TELKOM
NIKA
, Vol.11, No
.1, Janua
ry 2013, pp. 97
~102
ISSN: 2302-4
046
97
Re
cei
v
ed Se
ptem
ber 28, 2012; Revi
se
d No
vem
ber
22, 2012; Accepted Novem
ber 29, 20
12
Resear
ch on High Frequency Amplitude Attenuation of
Electric Fast Transient Generator
Wu Zhu*, Qi Ding, Weiy
a
Ma, Yuan Gu
i, Huafu Zha
ng
Shan
gh
ai un
iv
ersit
y
of e
l
ectri
c
po
w
e
r
Computer a
n
d
informatio
n
en
gin
eeri
ng co
lle
ge
Ping
lia
ng ro
ad
210
3, Yang
pu
district, Shang
hai 2
0
0
090
*corres
pon
di
ng
author, e-mai
l
: zjmz
w
z
s
y
@
1
2
6
.com
A
b
st
r
a
ct
In order to sol
v
e the a
m
pl
itu
de a
ttenu
atio
n of electric fast trans
ie
nt (EF
T
)
gener
ator op
e
r
ating i
n
hig
h
frequ
ency
,
the charg
i
ng
and
disch
argi
n
g
proc
ess
of e
nergy stor
age
capac
it
or in E
F
T
generator
a
r
e
ana
ly
z
e
d, the
ma
in circ
uit vo
ltage var
i
ati
on
math
e
m
atic
al
mo
de
l is estab
lishe
d, the p
a
rameters of ma
i
n
l
o
op
ci
rcu
i
t and
th
e pa
ram
e
te
rs o
f
swi
t
ch
d
r
i
v
i
n
g
wa
vefo
rm w
h
ic
h
affect burst a
m
plitu
de
are
disc
uss
e
d
.
T
h
roug
h the si
mu
lati
on, this p
aper
puts forw
ard effect
ive
methods to
over
come b
u
rst a
m
plitu
de atte
nua
ti
o
n
in hig
h
frequ
en
cy. T
he simul
a
tion resu
lts sho
w
that
w
hen the freque
ncy is low
,
the
duty ra
tio of drive sign
a
l
have
little effec
t
on en
ergy sto
r
age c
apac
itor
voltag
e a
m
p
litu
de atten
uati
on.
w
hen the ch
ar
gin
g
resista
n
ce
is less than 5
00
Ω
, the dut
y ratio of driv
e sign
al is les
s
than 0.12
5, the
repetiti
on f
r
equ
ency of b
u
rst
reach
e
s 1.2
M
H
z
,
th
e a
m
plit
ude
atten
uatio
n of e
ner
gy st
orag
e ca
pacit
o
r
voltag
e is
le
ss than
9%, t
h
e
amplit
ude of b
u
rst satisfies IEC61
000-
4-4 stand
ards.
Key
w
ords
: E
l
ec
tric
fas
t
trans
i
ents
burs
t,
High
freq
uen
cy atten
uatio
n,
Analysis, S
i
m
u
lation;
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Electri
c
fast
transi
ent gen
erato
r
is u
s
e
d
to simulat
e
pulse dist
urba
nce to test the
cap
a
city of re
sistin
g tran
sie
n
t pulse
distu
r
ban
ce
fo
r el
ectro
n
ic
equi
pments, a
nd i
t
is an impo
rtant
electroni
c eq
uipment for p
u
lse immu
nity test,
theref
ore, electric fast transients b
u
rst gen
erato
r
is
widely u
s
ed i
n
the electron
ics in
du
stry[1-3].
With the fre
quen
cy in
cre
a
se
of pul
se
disturban
ce
gene
rated
by power lo
ad, the
internatio
nal
electroni
c co
mmission carry on the
revision to IEC6
1000
-4
-4 sta
ndards, its m
a
in
purp
o
se is to
increa
se the
repetition fr
e
quen
cy and
energy den
sit
y
, enhan
ce
repeata
b
ility and
comparability of transient pulse
di
sturbance test
with electri
c
fa
st transient
s, satisfy user's
requi
rem
ents of simul
a
tion
real
pul
se di
sturb
a
n
c
e.
Howeve
r
,
the i
n
terferen
ce
signal g
ene
rat
ed
by existing el
ectri
c
fa
st tra
n
sie
n
t gen
erator is
l
o
wer
than the a
c
tu
al frequ
en
cy
, and it can n
o
t
meet the use
r
's a
n
ti-inte
r
fe
ren
c
e test re
quire
m
ent
s, therefo
r
e, imp
r
oving outp
u
t pulse frequ
en
cy
of electri
c
fa
st transie
nt ge
nerato
r
is
ne
eded. Bu
t wit
h
the incre
a
se of the pul
se frequ
en
cy
, the
con
s
i
s
ten
c
y of wave
sh
ap
e is l
o
w
whi
c
h lead
s to th
e high
freq
ue
ncy am
plitud
e attenuatio
n
of
burst ope
ratin
g
.
