TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 75
6
4
~ 757
0
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.60
03
7564
Re
cei
v
ed Ma
rch 2
2
, 2014;
Re
vised July
9, 2014; Acce
pted Septem
ber 3, 201
4
Load Reduction Pitch Control for Large Scale Wind
Turbines based
on Sliding Mode
Han Yao
z
he
n
1
*, Xiao Hairong
1
, Zhang
Haifen
g
2
1
School of Infor
m
ation Sci
enc
e and El
ectrica
l
Engi
neer
in
g, Shan
do
ng Jia
o
t
ong Un
iversit
y
, Jinan, Chi
n
a
2
Shangsh
u
i C
ount
y Electric
Po
w
e
r Bur
eau,
Shangs
hu
i, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: h
y
z
125
@16
3
.
com
A
b
st
r
a
ct
W
i
th the w
i
nd turbin
es bei
ng
produc
ed tow
a
rd to larg
e scale a
nd li
ght w
e
ight, the flexibil
ity o
f
bla
de,
dr
ive mecha
n
is
m and
tow
e
r
incre
a
se
ap
pare
n
tl
y. L
o
ads s
u
ffered
b
y
w
i
nd tur
b
in
es
duri
n
g
op
erati
o
n
beco
m
e incr
ea
singly
intric
ate. Some co
ntrol
appr
oach
e
s co
uld
be us
ed to
cut dow
n these
loa
d
s in
orde t
o
expa
nd l
i
fe cy
cle of g
ener
ati
ng sets. Ai
mi
n
g
at
the ful
l
lo
ad o
perati
on
zone
abov
e rat
ed w
i
nd s
pee
d,
conve
n
tio
nal c
ontrol tar
get is
only c
ons
ider
i
ng rotati
ng s
p
e
ed of w
i
n
d
turb
ine
an
d w
i
thou
t consid
eri
ng t
h
e
loa
d
s, suc
h
th
at thes
e l
o
a
d
s
cou
l
d
not
be
restrain
ed
effe
ctively. T
h
is
p
aper
pro
pos
es
a
multi-o
b
j
e
cti
v
e
slidi
ng
mod
e
p
i
tch contr
o
l
ap
proac
h b
a
se
d
on a
n
e
w
dou
ble-
pow
er re
ac
hin
g
l
a
w
.
It can contr
o
l rot
a
ti
ng
spee
d of w
i
n
d
turbin
e a
nd
de
crease
ba
lanc
ed l
o
a
d
s of
to
w
e
r, blad
e a
n
d
drive
mech
an
i
s
m. Si
mulati
on
i
s
imple
m
ente
d
u
nder Matl
ab/Si
mu
link
and th
e results ve
rifi
ed effectiveness o
f
the
desig
ned control
sch
e
m
e
.
Ke
y
w
ords
:
w
i
nd pow
er ge
nerati
on syste
m
, varia
b
l
e
pitc
h,
bala
n
ce
d loa
d
s, doub
le-
pow
er slidi
ng
mo
de
reach
i
ng l
a
w
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In re
cent
yea
r
s,
wind
po
wer i
s
o
ne
of t
he mo
st
hop
eful re
ne
wabl
e en
ergy. M
o
re a
nd
more
schola
r
s studi
es
win
d
turbin
e technolo
g
ies [1
-3]. Enhanci
n
g unit
cap
a
cit
y
is en effect
ive
way to lowe
r
gene
rating
co
st, and it co
mpels
roto
r d
i
ameter to in
cre
a
se contin
ually and ma
ke
s
flexibility of bl
ade, drive
m
e
ch
ani
sm an
d towe
r in
cre
a
se,
su
ch tha
t
loads
be
co
me intri
c
ate
and
increa
se
m
e
chani
cal stre
ss
which can influen
ce
lif
e
cycle
of wi
n
d
turbi
n
e
s
im
mediately. Both
load
and
po
wer/
rotating
spe
ed
of wi
n
d
turbi
ne
co
uld n
o
t be
i
gnored [4]. L
oad
s a
r
e
ma
inly
trigge
red by
a
e
rodyn
a
mi
c
force which co
uld
be wh
ittle
d
by adju
s
tin
g
blad
e pitch
angle
and i
n
the
end en
han
ce
eco
nomi
c
be
nefit.
