TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5999 ~ 6008
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.525
6
5999
Re
cei
v
ed
No
vem
ber 3
0
, 2013; Re
vi
sed
April 16, 201
4; Acce
pted
May 2, 201
4
A Study of Three-Level Neutral Point Clamped Inverter
Topology
Muhammad Kashi
f
*
1
, Zhuo Fang
2
, Samir Gautam, Yu Li, Ali S
y
ed
Schoo
l of Elect
r
ical En
gin
eeri
ng, X
i’a
n Jia
o
tong U
n
ivers
i
t
y
,
Xi’
an, Ch
ina
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: mhd.kashif@
y
a
h
o
o
.com
1
, zf
fz@mail.
x
j
tu.edu.cn
2
A
b
st
ra
ct
T
he three-l
e
ve
l Neutra
l Point
Cla
mp
ed (NP
C
) in
verter h
a
s
beco
m
e
mat
u
red a
nd w
i
de
ly use
d
topol
ogy in h
i
gh-p
o
w
e
r me
d
i
u
m
-volta
ge a
p
p
licati
ons d
u
e
to several ad
vantag
es asso
ciated w
i
th it as
compar
ed to ot
her ava
i
l
abl
e
multilev
e
l to
pol
o
g
ies. T
h
is
p
a
p
e
r
presents a
bri
e
f review
on o
p
e
ratio
n
of three
-
level N
P
C inv
e
rter. Different mo
du
latio
n
strategi
es use
d
in
NPC inverter i
s
also disc
uss
ed. T
he pro
b
le
m of
neutra
l p
o
int v
o
ltag
e b
a
la
nci
ng w
i
th its s
o
l
u
tion
is
pr
ese
n
ted. F
i
n
a
lly, t
he si
mulati
on
and
exp
e
ri
me
nta
l
results for thre
e-lev
e
l NPC i
n
verter are giv
e
n w
h
ich
vali
dat
es the prop
er o
perat
i
on of this
topolo
g
y.
Ke
y
w
ords
: NPC, PWM, SV
M, NP balance
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The im
porta
n
c
e
of re
ne
wa
ble e
nergy h
a
s i
n
cr
ea
se
d
due to
re
du
ction of
availab
l
e fossil
fuel re
se
rves and thei
r n
egat
ive impa
ct on e
n
viro
nment. Besi
des, b
e
cau
s
e of expandi
ng
eco
nomie
s
a
nd p
opul
ation
,
the de
mand
of en
ergy
ha
s b
een
in
cre
a
sin
g
g
r
ad
ual
ly. For effici
e
n
t
and
reliabl
e i
n
tegratio
n of
rene
wa
ble e
n
e
rgy
system
s
into dist
ributi
on g
r
id a
s
we
ll as to
drive t
h
e
requi
re
d high
powe
r
, ne
w conve
r
ter top
o
logie
s
an
d semico
ndu
cto
r
technol
ogie
s
has em
erg
e
d
.
For thi
s
rea
s
on, multilevel
inverte
r
hav
e be
en int
r
od
uce
d
a
s
they
can
a
c
hieve
high p
o
wer u
s
in
g
medium
-po
w
er
semi
con
d
u
ctor technol
ogy as co
m
pare
d
to con
v
entional
inv
e
rter usi
ng h
i
gh
power semi
condu
ctor d
e
vice
s, whi
c
h are still unde
r d
e
velopme
n
t [1, 2].
The id
ea
of multilevel in
verter
wa
s i
n
trodu
ce
d in
197
5 a
nd i
n
19
81, A.
Nab
ae, I
.
Taka
ha
shi, a
nd
H. Aka
g
i
pre
s
ente
d
th
e first th
ree
l
e
vel inverte
r
[3, 4]. In ord
e
r
to a
c
hi
eve
high
power, multilevel inverter
use
d
an arra
y of semi
con
ducto
r device
s
with seve
ral
lower d
c
voltage
sou
r
ces for p
o
we
r
conve
r
sion
re
sulting
in ste
ppe
d vo
ltage
waveform. The
d
c
v
o
ltage
so
urce
s
can b
e
ca
pa
citors, batteri
es o
r
ren
e
wable en
ergy
voltage so
urce
s. The co
mmutation of
the
swit
che
s
su
m
up these dc
voltage sou
r
ces to
get higher outp
u
t voltage. The voltage of power
semi
con
d
u
c
tor switch
es
endu
re only redu
ce
d voltage
s as the
rating of power se
mico
nd
ucto
r
swit
che
s
is d
epen
dent on
dc voltage
so
urce to whi
c
h
they are con
necte
d.
There a
r
e t
w
o types of in
verter, the
two l
e
vel and multilevel.
A
Two level
inverter
gene
rate
s a
n
output volta
ge
with two l
e
vels
whil
e t
he mini
mum
numbe
rs of v
o
ltage l
e
vels
in
multilevel inv
e
rter are three. The i
n
crease i
n
nu
mber of level
s
of t
he
inverter will have
a good
output volta
ge waveform with redu
ced
harmoni
c
di
stortion
but with in
crea
se in
co
ntrol
compl
e
xity. A multilevel i
n
verter ha
s gre
a
t advanta
g
e
s
com
pared
to two
level
in
verter
mentio
ned
as bel
ow:
a)
The output waveform
s co
n
t
ain very lo
w total harm
oni
c distortion
(T
HD) and lo
we
r
dv/dt.
b)
Multilevel inverter
can d
r
a
w
input
curre
n
t with very little distortion.
c)
They can o
p
e
r
ate at both hi
gh switch
i
ng frequ
en
cy as
well a
s
low
switchi
ng
freque
ncy.
