TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.4, April 201
4, pp. 3118 ~ 3
1
2
5
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i4.4782
3118
Re
cei
v
ed Au
gust 28, 20
13
; Revi
sed
No
vem
ber 1
3
, 2013; Accepte
d
De
cem
ber
6, 2013
Design of a Multi-parameter Measurement System
Yaoliang Shi
1
,
G
u
a
n
gy
u
Zh
e
n
g
2
, Li Wu
3
, Shusheng Peng*
4
1,2,
3,4
Nanjing U
n
iversit
y
of Sci
ence a
nd
T
e
chnol
og
y, Na
nji
n
g 210
09
4, P.R.C
2
802 Institute o
f
China Aer
o
sp
ace Scie
nce a
nd T
e
chnol
og
y Co., Shang
hai
, P.R.C
T
e
l: 025-843
15
553; F
a
x: 025-
843
15
553
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: shi
y
ao
lia
ng
1
234
56
7@1
63.c
o
m
1
, njustpss@163.com
4
A
b
st
r
a
ct
T
h
is pa
per
intr
oduc
es a
multi
-
par
a
m
eter
me
asure
m
ent sys
tem, w
h
ich
is
used f
o
r rec
o
r
d
in
g th
e
tem
p
eratur
e and humidity, at
m
o
s
p
heri
c pressure,
rotation spee
d and
acc
e
ler
a
tion,
etc. The system
us
es
a
32-b
i
t RISC
mi
croproc
essor
o
f
ST
M32F
103Z
ET
6 bas
ed
on
the cor
e
of A
R
M Coretex-M
3
as
master c
h
i
p
.
Meanw
hi
le, it w
r
ites the data record
ed
to NA
ND F
L
ASH. After it is over, it
copi
es the data
to host-co
mput
e
r
throug
h SD car
d
.
Ke
y
w
ords
:
mu
lti-para
m
eter
measur
e
m
ent sy
stem
, ST
M32F
103Z
ET
6, NAN
D
F
L
ASH, SD card
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Measurement
of attitude and meteorolog
y during
flight
of high sp
ee
d is al
ways a
puzzle.
No
wad
a
ys, q
u
ite a lot of method
s are used to me
a
s
ure the flight attitude and m
e
teorol
ogy
, such
as optical test method, radar test method,
high-spee
d
photogra
phy
method and accele
rom
e
te
r
method, etc.
These metho
d
s have
their
own limitation
s
. Optical te
st method is climate-sen
s
itive
and ha
s a sh
ort ef
ficient di
stan
ce; rad
a
r test me
thod is su
sceptibl
e
to be interfered and p
oor i
n
accuracy
wh
en working
at long-dista
n
ce; high-sp
eed
photog
rap
h
y method h
a
s
a sh
ort test ti
me
and ef
ficient distan
ce; accelero
meter m
e
thod mu
st combine a lot of accel
e
rom
e
ters, an
d ha
s a
high req
u
ire
m
ent of installation pre
c
i
s
ion [1],
meanwhile its attitude algorithm is compl
e
x.
Becau
s
e
of the limitation
s
of the com
m
on te
st
me
thods, thi
s
p
aper u
s
e
s
d
y
namic m
e
m
o
ry
recorders, accele
rom
e
ter and gyro
scop
e as sen
s
itive element to
measure the
flight attitude
and
meteorology [2].
2. Sy
stem Function
The
system
has five funct
i
on mo
dule
s
,
incl
u
d
ing
ST
M32 co
re
m
o
dule, sen
s
o
r
module,
ADC m
odule,
stora
ge m
o
d
u
le and
data
-
transmissio
n
module. STM
32 core
mod
u
le is the
mo
st
importa
nt m
odule,
whi
c
h
is respon
sible fo
r dat
a
proce
s
sin
g
.
Sensor module re
co
rds
environ
ment para
m
eters, some of
whi
c
h
a
r
e
a
nalo
g
y sign
als.
ADC m
odul
e
transfo
rm
s t
h
e
analo
g
y si
gn
als to
digital
sign
als for STM32
co
re
m
odule. Sto
r
ag
e mo
dule
co
n
s
ist
s
of
a
NA
ND
FLASH, and
store
s
d
a
ta temporarily. Da
ta-tran
s
mi
ssi
on modul
e is
use
d
to tran
smit data to host-
comp
uter. A
s
is
sh
own i
n
Figu
re 1,
five function
module
s
m
a
ke
up the
whol
e pa
ram
e
ter
measurement
system.