Variabl
e pitch control app
roa
c
h
s
are divided into col
l
ective pitch
control and i
ndividual
pitch control. Colle
ctive pitch control scheme i
s
effective for balan
ced lo
ad
s an
d the latter can
rest
rain
unb
a
l
anced lo
ad
s. Both the pit
c
h
cont
rolle
rs can
be
de
si
gned i
nde
pe
ndently [5]. This
pape
r studi
es colle
ctive pitch cont
rol
wh
ich in
clud
es
single obj
ectiv
e
and multiob
j
ective co
ntro
l.
The fo
rme
r
can o
n
ly adj
u
s
t po
we
r/rota
ting spee
d
while the
latter also
decre
a
s
e vib
r
atio
n
of
mech
ani
cal p
a
rt
s.
Re
cently, ma
ny schola
r
s
study load
s
re
ductio
n
of
wi
nd turbine
s
.
Paper [6] pro
poses a
novel logi
c controlle
r for l
oad
s ca
used
by inertia and
float wind turbine
s
, yet it is only de
sign
ed
for offsh
o
re wind turbine
s
.
Ekelun
d T [7]
brin
gs i
n
ya
w to d
e
crea
se dynami
c
lo
ads
and
structural
vibration. Bla
de’s di
spl
a
ce
ment and to
wer’s
sid
e
ben
d are
sup
p
re
ssed, but the
rotating
spe
e
d
o
f
wind turbine
is not controlled effectiv
ely. A gain
sche
duling
p
r
e
d
ictive co
ntrol for decre
ase
vibration of transmi
ssion
shaft is propo
sed in[8
], but
the app
roa
c
h is ob
scu
r
e
and difficult
to
achi
eve. Laser ra
dar i
s
employed in [9, 10]
to foreca
st wind
speed an
d then to carry out
feedforwa
rd control in the light
of the wind spee
d, but rada
r tech
niq
ue mea
s
uri
n
g
wind sp
eed i
s
immaturity an
d high
co
st. Bossanyi EA’s mea
n
s [1
1] is to mea
s
u
r
e load
s on th
e blad
e ro
ot an
d
conve
r
t load
s from rotation
al coo
r
din
a
te to vertic
al c
o
ordinate frame.
Un
certai
nties of dynamica
l
paramete
r
s in wind
turbi
nes ma
ke it difficult to design the
controlle
r.
Consi
deri
ng ro
bustn
ess of slidin
g
mo
de
for p
a
ramet
e
r p
e
rtu
r
bati
on, this pap
er
prop
oses a multiobje
c
tive
colle
ctive
pitch contro
l st
rategy to red
u
c
e lo
ad
s. Pole pla
c
eme
n
t is
employed
to desi
gn param
eters
of slidin
g
mod
e
su
rfa
c
e. A
c
cordi
n
g
to sy
stem li
n
ear mod
e
l, th
e
controlle
ris d
e
sig
ned
u
s
in
g do
uble
po
wer rea
c
hin
g
law. Sim
u
la
tion results i
ndicate that
the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Perspe
ctive a
nd Ch
alleng
e
of Tidal Power in Bangl
ad
esh (Md. Alam
gir Hossai
n
)
7565
desi
gne
d co
n
t
roller
coul
d n
o
t only adjust
rotating spe
ed of wind tu
rbine b
u
t also
damp vibrati
o
n
of blade an
d towe
r.
2. Modeling
With
rega
rd
to on
sho
r
e
hori
z
ontal
ax
is
wind
turbi
nes with
three bl
ade
s, a
part
of
degree
s
of freedom
a
r
e
chosen
du
ring
mod
e
ling
fo
r redu
cin
g
complexity of
control m
e
th
od.
Given that d
y
namic
re
sp
onse of
pit
c
h
co
ntrol i
s
sl
ow a
nd
coll
e
c
tive pitch control
co
uld
only
redu
ce
bal
an
ced
loa
d
s, th
ree
deg
re
es
of freed
om
a
r
e
cho
s
e
n
. T
he three
deg
ree
s
of f
r
ee
d
o
m
inclu
de vib
r
at
ion mo
de
of first-ord
e
r tower, ave
r
age
mode
of first
-
orde
r
blade
a
nd rotation
a
ngle
of gene
rator.