With
several advantag
es multilevel
inverters
d
o
hav
e som
e
di
sad
v
antage
s. As with th
e
increa
se of v
o
ltage level t
he nu
mbe
r
of
power
se
mi
condu
ctor swit
che
s
al
so i
n
creased
so ove
r
all
system b
e
co
mes mo
re ex
pen
sive and
compl
e
x. De
spite the adva
n
tage
s of mul
t
ilevel convert
e
rs
their preval
ence
i
n
industri
al application is
l
o
w due to technological pr
oblem
such as
reliability,
efficien
cy, co
ntrol co
mple
xity and modulation me
t
hod
s. Ho
wev
e
r, the re
cen
t
resea
r
che
s
on
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 599
9 –
6008
6000
these te
ch
nical difficultie
s
have resulted
multile
vel co
nverter
bein
g
accepte
d
for variou
s p
o
wer
system a
pplication.
A lot of inverter topolo
g
ie
s have
been
prop
osed ov
er the la
st two d
e
cade
s
in whi
c
h
three a
r
e ba
sic and m
o
st o
f
the other topologi
es a
r
e
hybrid ci
rcuits of two of the basi
c
multilev
e
l
topologi
es wi
th or without
slight variat
ions
. The th
ree ba
si
c topologi
es a
r
e
diode-cla
m
p
e
d
(neut
ral-cla
m
ped), ca
pa
citor-clam
ped (f
lying
ca
pa
ci
to
rs) an
d casca
ded
H-b
r
id
ge
with
sepa
rat
e
s
dc source
s [1, 2]. The NPC multilevel inverter is
widely used in
various in
du
strial ap
plicatio
n
s
among oth
e
r
multilevel inverter topol
og
y. This paper
presents a b
r
ief review o
n
three-level
NPC
inverter top
o
l
ogy and its
modulatio
n strategie
s
.
Th
e major i
s
su
e of this inv
e
rter to
polog
y is
neutral
point
voltage un
balan
ce
whi
c
h i
s
ad
dre
s
sed al
ong
with the
sol
u
tion. Finally
the
simulatio
n
an
d experim
ent
al are p
r
e
s
ent
ed to validate
the discussio
n
s.
2. Rev
i
e
w
of
T
opolog
y
The th
ree
lev
e
l ne
utral
poi
nt cla
m
pe
d in
verter i
s
sho
w
n i
n
th
e
Fig
u
re
1.
This
in
verter
is
the modified
form of two
-
l
e
vel inverter
topology with
the addition
of two ne
w semi
con
d
u
c
to
r
swit
che
s
p
e
r
pha
se.
Th
e two capa
cito
r
C1 and C2
split
the dc b
u
s
voltag
e which ma
ke
th
e
neutral
poi
nt
‘P’ that gen
erate an
ad
ditional volta
ge l
e
vel he
nce
makin
g
it th
ree-level
inverter.
The cla
m
pin
g
diode limit
s the voltage
stress a
c
ro
ss the switche
s
to the value of the voltage
across the
capa
citor that
is Udc/2. Ta
b
l
e 1 show
s th
e switchi
ng states for th
re
e-level inve
rter.
The i
n
verte
r
output i
s
Ud
c/
2 when
swit
ch S1
and
S2
are
on
while
output –
U
d
c
/
2
when
swit
ch S3
and S4 are switch
ed on. T
he inverte
r
ge
nerate
s
switching state 0
whe
n
S2 and
S3 are on.
NPC offers many advant
age
s like th
e capa
citan
c
e requi
rem
e
nt in this to
pology is
redu
ce
d as
all pha
se
s share
com
m
o
n
dc bu
s; he
nce b
a
ck to
back topol
og
y is suitable
for
pra
c
tical
u
s
e
s
ju
st like fo
r multid
rive a
nd hig
h
volta
ge ba
ck to b
a
ck inte
rcon
nectio
n
s [2,
4].
Furthe
r, cap
a
citors
can
b
e
ch
arg
ed p
r
ior tre
a
ting t
hem a
s
g
r
ou
p. Ho
wever,
NPC h
a
s
so
me
disa
dvantag
e
s
too, the
nu
mber of cl
am
ping di
ode
in
cre
a
se
with t
he in
crea
se i
n
num
ber of l
e
vels
whi
c
h ca
n be
unmana
gea
ble. The reve
rse
re
covery
of these cla
m
ping diod
e prese
n
ts a maj
o
r
desi
gn chall
enge
whe
n
the inverte
r
i
s
ope
ratin
g
unde
r PWM
in high voltage hig
h
po
we
r
appli
c
ation [2
, 5].
The NP
C inv
e
rter is th
e
wi
dely used i
n
verter
topolo
g
y for vari
ou
s in
dustri
a
l a
ppli
c
ations
[1, 6]. Application of NP
C inclu
des
hig
h
po
wer
m
e
d
i
um voltage v
a
riabl
e spee
d
drive, static
var
comp
en
sato
r
and inte
rfa
c
e
between
dc tran
smi
ssi
on li
ne a
nd a
c
t
r
a
n
smi
ssi
on li
n
e
. The
ba
ck to
back co
nfigu
r
ation of NPC make it suita
b
le for
reg
e
n
e
rative appli
c
ation like con
v
eyers for mi
ning
indu
stry and i
n
terfaci
ng of rene
wable e
n
e
rgy sy
stem with the grid [
7
, 8].
Table 1. Th
re
e-level Invert
er Switching
States
Sw
itching
State
Device Sw
itching Status (Phase A)
Inv
e
rter
Termi
n
a
l
Voltage
S1 S2
S3
S4
1 On
On
Off
Off
Udc
/
2
0 Off
On
On
Off
0
-1
Off
Off
On
On
-
Udc
/
2
Figure 1. Three-L
e
vel NP
C Inverter T
o
pology
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Study of Three
-
Le
vel
Ne
utral Point Cl
am
ped Inve
rter Top
o
log
y
(Muham
m
ad Kashif)
6001
3.