Fig 1. System Descri
ption
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of a
Multi-pa
ram
e
ter Mea
s
u
r
em
ent System
(Yaoliang Shi
)
3119
3. Design an
d Implementation of
Har
d
w
a
re Sy
stem
3.1. STM32 Core Mo
dule
STM32 i
s
th
e co
re
of th
e wh
ole
syst
em, whi
c
h
consi
s
ts
of A
DC
blo
ck, S
D
card
transmissio
n
block, NA
ND FLASH bl
ock an
d P
LL f
r
eque
ncy mult
iplicatio
n (DCM) blo
c
k. Th
e
prin
ciple di
ag
ram is
sho
w
n
in Figure 2.
Figure 2. STM32 Co
re Mo
dule Di
agram
STM32 integrates an inner
8M
high-speed RC oscillat
o
r, but
the preci
s
ion of this RC
oscillator i
s
not high. So in the system, an acti
ve cryst
a
l of 8MHz i
s
chosen for STM32, whi
c
h
will be multipl
i
ed to 72MHz as system CLK.
3.2. Sensor and ADC Mo
dule
Senso
r
mo
d
u
le ha
s fou
r
se
nsors t
o
re
co
rd en
vironme
n
t p
a
ram
e
ters, inclu
d
ing
temperature
and hu
midity sen
s
o
r
SHT
15 from Se
n
s
irio
n Inc., a
t
mosph
e
ri
c p
r
essu
re
sen
s
or
BMP085 fro
m
BOSCH In
c., 3-axis a
ccelero
mete
r
a
nd 3-axis ma
gnetomete
r
L
S
M303
DL
H from
SGS-THOMS
Inc. an
d gyroscop
e sen
s
or ADX
R
S649 from A
D
I Inc
.[3]. Among them, SHT15
wo
ks
on lo
w- power mo
de
, and the resolution of te
m
perature i
s
12 bits, while
the re
solutio
n
of
humidity is 8 bits[4]; BM
P085 has an EEPROM ,
w
hi
ch suppli
es 176
bits standard
dat
a
to
comp
en
sate
the voltage measu
r
e
d
; LSM303
DL
H con
s
ist
s
of accelerome
ter modul
e and
magneto
m
ete
r
modul
e, whi
c
h have
diffe
rent power-in
pins[5] an
d
the accele
rom
e
ter uses
+3.3V
power su
pply
,
while
the m
agnetom
eter use
s
+1.8V
power
su
pply
;
ADXRS64
9
sh
ould
have
a
referen
c
e voltage of +5V,
whi
c
h is p
r
od
uce
d
by low d
r
opo
ut linea
r regul
ator ADR12
5
.
ADC mo
dule
use
s
MAX11
045 chip from
MAXIM Inc. to conve
r
t the analo
g
output
of
ADXRS64
9
to digital sig
n
a
l
. MAX11045 has 6 A/D
ch
annel
s, two o
f
which h
a
ve been u
s
e
d
in
this syste
m
. The pri
n
ci
ple
diagram is
sh
own in Fig
u
re
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 3118 – 3
125
3120
Figure 3. Sensor M
odul
e a
nd ADC M
o
d
u
le Dia
g
ra
m
3.3. Storage
Module
The M
CU
of STM32F1
0
3
Z
ET6 ca
n b
e
co
nne
cted
to all kind
s
of asyn
chron
ous
and
synchro
nou
s
memory th
ro
ugh FSM
C
. NAND FLAS
H MT2
9
F2G
08 from Mi
cron Inc. b
a
se
d on
SLC
(Singl
e-l
e
vel cell) is chosen to
record
data
in
real-time,
whi
c
h i
s
conn
ect
ed to
BANK2
of
MCU, while B
A
NK3 is re
se
rved [6]. The prin
ciple di
ag
ram is
sho
w
n
in Figure 4.
Figure 4. Storage Mod
u
le
Diag
ram
3.4. Data
-Tr
a
nsmission M
odule
The
system
use
s
S
D
ca
rd to
copy
d
a
ta from
NA
ND FLAS
H
MT29F
2G08
to ho
st
comp
uter. S
D
ca
rd
sup
p
li
es two
comm
unication
styl
es, call
ed SDIO and SPI.
Whe
n
SDIO
style
is use
d
, the main co
ntroll
er req
u
ires CLK, CMD, an
d 4-bit data signal to com
m
unicate wit
h
SD
card. SDIO
style sup
port
s
R/W,
an
d h
a
s
erro
r
correction
fun
c
tio
n
on
tra
n
smit
ted data
[7].
The
prin
ciple di
ag
ram is
sho
w
n
in Figure 5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of a
Multi-pa
ram
e
ter Mea
s
u
r
em
ent System
(Yaoliang Shi
)
3121
Figure 5. Dat
a
-T
ran
s
mi
ssi
on Modul
e Di
agra
m
4. Design of
Soft
w
a
re Sy
stem
The inte
grate
d
develo
p
me
nt enviro
n
me
nt of
RealVie
w
M
D
K fro
m
ARM In
c. is
adopte
d
to desig
n the
system
software b
a
sed on
the fi
rmwa
re
library
p
r
og
r
a
m su
pplie
d by
SGS-TH
O
M
S
Inc
.