Average mo
de of first-order bla
de
i
s
the avera
ge
comp
one
nt of three blad
e
s
.
Unb
a
lan
c
ed l
oad
s take n
o
accou
n
t of here co
uld only
be de
cre
a
sd by individual pitch control.
The sy
stem n
online
a
r mod
e
l with the three deg
ree
s
of
freedom
coul
d be expre
ssed as:
(,
,
,
,
)
w
zf
z
z
u
u
t
(1)
Whe
r
e
u
,
w
u
deno
te pitch angl
e and wi
nd
spe
ed inp
u
t,
12
3
(,
,
)
T
zz
z
z
,
1
z
,
2
z
,
3
z
re
spe
c
ti
v
e
ly
rep
r
e
s
ent
s tower tip di
spla
ceme
nt, rotation angl
e of generator a
nd
blade tip di
spl
a
cem
ent.
The
o
b
ject o
f
study
is a hori
z
ontal axis
1.5M
W
win
d
turbin
e
with thre
e bla
d
e
s. Th
e
para
m
eters a
r
e
a
s
foll
ow: rated
spee
d 20r/min,
rate
d po
we
r 1.5
M
W, rated
wi
nd
spe
ed
12
m/s,
cut-in
wi
nd speed 3m/s, cut-out wind speed 25m/
s
,
blade ra
dius 35m,
tower h
e
ight
82.3
9
m,
ratational
ine
r
tia of
rotor i
s
2
962.4
4
×1
0
3
kg
·m
2
, rata
tional ine
r
tia
of gen
erato
r
is 5
3
.036
kg
·m
2
,
gear ratio
87.
965.
Gene
rally, El
ectro
m
ag
neti
c
to
rqu
e
of
g
enerator
kee
p
s
co
nsta
nt f
o
r full
loa
d
o
peratio
n
zon
e
, such that it co
uld
n
o
t be
reg
a
rd
as
co
ntro
l i
n
put. It is such difficult to
desi
gn
cont
roller
based
on
no
nlinea
r
syste
m
mod
e
l th
a
t
literatur
e [1
2] wo
rked
o
u
t the
avera
ge lin
ea
r mo
del
arou
nd a ste
a
d
y operatin
g point by FAST softwa
r
e.
31
32
33
34
35
31
31
41
42
43
44
45
32
32
51
52
53
54
55
33
33
00
1
0
0
0
0
00
0
0
1
0
0
ww
w
w
x
xu
u
(2)
Whe
r
e
1
234
5
1
3
1
2
3
TT
x
xx
x
x
x
z
z
z
z
z
,
rep
r
ese
n
ts in
cre
m
ent, namely,
the error bet
wee
n
true val
ue and the va
lue on ste
ady
operatin
g poi
nt.
For imp
r
ovin
g co
ntrol p
e
rf
orma
nce, act
uator
dyn
a
mi
c of varia
b
le
pitch bl
ade
must be
con
s
id
ere
d
which
can b
e
si
mplified to first-o
r
de
r ine
r
tial element. T
he equ
ation i
s
:
11
uu
u
Te
Te
(3)
Whe
r
e
Te
is time con
s
tant
and
u
rep
r
e
s
ents
com
m
a
nd valu
e of
control o
u
tpu
t.
p
x
u
is rega
rd a
s
a state variab
le.
More
over, in
orde
r to im
prove re
gulatio
n pe
rform
a
n
c
e of rotatin
g
spe
ed a
nd el
iminate
steady state
error, integ
r
al
of rotating sp
eed
erro
r is a
dded a
s
a sta
t
e variable which i
s
:
4
s
x
xd
t
(4)
The vari
able
coul
d be g
e
t dire
ctly by interg
ral of rotating speed
error. No
w the
system
model can be
represented
as (5
).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
64 – 757
0
7566
31
32
33
34
35
31
31
41
42
43
44
45
32
32
51
52
53
54
55
33
33
00
0
1
0
0
0
00
00
0
0
1
0
0
00
00
0
0
0
1
0
00
0
0
0
0
0
0
1
1
00
0
0
0
0
0
ww
w
w
x
xu
u
Te
Te
(5)
Whe
r
e
12
3
4
5
T
ps
x
xx
x
x
x
x
x
.