Modulation
Strategies u
sed in NPC I
n
v
e
rter
Several m
o
d
u
lation te
chn
i
que
s an
d
control
strate
gies
have
b
een p
r
o
p
o
s
e
d
and
impleme
n
ted
for multilev
e
l inverte
r
s
su
ch a
s
mul
t
ilevel Multicarri
er
pul
se
width m
odul
ation
(PWM
), multilevel sele
ctive
harmo
nic eli
m
inat
ion, and
spa
c
e-ve
cto
r
modulation
(SVM).
3.1. Multicar
rier PWM Str
a
tegie
s
Sinusoi
dal PWM is very p
opula
r
metho
d
in indust
r
ial
applicatio
n in which a sin
u
soi
dal
referen
c
e si
g
nal is co
mpa
r
ed with two carri
ers Vtr1
a
nd Vtr2 as
sh
own in the Fi
gure 2. In three-
level NP
C i
n
verter switch S1
and
S3 are
com
p
lementa
r
y
and
switch
S2 and
S4
are
compl
e
me
nta
r
y. In the fig
u
re, P
W
M
si
gnal
s a
r
e
re
pre
s
ente
d
by
PWM1
an
d
PWM2. P
W
M1
sign
al is to
drive S1 and S
3
whil
e PWM
2
sig
nal i
s
to
drive S2 a
nd
S4. Whe
n
the
referen
c
e
wa
ve
is greater th
a
n
ze
ro, switch S1 and S3
turn on o
ne ti
me in every control p
e
rio
d
while
swit
ch
S2
and S4 do no
t chang
e their states and
re
main at 1 and
0 resp
ectivel
y
. When the referen
c
e
wav
e
is le
ss than
zero,
swit
ch S
2
and
S4 turn
on o
ne time i
n
every
cont
rol pe
riod
whil
e switch
S1 a
nd
S3 keep the
m
selve
s
at 0 and 1 re
sp
ect
i
vely as sho
w
n in the Figure 2.
Figure 2. Multicarri
er
Modulation Strategy for Three-Level Inverter
3.
2
. Space Vector M
odul
ation Stre
teg
y
SVM is o
ne
of the wi
dely
use
d
mo
dul
ation st
rateg
y
for voltage
so
urce inve
rter.SVM
offers hig
her
magnitud
e
of fundamental
compo
nent
as compa
r
ed
to SPWM. Howeve
r, for three
level inverte
r
the algo
rith
m of SVM b
e
com
e
s com
p
lex be
cau
s
e
of larg
er
nu
mber
of swit
chin
g
states. Fo
r three
-
level inve
rter, the num
ber of switchi
ng state
s
is 3
3
=27 a
s
indicated in the table
II. Spac
e vec
t
or diagram is
s
h
own in Figure
3 has
s
i
x
s
e
c
t
ors
and eac
h
s
e
c
t
or has
four regions.
From table II, it can be seen that small
vector
s have redundant switchi
ng stat
es which can be
use
d
for ca
pa
citor voltage
balan
cing.
The
spa
c
e v
e
ctor PWM i
n
three
-
level i
n
verter
ca
n b
e
re
alize
d
int
o
thre
e ste
p
s. In Step
1, s
e
c
t
or is
determined as
follows
,
11
1
22
0
33
22
an
d
bn
q
cn
U
U
U
U
U
(
1
)
22
ref
d
q
UU
U
(
2
)
-1
ta
n
2
q
s
s
d
U
tf
t
U
(3)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 599
9 –
6008
6002
Here fs is th
e funda
ment
al freq
uen
cy,
θ
will
give th
e se
cto
r
. On
ce se
cto
r
i
s
fo
und o
u
t,
regio
n
ca
n be
determin
ed b
y
doing simpl
e
mathemati
c
s as m
ention
ed in [9].
Step 2 i
n
cl
u
des the
det
ermin
a
tion
of time d
u
rati
on fo
r e
a
ch
voltage
vector. The
referen
c
e vol
t
age vecto
r
i
n
two
-
level P
W
M i
s
ap
pro
x
imated by choo
sing t
w
o
adja
c
ent ve
ctors
and
ze
ro ve
ctor b
u
t in m
u
ltilevel PWM,
referen
c
e
voltage i
s
u
s
u
a
lly tracke
d by
selectin
g ne
arest
three tria
ngul
ar vertices in
orde
r to minimize
the ha
rmonic in o
u
tput line to line voltage [19].
Suppo
se the
referen
c
e voltage is lo
cate
d in regio
n
2 of secto
r
1, then the time d
u
ration
req
u
ired
for each voltage vector i
s
solved by usin
g followin
g
ca
lculatio
ns,
17
2
ab
c
r
e
f
s
UT
U
T
U
T
U
T
(
4
)
ab
c
s
TT
T
T
T
a
, T
b
and
T
c
is
time
duration for U
1
, U
7
and U
2
respec
tively. U
ref
is
the refe
re
nce
voltage
and T
s
i
s
th
e sa
mplin
g o
r
mod
u
lation
peri
od. Volt
age ve
ctors
U
1
, U
2
an
d
U
7
dete
r
mine
the
triangle
re
gio
n
in
whi
c
h
U
re
f
is lo
cated.
In final st
ep,
the
swit
chin
g t
i
me f
o
r ea
ch t
r
an
sist
o
r
is
determi
ned.
The
sequ
en
ce of ch
ang
es in sp
ace
ve
ctors in e
a
ch
swit
chin
g scheme i
s
u
s
u
a
lly
orga
nized in
su
ch a way that only one le
g is affected i
n
each step [
10].