Software
system inclu
d
e
s
two functio
n
s
, system
-m
easure
m
ent
and data
-
cop
y
, which
can
be cho
s
e
n
throu
gh a
n
I/O port with
1 or 0. In the
function
of sy
stem-mea
su
rement, two d
a
ta
buffers of 20
kB are cre
a
ted in the
RA
M of chi
p
. After then, it m
easure
s
the
para
m
eters d
a
ta
throug
h se
nsors in the inte
rru
pt prog
ram
of timer,
and write
s
them to the data buf
fer. Mean
whil
e,
the data in b
u
ffer are written to NA
ND
FLASH in th
e main loo
p
. Becau
s
e th
ere are t
w
o da
ta
buffers, pi
ng
pong o
peration is cho
s
en
to reali
z
e dat
a Rea
d
ing a
n
d
Writin
g
, whi
c
h en
su
re
s d
a
ta
writing
from
A/D to b
u
ffer
and
buffer to
NAND F
L
ASH in
dep
end
e
n
tly[8]. In the functio
n
of
d
a
ta-
copy, SD card woul
d be sti
c
ked in firstly.
After
SD card detecte
d, it
read
s a pa
ge
of data of 204
8
bits from
NA
ND
FLASH
a
nd write
s
the
m
to SD
card, and thi
s
p
r
oce
s
s la
sts u
n
til data-copy
is
over. The p
r
incipl
e diag
ra
m is sh
own in
Figure 6.
Figure 6. Software System
Diag
ram
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 3118 – 3
125
3122
The de
sign o
f
system-m
ea
sureme
nt f
unction in
clud
e
s
se
nsor (LS
M
303
DL
H
、
B
M
P085)
prog
ram
de
si
gn and A
DC
prog
ram
de
si
gn, while th
e
desig
n of da
ta-co
p
y functi
on is SD
ca
rd
prog
ram d
e
si
gn.
4.1. LSM303
DLH Pro
g
ra
m
It configure
s
the I/O after powerin
g
on
the LSM303
DL
H, then initialize
s
the
accele
rom
e
te
r and ma
gnet
ometer[9]. Th
e format of
o
u
tput data is
16 bits, and t
he output rate is
50Hz. The
d
a
ta of X,Y and Z axis
of a
c
celerome
te
r are saved
i
n
6
regi
ste
r
s whose
ad
dre
ss
is
28h
~2d
h
, an
d the magnet
ometer’
s
is 0
3h~08h. The
pro
c
e
ss i
s
sh
own in Fig
u
re
7.
Figure 7. LSM303
DL
H Progra
m
Dia
g
ra
m
4.2. BMP085
Program
Atmosph
e
ri
c pre
s
sure
sensor BMP0
85 co
mmuni
cate
s with
STM32 thro
ugh I
2
C
interface. The
temperatu
r
e
data
and atm
o
sp
here data
from BMP08
5
are with a l
o
w preci
s
io
n. In
orde
r to
get
the p
r
e
c
iou
s
temp
erature an
d atmo
sph
e
re
data,
mea
s
u
r
ed
data
woul
d
be
c
o
mpens
a
ted with the
s
t
andard
data in
EEPROM ac
c
o
rding to the formula in the datas
heet. The
pro
c
e
ss i
s
sh
own in Fig
u
re
8.
Figure 8. BMP085 Prog
ra
m Diag
ram
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of a
Multi-pa
ram
e
ter Mea
s
u
r
em
ent System
(Yaoliang Shi
)
3123
4.3. ADC Pro
g
ram
After the
sy
stem i
s
po
wered
on,
STM32
and
MAX110
45
are initiali
zed.
When
CONVEST pin is
reset, the A/D
conv
ersi
on on
Channel 1 begins. T
he
results would be
transmitted t
o
DB0
~
DB15
data
bu
s. Upon th
e n
e
xt
falling
edg
e
of RD, the A
D
conve
r
si
on
on
Cha
nnel
2 b
e
g
ins. T
he
pro
c
e
s
s la
sts
unt
il mea
s
u
r
eme
n
t is
over. T
h
e pri
n
ci
ple
di
agra
m
i
s
sho
w
n
in Figure 9.
Figure 9. ADC Prog
ram
Di
agra
m
4.4. SD Card
Program
In the system
, SD card is o
perate
d
in the
gene
ral file system mod
u
le of FatFS, includi
n
g
cre
a
ting
file,
deleting
file,
writing
d
a
ta,
readi
ng
data
and
cre
a
ting
folde
r
s [10]. The
op
eration
p
r
oc
es
s o
f
SD
c
a
r
d
b
a
s
e
d o
n
F
a
tF
S is
s
h
ow
n in
Fig
u
re
10.