T
h
is
line
a
r
mod
e
l is use
d
to design
sliding mode
controller in section 3.
3. Pitch Sliding Mode Co
ntroller
3.1. Chara
c
teristic of
Do
uble Po
w
e
r
Rea
c
hing La
w
Sliding mode dynamic consist
s
of reaching
phase and slidi
ng proc
ess. The
reachability
con
d
ition can
only guarant
ee that sy
ste
m
states
rea
c
h
sliding m
ode surfa
c
e i
n
finit time, but
con
c
rete traj
ectory
of
rea
c
hin
g
p
r
o
c
e
s
s i
s
n
o
t rest
rained
at all.
Dynami
c
q
u
a
lity of rea
c
hi
ng
pha
se could
be improved
by reaching l
a
w metho
d
s.
Dou
b
le po
we
r rea
c
hi
ng la
w is a
s
[13]:
12
||
(
)
|
|
(
)
kk
as
i
g
n
b
s
i
g
n
(6)
Whe
r
e
1
1
k
,
2
01
k
,
0
a
,
0
b
. The first item of (6) plays a
leadin
g
role
whe
n
system
states is far
away from
sli
d
ing m
ode
(
||
1
), while
the latt
er item
ma
ke
s g
r
eate
r
co
n
t
ribution
whe
n
||
1
. Dyna
mic quality is
guarantee
d b
y
combing th
e two items.
Theorem 1.
dou
ble p
o
w
er rea
c
hin
g
law po
ssesse
s
se
con
d
orde
r sli
d
i
ng mo
de
c
h
arac
teris
t
ic, that is
,
0
in finite time.
Proof.
According to the
rea
c
ha
bility of sliding m
ode, co
nsi
d
e
r
ing (6) a
n
d
1
1
k
,
2
01
k
,
0
a
,
0
b
.
12
1
2
11
(|
|
(
)
|
|
(
)
)
|
|
|
|
0
kk
k
k
as
i
g
n
b
s
i
g
n
a
b
(7)
Such that
sli
d
ing mo
de can re
ach eq
uilibriu
m
orig
i
n
in finite time. Suppo
se t
he ori
g
inal
state
(0
)
1
, let’s
c
a
culat
e
the finite ti
me t on the bas
is
of two s
t
ages
.
(1)
(0
)
1
. The effec
t
of the firs
t item in (6)
is f
a
r greater tha
n
that of the seco
nd
item for
1
1
k
,
2
01
k
, such that influen
ce of the se
cond item ca
n be negl
ecte
d. From (6
):
1
||
(
)
k
as
i
g
n
(8)
Integrate (6),
and then:
11
11
1
(1
)
(
0
)
kk
ka
t
(9)
The time that make
s
(0
)
1
is
:
1
1
1
1
1(
0
)
(1
)
k
t
ak
(10)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Perspe
ctive a
nd Ch
alleng
e
of Tidal Power in Bangl
ad
esh (Md. Alam
gir Hossai
n
)
7567
(2)
(0
)
1
0
. Similarly, the effect of
the
second
item in
(6
) is far g
r
e
a
ter th
a
n
that of the first item be
ca
u
s
e of
1
1
k
,
2
01
k
, such
that influen
ce of the first item ca
n be
negle
c
ted. From (6):
2
||
(
)
k
bs
i
g
n
(11)
Integrate (11), such that:
2
1
2
(1
)
1
k
kb
t
(12)
The time that prop
els
(0
)
1
0
can
be cal
c
ul
ated
as:
2
2
1
(1
)
t
bk
(13)
So the total c
onvergenc
e time is
as
:
1
1
12
12
1
(
0)
1
(1
)
(
1
)
k
tt
t
ak
b
k
(14)
It is similar as
(0
)
1
when
(0
)
1
. The total conve
r
ge
nce time is:
1
1
12
12
1
(
0)
1
(1
)
(
1
)
k
tt
t
ak
b
k
(15)
Furthe
rmo
r
e,
is zero
when
vanish,
su
ch th
at th
e velo
city of slidi
ng va
ria
b
le
decrea
s
e
to zero whe
n
reaching slidi
ng
mo
de
su
rface. System
state
s
mov
e
sm
oothly
and
system
chatt
e
ring i
s
greatl
y
whittled.