Table 2. Spa
c
e Vect
or an
d Switchin
g States of Thre
e-level Invert
er
Space Vector
Sw
itching State
Vector
Classifi
cation
Vector
Magnitude
V
0
[1 1 1] [0 0 0] [
-
1
-1 -1]
Zero Vecto
r
0
V
1
P-
Ty
p
e
N
-
Ty
p
e
Small Vector
1/3U
dc
V
1
p
[1 0 0]
V
1n
[0 -1 -1]
V
2
V
2p
[1 1 0]
V
2n
[0 0 -1]
V
3
V
3p
[0 1 0]
V
3n
[-1 0 -1]
V
4
V
4
p
[0 1 1]
V
4n
[-1 0 0]
V
5
V
5p
[0 0 1]
V
5n
[-1 -1 0]
V
6
V
6
p
[1 0 1]
V
6n
[0 -1 0]
V
7
[1 0 -1]
Medium Vector
√
3/3U
dc
V
8
[0 1 -1]
V
9
[-1 1 0]
V
10
[-1 0 1]
V
11
[0 -1 1]
V
12
[1 -1 0]
V
13
[1 -1 -1]
Large Vector
2/3U
dc
V
14
[1 1 -1]
V
15
[-1 1 -1]
V
16
[-1 1 1]
V
17
[-1 -1 1]
V
18
[1 -1 1]
3.
3
. Selective Harmonic
Elim
ination (SHE) Stra
teg
y
SHE offers a
ppre
c
ia
ble re
ductio
n
in the sw
itchi
ng lo
sse
s
becau
se
the equipm
en
t has to
be op
erate
d
at low
swit
ch
ing freq
uen
cy to minimize semi
co
ndu
ctor lo
sse
s
h
ence ha
s b
e
en
extended
to
multilevel inv
e
rter for hig
h
po
we
r a
ppli
c
ation
s
. In
SHE, ge
nerall
y
, low frequ
e
n
cy
harm
oni
cs
are rem
o
ved b
y
sele
cting p
r
ope
r
swit
chi
ng an
gle
s
a
m
ong diffe
re
nt level inverters
while a
ddition
al filter is use
d
to eradi
cate
higher frequ
ency ha
rmo
n
i
c
co
mpon
ent
s.
The h
eavy computation
a
l
pro
c
e
s
s is th
e ma
in
drawback
of SHE
method
so
th
e de
sign
and impl
eme
n
tation of SHE base
d
met
hod in i
n
vert
ers
with hi
gh
er nu
mbe
r
of
levels b
e
co
mes
even more co
mplex due to increa
se in switchi
ng an
gle.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Study of Three
-
Le
vel
Ne
utral Point Cl
am
ped Inve
rter Top
o
log
y
(Muham
m
ad Kashif)
6003
Figure 3. Space Vect
or Di
a
g
ram of Th
re
e-Level Inve
rter
4.
Neu
t
ral Point Voltage
Bal
a
nce o
f
NPC In
v
e
rter
Thoug
h NPC
Inverte
r
provide
attractive
pe
rfo
r
man
c
e
re
sults for
hig
h
po
we
r
appli
c
ation
s
, the com
p
lex
circuit st
ru
ctu
r
e an
d compli
cated
ope
rati
on bri
n
g
s
vari
ous i
s
sue
s
wi
th
it which ha
s t
o
be a
d
d
r
e
s
sed. In the
ca
se of
NP
C inv
e
rter,
Neut
ral
point (NP) v
o
ltage imb
a
la
nce
is a
n
imp
o
rta
n
t issue.
Cap
a
citor un
bala
n
ce
o
c
curs in
NPC du
e to
different o
p
e
r
ating
conditio
n
s
based
on
m
odulatio
n in
d
e
x [11], dyn
a
mic beh
avior
and
load
con
d
ition
s
et
c a
nd
re
sult
s in
voltage difference betwee
n
the cap
a
cit
o
rs
cau
s
in
g
shift in neutral
point [12]. If
the neutral p
o
int
voltage is not
balan
ce
d, it
will cau
s
e
so
me serio
u
s d
a
mage
to
swi
t
ching
device
.
In addition,
due
to unbal
an
ce
of neut
ral p
o
int voltage,
low frequ
en
cy ripple
at n
eutral
point p
o
tential ap
pe
ars
whi
c
h
re
sults
in low freq
ue
ncy h
a
rmo
n
ics in
out
put vo
ltage he
nce i
n
crea
se i
n
th
e THD
of out
put
curre
n
t [11].
So the n
eutral point volta
ge
shoul
d b
e
pro
perly
bal
anced. Th
e d
e
viation in
dc link
voltage ca
n b
e
cau
s
e
d
by the followi
ng reason
s [13],
a)
Inaccuraci
es occur
d
u
ri
ng manufa
c
turi
n
g
pro
c
e
ss
ca
use u
nbal
an
ce of dc ca
pa
citors.
b)
Unb
a
lan
c
ed
three pha
se operation ca
use
d
by cha
nge in
ope
ra
ting grid
co
n
d
itions
and
external di
stu
r
ban
ce
s
c)
S
w
it
chin
g de
v
i
ce ch
ara
c
t
e
rist
ic
s a
r
e not
con
s
ist
e
nt
.
d)
The di
sh
arm
ony brought
about by a
c
ti
on time
of
small voltage
vectors effe
ct neutral poi
nt
potential devi
a
tion.
The voltag
e
vectors
sho
w
n in the
Tabl
e 2
con
s
i
s
ts
of ze
ro,
smal
l, medium
an
d large
vector.
Not al
l the ve
ctors
affect the
ne
utral p
o
int p
o
t
ential. The
zero
and
large
vector do
n
o
t
affect neutral
point balan
ce becau
se th
ey do not
co
nne
ct any ph
ase to ne
utra
l point. Medi
um
vectors
co
nn
ect o
ne
of the
pha
se
s to
n
e
u
tral
point
so
they affect th
e ne
utral
poi
n
t
voltage. Sm
all
vectors
com
e
in pai
r a
nd
a
ffect NP volta
ge by
con
n
e
c
ting one
o
r
two pha
se
to n
e
u
tral p
o
int a
n
d
NP voltage ri
se o
r
dro
p
de
pendi
ng up
on
the dire
ct
ion
of NP cu
rre
nt. Medium vectors
can
not b
e
controlled
ho
wever the
re
dund
ant swit
chin
g state
s
of small
vect
or a
r
e
used
to balan
ce
the
neutral
point
voltage. Table III shows the list of ve
ctors
whi
c
h affect NP potential. As i
t
is
compli
cate
d to solve thi
s
i
s
sue di
re
ctly, variou
s alg
o
rithms
have
been int
r
od
u
c
ed to
balan
ce
neutral p
o
int voltage for ca
rrie
r
ba
sed m
odulatio
n as
well a
s
for sp
ace ve
ctor m
odulatio
n.