The math
em
atical mo
del
of energy sto
r
age
ca
pa
cito
r voltage va
ri
ation in
cha
r
ging a
n
d
discha
rgin
g pro
c
e
ss is e
s
tabli
s
he
d, the influen
ce
of main circuit para
m
et
ers an
d driv
ing
para
m
eters o
f
switch K on
amplitude att
enuatio
n ar
e
discu
s
sed by simulatio
n
in this pa
pe
r
.
2. Analy
s
is of energ
y
stora
g
e capa
c
itor
charging an
d dischargin
g
proces
s
2.1. Principle of elec
tric fas
t
tran
sien
ts burs
t
gen
e
rato
r
Simplified m
a
in
circuit of
Electri
c
fa
st
tran
sient
ge
nerato
r
are
sho
w
n
as in
Figu
re
1[4].The ci
rcuit is co
mpo
s
ed of high vo
ltage po
we
r
sup
p
ly
E
,
ch
argin
g
re
si
st
a
n
ce
R
1
, s
t
orage
cap
a
cit
o
r
C
1
,
high voltage
switch K, discharging
swit
ch K, imped
ance matchin
g
re
sista
n
ce
R
3
and DC blo
cking ca
pa
citor
C
2
. L is the para
s
itic ind
u
ct
ance, R
4
is the load impe
d
ance.
The e
nergy storage
ca
pa
ci
tor
C
1
i
s
cha
r
ged by hi
gh v
o
ltage p
o
wer
sup
p
ly E thro
ugh the
current limiting resistor
R
1
until its value
is po
we
r sup
p
ly vo
ltage, when
swit
ch K
clo
s
e
s
, stora
ge
cap
a
cit
o
r C
1
began to
discha
rge th
roug
h the d
i
scharge resi
stan
ce R
2
,
a high volta
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 97 – 10
2
98
nano
se
co
nd
level pul
se
i
s
p
r
od
uced i
n
the
output
po
rt, wh
en
swit
ch K
di
scon
ne
ct, ene
rgy
stora
ge capa
citor C
1
sto
p
discha
rgin
g, stora
ge capa
citor C
1
is recharg
ed by high voltage po
we
r
sup
p
ly
E
to prepa
re th
e ne
xt disch
arg
e
. Acco
rdi
ng to
the IEC610
0
0
-4
-4
stand
ards, ele
c
tri
c
fa
st
tr
a
n
s
ie
n
t
ge
ne
r
a
tor
pr
o
duc
es
pu
ls
e pe
r
i
o
d
i
c
a
lly, eve
r
y 3
0
0
ms c
y
c
l
e
pr
o
duc
es
75
p
u
l
se
s
contin
uou
sly, the normalized si
ngle p
u
l
s
e
waveform, the rise time
ns
t
r
5
, time-to-half
value
ns
t
d
50
, which i
s
sh
o
w
n in Figu
re
2, burst of sc
hematic di
ag
ram is shown as Figu
re 3 [5
].
After 75
cont
inuous pulse generating, discharg
e switch K is off, storage
capacitor is
recha
r
ge
d by high voltage
power suppl
y
for the next cycle disch
a
rg
e.
Figure 1. Simplified circuit
diagram
of a Fast Tran
sien
t Generator
Figure 2 No
rmalize
d
sin
g
l
e
transi
ent pu
lse
Figure 3 Spe
c
ified fast tra
n
sie
n
t wavefo
rm of burst
2.2. The ana
l
y
s
is for the
charging a
nd dischar
ging v
o
ltage v
a
riation o
f
e
n
erg
y
storage
capaci
tor
In the d
r
ive
of burst
seri
es, hig
h
spe
ed hig
h
volta
ge ele
c
tron
swit
ch K
doe
s the
contin
uou
s chargi
ng a
nd
discha
rgin
g to ene
rgy sto
r
age
ca
pa
city, the open a
nd cl
ose
driv
ing
waveform of
the switch a
r
e a
s
sho
w
n i
n
Figu
re
4. T
he di
scha
rgin
g switch in
the mai
n
circuit
clo
s
e
s
wh
en i
n
high voltag
e level, the energy st
ora
g
e
capa
city dischargi
ng, formi
ng a high b
u
rst
E
R
1
L
K
C
1
R
2
R
3
C
2
R
4
0.1
0.5
0.9
1.