Firstly, a
work space is
cre
a
ted
a
n
d
a new file i
s
defined o
n
SD card, a
nd then, data a
r
e
written to thi
s
file in loop
until data-co
p
y
is
over.
Fig.10 SD card Program Di
agra
m
5. Experiment Re
sults
The p
a
ramet
e
r m
e
a
s
urem
ent sy
stem i
s
ma
nufa
c
tured in P
C
B o
f
2 layers. It is n
o
t
approp
riate to make it too big, and th
e actual
si
ze
of disc i
s
n
early 8.5
c
m
of diameter.
The
physi
cal obje
c
t is sh
own in
Figure 1
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 4, April 2014: 3118 – 3
125
3124
Figure 11. Physical O
b
je
ct
The
data
of
accele
rom
e
te
r a
nd m
agn
e
t
ometer i
s
sh
own
in
Figu
re 12
an
d Fi
g
u
re
13,
respe
c
tively.
The data of temperature
and humi
d
ity, and atmospheri
c
pressure is
sho
w
n
in
Figure 14 an
d Figure 15, resp
ectively.
Figure 12. 3-axis Accele
ro
meter Wave
Figure 13. 3-axis Magn
eto
m
eter Wave
Figure 14. Te
mperature a
n
d
Humidity Wave
Figure 15. Atmosp
he
ric Pressure Wave
Ackn
o
w
l
e
dg
ements
This
wo
rk was
sup
p
o
r
ted
in pa
rt by
Ch
in
a Po
std
o
ctoral Sci
e
n
c
e F
oun
datio
n (F
und
No.20
100
481
151).
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
sign of a
Multi-pa
ram
e
ter Mea
s
u
r
em
ent System
(Yaoliang Shi
)
3125
Referen
ces
[1]
Lee S
C
, Liu
C
Y
. An Innovativ
e Estimatio
n
Method
w
i
th O
w
n-shi
p
Estimat
o
r for All Acce
l
e
rometer t
y
p
e
Inertial N
a
vig
a
tion S
y
stem.
Internati
ona
l Jour
nal of Syste
m
s
Science
. 19
99
; 30(12): 12
59-
126
6.
[2]
Xu
DS. R
e
se
a
r
ch of Acce
ler
o
meter
and
G
y
roscop
e
i
n
Iner
tial n
a
vi
gatio
n.
Ji
am
u
s
i
Un
i
v
ersi
ty Jo
u
r
na
l
.
201
2; 30(3): 33
4-33
7. (In Chin
ese)
[3]
Shmuel JA. Non-gy
roscopi
c In
ertial Me
asure
m
ent Unit.
Gui
danc
e
. 198
2; 5(3): 227-2
30.
[4]
Sensiri
on Inc. SHT
15.pdf. 2003.
[5]
Alfred RS. Me
asuri
ng Rot
a
ti
ona
l Motio
n
w
i
th Line
ar Acce
leromet
e
r.
IEEE Trans. on AES.
1967; (3):
465-
472.
[6]
Park C, Seo
J, Seo D, Kim
S, Kim B.
C
o
st-efficient
memory arc
h
itec
ture des
ig
n of
NAND fl
as
h
m
e
mory em
bedded system
s.
Proceed
in
gs o
f
the 21st Internatio
nal
Confe
r
ence o
n
Com
puter Des
i
g
n
.
200
3; (10): 474
–48
0.
[7]
Verga R, Buden D.
Pr
ogress
tow
a
rds
the de
velo
p
m
ent of
p
o
w
e
r ge
ner
atio
n a
nd
pow
er c
ond
ition
i
n
g
techno
lo
gies for SDIO.
Proceed
ings of the
Intersociet
y
E
ner
g
y
Co
nvers
i
on En
gin
eeri
n
g Confer
enc
e
,
198
9; (3): 17-2
2
.
[8]
Cho
ng-Gun Y
u
, Geiger R
L
. An automatic
offs
et compe
n
satio
n
schem
e
w
i
th p
i
ng
po
ng co
ntrol f
o
r
CMOS operati
ona
l ampl
ifiers.
IEEE Journal
of Solid-State
Circuits
. 19
94; (5): 601-1
0
.
[9]
Markevici
u
s V,
Navik
a
s
D. Ad
aptive
T
he
rmo-Comp
ensati
o
n
of
Mag
neto-R
e
sistive S
ensor.
El
e
k
tron
i
k
a
ir Elektrotech
n
i
k
a.
2011; (8): 4
3
-6.
[10]
Bachi
o
chi J. Access SD memor
y
car
d
s:
solid-state stora
g
e
media i
n
em
bed
de
d apps.
Circuit Ce
llar
.
200
9; (6): 50-5
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.