The thre
e-lev
e
l NPC inve
rter switchi
ng state can be e
x
presse
d as:
,,
T
ss
a
b
c
VS
S
S
Whe
r
e
[1
,
0
,
1
]
,
[
,
,
]
x
S
x
abc
Whe
n
o
ne of
the ph
ases
of brid
ge i
s
conne
cted
wi
t
h
the n
eutral
point (Sx
=
0),
at that time, the
load cu
rrent will
flo
w
into
or out
of
the neutral
p
o
int throug
h
th
e clamp diode
s.
The
r
efo
r
e,
t
he
neutral
cu
rre
nt can be exp
r
esse
d as:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 599
9 –
6008
6004
(1
)
(
1
)
(1
)
ne
u
a
a
b
b
c
c
iS
i
S
i
S
i
(
5
)
)
ne
u
a
a
b
b
c
c
iS
i
S
i
S
i
(6)
The thre
e-p
h
a
se p
o
sitive-seque
nce mod
u
lation voltag
es are given
by:
co
s(
)
2
co
s(
)
3
2
cos(
)
3
a
b
c
eM
t
eM
t
eM
t
(7)
Whe
r
e M
is
the mod
u
lati
on ind
e
x. In neutral
point
voltage
cont
rol b
a
sed o
n
ze
ro
seq
u
e
n
ce
voltage inje
ct
ion meth
od,
the ze
ro
-seq
uen
ce voltag
e U
0
i
s
sup
e
rimp
osed o
n
the refere
nce
voltages. So
the a
c
tual th
ree-p
h
a
s
e
ref
e
ren
c
e
vo
lta
ges after
ze
ro sequ
en
ce
voltage inje
ct
ion
are given by:
0
0
0
aa
bb
cc
Ue
U
Ue
U
Ue
U
(8)
Here we d
e
fine the sig
n
function a
s
follo
wed:
10
sg
n
(
)
10
v
v
v
(9)
Substituting (8) and
(9) int
o
(6), the
ne
u
t
ral point cu
rrent is given b
y
:
0
[
s
gn
(
)
.
.
sg
n(
)
.
.
s
g
n
(
)
.
.
]
[
s
g
n
(
)
.
s
gn
(
)
.
s
gn
(
)
.
]
neu
a
a
a
b
b
b
c
c
c
aa
b
b
c
c
ie
e
i
e
e
i
e
e
i
Ue
i
e
i
e
i
(10)
By adjusting
the amount
of neutral
current t
he n
eutral p
o
int voltage ca
n
be co
ntroll
ed
. To
simplify the
analysi
s
, we
ca
n divide
the po
sitive-seq
uen
ce
m
odulatio
n wa
veform into
six
se
ction
s
, as g
i
ven in Figure
4.
Table 3. Th
re
e-level Invert
er Switching
States
Positive
Small
Vector
s
i
NP
Nagitive
Small
Vector
s
i
NP
Medium
Vector
s
i
NP
[0 -1 -1]
i
a
[1 0 0]
-i
a
[1 0 -1]
i
b
[1 1 0]
i
c
[0 0 -1]
-i
c
[0 1 -1]
i
a
[-1 0 -1]
i
b
[0 1 0]
-i
b
[-1 1 0]
i
c
[0 1 1]
i
a
[-1 0 0]
-i
a
[-1 0 1]
i
b
[-1 -1 0]
i
c
[0 0 1]
-i
c
[0 -1 1]
i
a
[1 0 1]
i
b
[0 -1 0]
-i
b
[1 -1 0]
i
c
Figure 4. Six
Section of Mo
dulation Volta
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Study of Three
-
Le
vel
Ne
utral Point Cl
am
ped Inve
rter Top
o
log
y
(Muham
m
ad Kashif)
6005
From Fi
gure
4 it can b
e
se
en that only o
ne ph
ase
ha
s the maximu
m absolute a
m
plitude
in ea
ch inte
rval. For exam
ple, in interva
l
[-30°
, 30
°] p
hase A ha
s the large
s
t ab
solute
amplit
ud
e
while i
n
[150°
,
210°] p
h
a
s
e C h
a
s large
s
t amplitu
de.
So in ea
ch i
n
terval there is spe
c
ific
pha
se
curre
n
t that affect neutral
p
o
int potential.
Beside
s,
Tab
l
e IV sho
w
s t
here i
s
p
a
rticular
set of sm
all
vector in ea
ch interval that cau
s
e
s
neutral point voltage bala
n
cin
g
probl
em.
Based o
n
mu
lticarrier mo
d
u
lation strate
gy
, by using curre
n
t dire
ction and two
DC bu
s
cap
a
cito
r volt
age diffe
ren
c
e, the ap
pro
p
r
iate
zero-se
quen
ce
co
mp
onent
can
be
cal
c
ulate
d
. T
he
zero-se
que
nce voltage in
jected i
n
to
modulatin
g voltage
can
cha
nge th
e
action time
of
redu
nda
nt sm
all vectors an
d so a
c
hieve
t
he purp
o
se o
f
NP balanci
n
g control [14].