It is obvious t
hat co
nverg
e
n
ce time t i
s
contin
ou
s fun
c
tion
with re
g
a
rd to o
r
igin
a
l
state
.
The act
ual value t is smalle
r than (1
4) o
r
(15
)
co
nsi
deri
ng the se
co
n
dary facto
r
s a
r
e overl
o
o
k
ed
.
3.2. Contr
o
ller Desig
n
System mod
e
l (5
)
ha
s a
singl
e inp
u
t f
o
rm,
su
ch th
at it nee
ds o
n
ly one
linea
r
sliding
swit
chin
g f
u
n
c
t
i
on
Cx
. Matrix C ca
n be g
o
t by pole pla
c
ement or
qu
adrati
c
pe
rformance
index optimization method.
Pole placem
ent is em
ploy
ed here. Formula (5
) is al
ready a re
du
ced
form and
with
out con
s
id
eri
ng distu
r
ba
nce, t
he system
model co
uld
be rep
r
e
s
e
n
ted as:
11
1
1
1
2
2
21
1
1
1
2
2
2
11
2
2
()
xA
x
A
x
x
Ax
A
x
B
u
xC
x
C
x
(16)
Whe
r
e
11
2
3
4
5
T
p
x
x
x
xx
xx
,
2
s
x
x
.
Sliding mode
of the system
is:
1
11
1
1
2
2
1
1
()
x
AA
C
C
x
(17)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
64 – 757
0
7568
Poles of Mat
r
ix
11
12
A
KA
can
be all
o
cate
d arbitrarily by a fee
dba
ck
gain K
if matrix
11
1
2
A
A
is
controllabl
e. K ca
n b
e
obtain
ed
according
to
expe
cted
pole
s
, then
make
1
21
CC
K
. Thus:
12
2
2
2
CC
C
C
K
C
C
K
I
(18)
C
2
ca
n be ch
ose
n
arbit
r
aril
y and if choe
n as C
2
=I, then:
CK
I
(19)
From formula
(6), (1
6), the control law i
s
:
1
2
1
22
1
1
1
2
2
1
1
1
1
2
22
2
2
()
(
(
)
(
)
|
|
(
)
||
(
)
)
k
k
uC
B
C
A
C
A
x
C
A
C
A
x
a
s
i
g
n
bs
i
g
n
(20)
No
w the slidi
ng mode
cont
rolle
r is comp
leted.
Rem
a
r
k
1.
system stabilit
y is guarant
eed be
ca
use
that double
powe
r
re
aching la
w
satisfie
s
slidi
ng m
ode
re
a
c
hin
g
con
d
ition.
Stability and rob
u
stn
e
s
s
can also be
g
uarantee
d
by
suitabl
e
a
,
b
,
1
k
,
2
k
wh
en existing ex
ternal di
sturb
ance or inn
e
r
uncertainty.
4. Simulation Resul
t
s
System linea
rization i
s
ca
rri
ed out b
a
sed
on wi
nd
spe
e
d
18m/
s
.
Te
is
a
rra
nge
d a
s
0.
2s,
then from (5)
sytem linea
r model is:
00
0
0
0
1
000
00
00
0
0
1
0
0
00
00
0
0
0
1
0
00
.
0
3
5
6
.
93
2
0
1.
2
6
0.09
6
0
.
3
47
0.05
2
1
.20
7
00
.
0
0
6
0.
1
0
2
0
0
.
4
61
0.
00
8
0
.
1
3
1
0
.
0
2
7
1
.
7
62
01
1
8
.
0
21
0
0
.
4
52
0.
00
7
0
.
1
1
6
0
.
0
2
7
1
.
8
32
5
00
0
0
0
0
5
xx
u
1.81
9
0
w
u
(21)
So as to imp
r
ove capa
city of spee
d adj
us
tment, in
crease vibratio
n damp of to
wer
and
blade, state eigenvalu
e
s are arran
ged
as
4.6
7
.821
i
,
2
2
.618
i
,
2.3
,
2.
1
. By
pole
placement m
e
thod, matrix C=[
-
1.591
-2.
921 -0.1
13 -0
.033 -3.93
1
-0.021 1].
