi
n
g
for m
obil
e
ad
h
o
c
net
w
o
rks.
IEEE Journal on S
e
lected
Areas in Comm
unications
. 199
9; 17(
9): 1415-
14
25.
[4]
Azzedi
ne B. A
l
gorithms
an
d
protoco
l
s for
w
i
reless
sens
or
net
w
o
rks. H
o
b
o
ken: J
ohn
W
ile
y & S
ons
.
200
9.
[5]
Ga
y
D, L
e
vis
P, Culler
D. So
ftw
a
re
de
si
gn p
a
tte
rns for T
i
ny
OS.
ACM T
r
ansacti
ons o
n
Emb
e
d
d
e
d
Co
mp
uting Sys
t
ems
. 20
05; 40
(7): 40-49.
[6]
Omron Corp
or
ation. Comm
un
icatio
ns
comm
ands refer
enc
e
manua
l. K
y
ot
o
.
2010.
[7]
Metz C. A poin
t
ed look at
the
poi
nt-to-poi
nt p
r
otocol.
IEEE Internet Computing
. 199
9; 3(4)
: 85-88.
Evaluation Warning : The document was created with Spire.PDF for Python.