Table 4. Th
re
e-level Invert
er Switching
States
Inter
v
al
P t
y
pe
Small
Vector
i
ne
u
N t
y
pe
Small
Vector
i
ne
u
30
30
[1 0 0]
-i
a
[0 -1 -1]
i
a
30
90
[1 1 0]
i
c
[0 0 -1]
-i
c
90
1
5
0
[0 1 0]
-i
b
[-1 0 -1]
-i
b
15
0
210
[0 1 1]
i
a
[-1 0 0]
-i
a
210
27
0
[0 0 1]
-i
c
[-1 -1 0]
i
c
27
0
3
30
[1 0 1]
i
b
[0 -1 0]
-i
b
Gene
rally, the addition of
zero
seq
u
e
n
ce voltag
e cha
nge the
dwell time o
f
small
vectors. Th
e
addition
of po
sitive zero
se
quen
ce vo
lta
ge in
crea
se t
he a
c
tion tim
e
of P type
small
vector
whil
e
the a
c
tion ti
me of
N typ
e
sm
all ve
ctor in
crea
se
s
with a
ddition
of neg
ative
zero
seq
uen
ce vol
t
age. For example in se
ction
°°
-3
0
θ
<30
, if the neutral poi
nt voltage is gre
a
ter
than ze
ro a
n
d
the dire
ctio
n of curre
n
t is into
the ne
utral poi
nt then neut
ral po
int voltage ca
n be
decrea
s
e
d
by injecting p
o
sitive zero seq
uen
ce
voltag
e. If
the neutral point volta
ge is le
ss tha
n
zero and di
re
ction of curre
n
t is into the
neutra
l p
o
int then it can be
increa
sed by addin
g
negati
v
e
zero sequ
en
ce voltag
e. But the addit
i
on of ze
ro
seque
nce mu
st en
sure th
e co
nstraint
give
belo
w
:
0
a
eU
M
Zero
seq
uen
ce voltage inje
ction metho
d
can b
e
ca
n b
e
divided into
following
ste
p
:
a)
Conve
r
si
on o
f
three pha
se
modulatin
g wave
ab
c
e,
e
,
e
to
αβ
plane.
b)
Find out rotati
ng angl
e
through
,
UU
c)
Determine
se
ction
s
by usin
g
d)
Dep
endin
g
u
pon neut
ral p
o
int voltage and dire
ction o
f
phase curre
n
t add the ze
ro se
que
nce
voltage. Also
make su
re
addition of zero
sequ
en
ce voltage must follow th
e modulation
c
o
ns
traint.
e)
No
w p
u
t three-p
h
a
s
e
mo
dulation
wave in
to P
W
M
modul
ation
module
to g
enerate P
W
M
sign
al to drive IGBTs.
Several oth
e
r
carrier
ba
sed PWM te
chniqu
e al
so
have be
en p
r
opo
se
d to b
a
lan
c
e
neutral p
o
int voltage [15, 16].
In spa
c
e vect
or, the red
u
n
dant switchi
n
g stat
es of
small vectors
are u
s
ed to b
a
lan
c
e NP
voltage. T
h
e
r
efore, mo
st
of
the
NP vo
ltages bal
an
cing
strategy
use
d
in
SVM
are b
a
sed
on
some
mo
dification of
small
vectors. T
o
eliminate th
e
error i
n
NP th
e rel
a
tive du
ration of
po
sitive
and ne
gative small ve
ctors in a pair a
r
e
chan
ged ju
st
like in [17]. In this pap
er,
the NP voltag
e
balan
cing i
s
a
c
hieve
d
by adjustin
g
dwell
time
of positive and negati
v
e
voltage vectors by addi
ng
a time offset
at the turn o
n
of the
switch
. A simp
l
e
m
e
thod i
s
give
n for th
e
cal
c
ulation of
pro
per
time offs
et. In order to
red
u
ce
NP volta
ge d
e
viation,
many
othe
r a
d
vanced strat
egie
s
b
a
se
d on
SVM have been pro
p
o
s
ed [
17, 18].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 599
9 –
6008
6006
In ca
rri
er-ba
s
ed
PWM, it
ha
s b
een
seen th
at all
the ne
utral
p
o
int voltage
balan
ce
techni
que
s
u
s
e
so
me fo
rm of the
ma
n
i
pulation
of
zero
seque
nce
voltage ,
w
hil
e
in SVM,
all
the
NP balan
cin
g
sch
eme
s
a
r
e also base
d
on the sa
me con
c
e
p
t whi
c
h is the
manipulatio
n of
redu
nda
nt switchi
ng leve
l of small ve
ctors. As
th
e
differen
c
e
b
e
twee
n the p
hase voltage
of
positive a
nd
negative
sma
ll vector in th
e same
pai
r i
s
zero
seq
u
e
n
ce
voltage
so conversely,
the
manipul
ation
of small vect
or is the ma
nipulati
on
of zero se
que
nce voltage. Th
is se
ems to
be
equivalen
c
e
betwe
en carri
e
r ba
se
d and
SVM based
PWM sche
m
e
s for
NP bal
ance co
ntrol.
NP
potential bal
ance i
s
not issue for three-l
e
vel invert
er
but for higher level it is still an attractive
res
e
a
r
c
h
are
a
for re
sea
r
c
her
s.
5.
Simulation and Experime
ntal Re
sults
The si
mulatio
n
is carried
o
u
t in MATLAB/SIMULINK for analy
s
is
a
nd verificatio
n
of the
d
i
sc
us
s
i
o
n
p
r
e
s
en
te
d
.
T
h
e e
x
p
e
r
imen
ta
l p
l
a
tfo
r
m
w
a
s s
e
t u
p
u
s
ing
th
r
e
e-
le
ve
l NPC
in
ve
r
t
e
r
and
the control a
nd
sign
al p
r
o
c
e
ssi
ng ta
sks
we
re
ca
rri
e
d
out i
n
T
M
S320F2
812
32 bit fixed
point
DSP. The experim
ent is carri
ed out at low voltage
le
vel to ensure
safer ope
rati
ng con
d
ition. Dc
side
voltage
i
s
U
dc
=100V
whe
r
e
C1=C2= 350
0µf
in
the
ex
pe
rime
ntal setup. T
he g
ene
ral
bl
ock
diagram of experim
ental se
t
up is sh
own in Figure 5.