Figure 1. Simulation Block
Diag
ram
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Perspe
ctive a
nd Ch
alleng
e
of Tidal Power in Bangl
ad
esh (Md. Alam
gir Hossai
n
)
7569
Figure 1 is
si
mulation bl
ock dia
g
ra
m.
Th
e paramete
r
s in (20
)
a
r
e
chosen a
s
a
=2,
b
=13,
1
k
=2,
2
k
=0.3. In orde
r to hig
h
light the a
d
vant
age
s of
the pro
posed co
ntrol a
ppro
a
ch, a
comp
arative study
of expo
nential
rea
c
hi
ng la
w i
s
ca
rried o
u
t. expo
nential
rea
c
hi
ng
con
s
tant i
s
5
and u
n
iform
spe
ed
rea
c
hing
con
s
tan
t
is set as
4.5. Simulation time a
n
d
step
si
ze
are
respe
c
tively arrang
ed a
s
120
s, 0.001
s. Simulation result
s betwe
en 50
s and 5
5
s a
r
e sho
w
n
as
Figure 2-Fi
gu
re 6 so
as to
make a
com
p
arisi
on intuitively and cle
a
rl
y.
Figure 2. Win
d
Speed Profi
l
e
Figure 3. Tower Tip Di
spl
a
cement
Figure 4. Blade Tip Di
spla
ceme
nt
Figure 5. Rot
a
te Speed
Figure 6. Rat
e
of Pitch Angle
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
64 – 757
0
7570
As is
sho
w
n i
n
Figure 2–Fi
gure
6, both the co
ntrol
strategie
s
ca
n a
c
hieve b
e
tter
rotating
spe
ed keepi
n
g
ability and
enha
nce vibration dam
p, es
p
e
ci
ally the damp
of tower tip vib
r
ati
on.
Control ability of
tower tip
displa
cem
e
n
t
is better wh
en based on
double po
wer rea
c
hi
ng l
a
w,
what’
s
more, rate of pitch
angle
cha
nge
is rath
e
r
sm
ooth whi
c
h m
ean
s the co
ntrol chatterin
g
is
greatly re
du
ced.
5. Conclusio
n
A multiobje
c
ti
ve variabl
e pi
tch
slidin
g m
ode
cn
t
r
ol
strategy which
can
redu
ce
load
s of
wind turbine
s
is propo
ed
in this pap
er. Multivaria
ble linea
r model aroud
workin
g poin
t
is
adopte
d
. Co
efficients
of
slidin
g switching fun
c
tion
is d
e
sig
ned
based
on
pole pl
acem
ent.
Secon
d
o
r
de
r slidin
g ch
ara
c
teri
stic of d
o
uble p
o
we
r reachign la
w i
s
an
alyze
d
a
nd sli
d
ing m
o
de
controlle
r is d
e
sig
ned. Co
mpari
ng with
norm
a
l ex
pon
ential rea
c
hi
n
g
law, sim
u
lat
i
on re
sult
s sh
ow
the imp
r
ovem
ent in b
o
th
re
gulation
pe
rfo
r
man
c
e
of
rotating spe
ed and
vib
r
ation
damp of
towe
r
and bla
de. Furthe
rmo
r
e, the pro
p
o
s
ed
scheme i
s
ea
sy to implem
ent.
Ackn
o
w
l
e
dg
ements
This
work i
s
partially supp
orted by A Proj
ect of Shan
dong Province High
er Edu
c
ation
a
l
Scien
c
e
and
Technol
ogy
Prog
ram
un
der
Grant J1
2LN29 a
nd
Shando
ng P
r
ovincial
Natu
ral
Scien
c
e F
o
u
ndation
und
e
r
Grant Z
R
20
13EEL01
4,
ZR20
13ZEM0
06 to Yao
z
h
en Han, Hairong
Xiao and S
hand
ong Province T
r
a
n
s
po
rtation In
novation Pro
g
ram
(No. 2012
-33
)
to
Hu
guan
sh
an.
Referen
ces
[1]
Brekken, T
ed
KA, et al.
Optimal
en
erg
y
storag
e siz
i
n
g
a
nd c
ontrol
for
w
i
n
d
po
w
e
r
app
licati
o
n
s
.
Sustainable Energy,
IEEE Transactions on
. 2
011; 2(1): 6
9
-7
7.