Figure 5. Block Dia
g
ra
m of Experimen
tal Setup
The Figu
re 6 and Figu
re 7
sho
w
the line
to line voltage as obtain
e
d
from simulati
on and
experim
ental
result. The lin
e to line volta
ge sho
w
s th
e
pre
s
e
n
ce of three
-
level
s
, h
ence p
r
ovidin
g
the output mo
re clo
s
e
r
to the sinu
soi
dal
wave shap
e.
Figure 6. Simulation Results of Inverter
Ouput
Figure 7. Experim
ental Result of Invert
er Outp
ut
Line to Line V
o
ltage
Zero
sequ
en
ce i
n
je
ction
a
l
gorithm
ba
se
d on
mu
lticarrier mod
u
latio
n
is u
s
ed
to
balan
ce
the ne
utral
p
o
int voltage.
Figure 8
an
d
Figure 9
sho
w
s the
neut
ra
l point volta
g
e
an
d the
voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Study of Three
-
Le
vel
Ne
utral Point Cl
am
ped Inve
rter Top
o
log
y
(Muham
m
ad Kashif)
6007
across two capa
citors. In Figure 8 the
cap
a
cita
nc
e of two ca
pa
citors i
s
take
n 1800
uf while
in
Figure 9 the cap
a
cita
nces of the two capa
ci
tors are
1800µf and
1300µf re
sp
e
c
tively. Besides,
the initial voltage of the
ca
pacito
r
s i
s
al
so differ
ent in
Figure 9. Fro
m
bot
h figure
s
it ca
n be
se
en
that, the ne
utral p
o
int v
o
ltage
have
been
effectiv
ely co
ntrolle
d. Figu
re
10
rep
r
e
s
e
n
ts
the
experim
ental waveform of neutral p
o
int voltage.
It can be see
n
that, the neutra
l point voltage is
maintaine
d
around
1V whi
c
h is quite
goo
d. Figure
11 i
s
the exp
e
rim
ental waveforms of voltag
e
on C1 a
nd C2 whi
c
h sho
w
s the ca
pa
citors voltag
e a
r
e well m
a
int
a
ind al
so validate that neu
tral
point voltage
is und
er control.
Figure 8. NP Voltage Co
ntrol Waveform with
Same Ca
pa
ci
tance
Figure 9. NP Voltage Co
ntrol Waveforms with
Different Capac
i
tanc
e
Figure 10. Neutral Point Voltage
Wav
e
fo
rm
Figure 11. Two Capa
citor
Voltage
Wav
e
fo
rm
The si
mulati
on an
d expe
rimental
re
su
lts pr
ove th
e
prop
er
wo
rking of NP
C i
n
verter
topology. The
difference in voltage between two capa
citors is negli
g
ible presenti
ng that neutral
point voltage
imbalan
ce i
s
not a big issu
e and can be
dealt with.
6. Conclu
sion
This p
ape
r prese
n
ted the
brief summa
ry of NP
C mul
t
ilevel inverter by usin
g three-level
circuit topolo
g
y. Different modulatio
n strategie
s
suit
able for NP
C inverter li
ke Carrie
r-b
ased
PWM, SVM
and S
H
E i
s
discu
s
sed. T
he p
r
o
b
lem
of neut
ral
po
int voltage
b
a
lan
c
e
whi
c
h
i
s
con
s
id
ere
d
a
s
on
e of th
e mo
st extensive d
r
a
w
b
a
cks
of this topology i
s
also
add
re
ssed.
Thro
ugh
di
scussion,
simul
a
tion a
nd
exp
e
rime
ntal re
sults it i
s
p
r
ov
ed that th
e p
r
oblem
of ne
utral-
voltage b
a
lan
c
e
doe
s
not
limit the effe
ctivene
ss of
this top
o
logy.
So the
NP
C is completel
y
mature top
o
lo
gy for mediu
m
voltage hig
h
power ap
pli
c
ation
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 599
9 –
6008
6008
Referen
ces
[1]
F
r
anqu
elo,
Leo
pol
do G, Jose
Rodri
g
u
e
z, Jos
e
I Le
on,
Sam
i
r Kouro, R
a
mo
n Portil
lo, Mari
a AM Prats.
T
he age of
mu
l
t
ilevel c
onverte
rs arrives
. Indu
strial Electro
n
ic
s Magaz
i
ne. IEEE. 2008; 2(2):
28-39.
[2]
Clerk
Ma
x
w
e
ll. A
T
r
eatise
on Electricit
y
an
d
Magn
etism, 3rd ed., Oxford: Clare
nd
on. 18
92; 2: 68–
73.
[3]
Rodri
g
u
e
z, Jo
se, Jih-Sh
en
g
Lai, F
a
ng Z
h
eng P
e
n
g
. Mu
ltileve
l Inverter
s: A Surve
y
o
f
T
opolo
g
i
e
s,
Contro
ls, and
Appl
icatio
ns.
Industria
l Electro
n
ics, IEEE Transactio
n
s
on. 2
002; 49(
4): 724
-38.
[4]
Baker, Rich
a
rd
H. Electric Pow
e
r Co
nverter.
Google Pat
ent
s. 1975.
[5]
Nab
ae,
Akira, I
s
ao T
a
kah
a
shi
,
Hirofum
i Ak
a
g
i. A
Ne
w
N
e
u
t
ral-Poi
n
t-Clam
ped
P
w
m
Inver
t
er
. Industry
Applications, IEEE Transactions on
. 1
981;
5: 518-2
3
.
[6]
Lai, Jih-S
h
e
ng,
F
ang Z
hen
g P
eng. Multi
l
ev
el
Conv
erters-a
Ne
w
Bre
ed of
Po
w
e
r C
onv
erters.
Industry
Applications, IEEE Transactions on
. 1
996;
32(3): 50
9-1
7
.
[7]
Rodriguez, Jose, Steffen Ber
net, Peter K
Steimer, Ignac
i
o E
Li
zam
a
. A
Surve
y
on Neutra
l-Poi
n
t-
Clamp
ed Invert
ers.
Industrial
Electron
ics, IEEE Transactio
n
s on.
20
10; 5
7
(7): 221
9-3
0
.
[8]
Rodríg
uez, Jo
sé, Jorge Pont
t, Gerardo Alzamora
, Norb
er
t Becker, Ottomar Einenk
el, and Al
eja
ndr
o
W
e
instei
n. N
o
vel
20-MW
Do
w
n
hi
ll
C
onve
y
o
r
S
y
stem Usi
ng T
h
ree-
Leve
l
C
onverters.
IEEE
T
r
ansactio
n
s o
n
Industria
l Ele
c
tronics.
200
2; 49(5): 10
93.
[9]
Alep
uz, Salva
dor, Sergi
o
Bu
squets-Mo
nge,
Jos
ep Bord
on
au, Javier Ga
go, Davi
d Gon
z
ález, Jose
p
Balce
lls. Interfacin
g Ren
e
w
a
ble En
erg
y
So
urces to
the Utilit
y
Gri
d
Us
ing a T
h
ree-L
e
vel Inverter.
Industria
l Elect
r
onics, IEEE Transacti
ons o
n
.
200
6;
53(5): 15
04-1
1
.
[10]
Kocalmis, Ay
se, Sedat Sunt
er.
Si
mul
a
tio
n
of a S
pace
Vector Pw
m
Contro
ller f
o
r
a T
h
ree-
Lev
el
Voltag
e-F
ed In
verter Motor D
r
ive.
Paper
pre
s
ented
at the IEEE I
ndustria
l
Electronics, I
E
CON 200
6-
32n
d Ann
ual C
onfere
n
ce o
n
. 200
6.
[11]
Z
hang, W
e
i-F
e
ng, Yue-
Hui Y
u
. Co
mp
ariso
n
of T
h
ree Svp
w
m Strategies.
J
ourn
a
l of e
l
ectr
onic sci
enc
e
and tech
no
logy
of china.
20
07
; 5(3): 283-87.
[12]
Cela
nov
ic, Nik
ola, Dus
h
a
n
B
o
ro
yev
i
ch. A C
o
mp
re
hens
ive
Stud
y
of Neutr
a
l-Poi
n
t Volta
g
e
Bala
nci
ng
Probl
em in T
h
ree-L
e
vel N
eut
ral-Poi
n
t-
Cl
amped Vo
ltag
e Source P
w
m In
verters.
Pow
e
r Electronics,
IEEE Transactions on
. 2
000;
15(2): 24
2-4
9
.
[13]
Pou J,
D B
o
ro
yev
i
ch,
R Pi
nd
ado. Effects
of
Im
bala
n
ces
an
d N
onl
ine
a
r
Lo
ads
on t
he V
o
lt
age
Bal
anc
e
of a Neutral-P
o
int-Clam
p
e
d
Inverter.
Power Electronics, IEEE Transactions on.
20
05; 2
0
(1): 123-
31.
[14]
W
u
, Bin. High-
Po
w
e
r C
onvert
e
rs and Ac Dri
v
es. W
ile
y
.
com
.
2006.
[15]
Jing
hua, Z
h
o
u
, Liu H
u
ich
en,
Z
hang
Xi
ao
w
e
i
,
Li Z
heng
xi.
A Neutral-P
o
i
n
t Potentia
l Co
ntrol Metho
d
fo
r
T
h
ree-L
e
vel In
verters by Inje
cting Z
e
ro-Se
q
uenc
e Volta
ge.
Paper pres
ent
ed at the Po
w
e
r Electronics
for Distribute
d
Generati
on S
yst
ems (PEDG), 2010 2
nd IEE
E
Internatio
nal
S
y
mp
osi
u
m on
. 2010.
[16]
T
a
llam, Ran
g
a
r
aja
n
M, R
a
je
ndra
Na
ik, T
homas A
No
nd
ahl. A
Carr
ier
-
Based
P
w
m
Scheme
fo
r
Neutra
l-Poi
n
t Voltag
e Bal
a
n
c
ing i
n
T
h
ree-Leve
l
Inverters
.
Industry Appl
icatio
ns, IEEE Transaction
s
on.
200
5; 41(6)
: 1734-4
3
.
[17]
Pou, Jose
p, Jo
rdi Z
a
rag
o
za,
Salva
dor C
e
b
a
llo
s, Mar
y
am S
aee
difard, D
u
s
han B
o
ro
yev
i
c
h
. A Carrier-
Ba
se
d
P
w
m Stra
te
gy
w
i
th
Ze
ro
-Se
q
u
e
n
c
e
Vo
l
t
a
g
e
In
je
cti
o
n fo
r a
T
h
re
e
-
L
e
ve
l
N
e
u
t
ra
l
-
Po
in
t-C
l
a
mped
Conv
erter.
Power Electronics
, IEEE
Transac
tions on.
2
012;
27(2): 642-
51.
[18]
Rodriguez, Jose, J Pontt, P
Cortés, R Vargas.
Predictiv
e Contro
l of a
T
h
ree-Phas
e
Neutra
l Poi
n
t
Cla
mp
ed Inv
e
r
t
er.
Paper pres
ented
at the Po
w
e
r El
ectron
i
cs
Specia
lists Confer
enc
e. P
ESC'05. IEEE
36
th
. 2005.
[19]
Le
w
i
ck
i, Arkadiusz, Zbignie
w
Krze
minski,
Ha
itham A
bu-R
u
b
.
Space-V
e
ctor
Puls
e
w
i
d
th M
odu
latio
n
fo
r
T
h
ree-Level
N
p
c C
onverter
w
i
t
h
th
e N
eutr
a
l P
o
int V
o
lta
ge
Contro
l.
In
dustria
l El
ectronics, IEEE
T
r
ansactio
n
s o
n
.
2011;
5
8
(11)
: 5076-8
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.