[2]
Pao, Luc
y Y, Kathr
y
n E Joh
n
s
on. Contro
l of w
i
nd tur
b
in
es.
Contro
l Systems, IEEE
. 201
1; 31(2); 44-6
2
.
[3]
Atia, Do
aa
M. Mode
lin
g
a
nd c
ontrol
P
V
-
w
i
n
d
h
y
b
r
id
s
y
stem
b
a
s
ed
on
fuzz
y lo
gic c
ontro
l
techni
qu
e.
T
E
LKOMNIKA Indones
ian J
ourn
a
l of Electrica
l
Engi
neer
in
g
. 2012; 10(
3); 431
-441.
[4]
Yong
xin, F
eng.
Stud
y
of fault dia
gnos
is meth
od for
w
i
nd tur
b
in
e
w
i
t
h
dec
is
ion class
i
ficati
o
n
alg
o
rithms
and e
x
pert s
y
st
em.
T
E
LKOMNIKA Indones
ian
Journa
l of Ele
c
trical Eng
i
ne
e
r
ing
. 20
12; 10(
5): 905-9
10.
[5]
Hua
ng Y
e
, QI JiBao. H
y
d
r
a
u
li
c Motor Driv
in
g Vari
abl
e-Pitc
h S
y
stem for
W
i
nd T
u
rbine.
TEL
K
OMNIKA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2013; 1
1
(11):
654
0-65
46.
[6]
Lackn
er MA. A
n
i
n
vestig
atio
n
of var
i
ab
le
po
w
e
r co
ll
ective
pitch c
ontrol
fo
r lo
ad m
i
tigati
o
n of fl
oati
n
g
offshore w
i
nd
turbi
nes.
W
i
nd Energy.
20
13;
16(4): 51
9-5
2
8
.
[7]
Ekelu
nd T
.
Yaw
c
ontrol f
o
r reducti
on of str
u
ctural
d
y
nam
i
c
loa
d
s in
w
i
n
d
turbi
nes.
Jo
urna
l of W
i
n
d
Engi
neer
in
g an
d Industria
l Aer
odyn
a
m
ics
. 20
00; 85(3): 2
41-
262.
[8]
Kumar A, Stol K. Schedule
d
model pr
e
d
ict
i
ve contro
l of a
w
i
nd tur
b
in
e
.
Proc. AIAA
/ASME Wind
Energy Sy
mp
. 200
9:
200
9-04
81.
[9]
Dun
ne F
,
Pao LY, W
r
ight AD, Jonkman B
,
Ke
lle
y
N. Addi
ng fee
d
for
w
ard bl
ade p
i
tch control
t
o
standar
d feed
b
a
ck control
l
ers
for load miti
gati
on in
w
i
nd tur
b
i
nes.
Mechatro
nics
. 201
1; 21(
4); 682-6
90.
[10]
W
ang N, Jo
hn
son KE, W
r
ight
AD. F
X
-RLS-
b
ased fe
edfor
w
a
rd co
ntrol for
LIDAR-e
nab
le
d
w
i
n
d
turb
in
e
loa
d
mitigati
on.
Control System
s Technology
, IEEE
Transac
tions on
. 2
012;
20(5): 121
2-1
222.
[11]
Bossan
y
i EA. Indivi
du
al bl
ad
e
pitch control fo
r load re
ductio
n
.
W
i
nd ener
gy
. 2003; 6(2): 11
9-12
8.
[12]
Xi
ao S, Ya
ng
G, Geng H. Slidin
g-Mo
de Pit
c
h Contro
l Strateg
y
for Lar
g
e
W
i
nd T
u
rbin
es to Red
u
c
e
Loa
ds.
T
R
ANSACT
IONS of C
h
in
a Electrotec
hnic
a
l T
e
chn
i
c
a
l Soci
ety
. 201
3; 28(7); 14
5-1
50.
[13]
Z
hang
H
X
, F
a
n JS, Me
ng
F
,
Hu
ang
JF
. A
ne
w
do
ub
le
po
w
e
r re
ach
i
ng
l
a
w
for
sli
d
in
g
mode
contro
l
.
Contro
l and D
e
cision
. 2
0
1
3
; 28(2): 289-
29
3.
Evaluation Warning : The document was created with Spire.PDF for Python.