0
t
r
t
d
t
No
rma
l
i
z
ed
v
o
lt
ag
e
300ms
15
m
s
Bur
s
t
Voltage
t
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
High F
r
eq
uen
cy Am
plitude
Attenuation o
f
Electric Fa
st
Tran
sient …
(Wu Zhu
)
99
throug
h the
sign
al shapi
n
g
ci
rcuit; the
switch
disconne
cts i
n
lo
w voltage
le
vel, the ene
rg
y
stora
ge
capa
city cha
r
ging.
Recording t
o
the
IEC610
00-4
-
4
stand
ard, it need
s to do 75 times
cha
r
gin
g
an
d
discha
rgin
g
in 300
ms t
o
produ
ce
7
5
high volta
ge bu
rst. Becau
s
e th
at b
u
rst
freque
ncy m
ade by el
ect
r
ics fa
st tran
sient in
cr
ea
ses g
r
a
dually, there i
s
a
great
differe
nce
betwe
en the
maximum re
p
eat frequ
en
cy and the
minimum repea
t frequen
cy. Whe
n
the re
peat
freque
ncy is low, the main circuit p
a
ram
e
ter
an
d the circuit
driving para
m
eter will n
o
t do
amplitude
attenuatio
n. When the fre
q
uen
cy is hi
g
h
, the resto
r
i
ng ch
arging
time of energy
stora
ge capa
city is sufficie
n
t relatively and the
voltage declin
es, m
a
kin
g
the con
s
iste
ncy of bu
rst
amplitude wo
rse and worse.
Co
nsi
d
e
r
ing
high
fr
eq
uen
cy amplit
ude attenu
ation of the bu
rst
seri
es,
we t
a
ke inf
l
u
e
n
c
in
g f
a
ct
o
r
s
of
main
cir
c
uit p
a
ram
e
ter
and
circuit d
r
ivin
g pa
ramete
r i
n
to
con
s
id
eratio
n
,
analyzing
ch
argin
g
and di
schargi
ng p
r
o
c
e
ss of the b
u
rst formation
circuit.
For sim
p
lified
mathematical analysi
s
, the si
mplifie
d model of ch
a
r
ging a
nd discha
rgin
g
circuit is
sho
w
n a
s
fig. 5. The ci
rcuit driving
waveform is sh
own a
s
fig 4, assu
ming the swit
ch
driving si
gnal
freque
ncy is
f
, duty ratio is
k
, the power
voltage is
E
, the voltage of energy storag
e
cap
a
city after m times
dischargi
ng i
s
V
pm
,
the voltage of ene
rgy
storage
capa
ci
ty voltage after
m times charging
r
e
c
o
ver
y
is
V
qm
. Con
s
iderin
g the
in
fluence of
k
,
f
, cha
r
gi
ng
a
nd di
scha
rgin
g
resi
stan
ce,
a
nalyzin
g the
voltage
of en
ergy sto
r
age
ca
pacity b
e
fore
the formi
ng
of the 7
5
th b
u
rst
to find the decline la
w that the burst am
plitude vary
with the para
m
eter. In ord
e
r to facilitate
the
analysi
s
,
a
ssuming
the sy
stem po
wer as
i
deal
voltage so
urce, energy
stora
ge cap
a
city has
been
charged
full, it's
ampli
t
ude i
s
E
, the
freque
ncy f
a
nd d
u
ty ratio
k of th
e
swit
ch in
main
ci
rcuit
remai
n
un
cha
nged.
Figure 4. Driv
e sign
al wave
form of swit
ch
Figure 5. Cha
r
ge
-di
s
charge
circui
t of Fast Transi
ent G
enerator
(1)
Whe
n
the
swi
t
ch K cl
oses f
o
r the first ti
me
, the main
circuit b
egin
s
to di
scha
rg
e, the
discha
rge ti
me t
on
and the voltage
V
p
1
of energy
stora
ge
cap
a
c
ity after discha
rgin
g are
a
s
following res
p
ec
tively:
f
k
t
on
/
(1)
Cf
R
k
C
R
t
p
e
E
e
E
V
on
2
2
1
(2)
(2)
After the first disch
arge, the swit
ch K di
scon
ne
cts, the energy
storag
e ca
pa
ci
ty in
main
circuit
begin
s
the fi
rst re
cove
ry charg
e
, the
ch
argin
g
time
t
of
f
and the th
e
voltage
V
q1
of
energy storag
e cap
a
city after ch
argi
ng a
r
e as follo
win
g
respe
c
tively:
f
k
t
off
1
(3)
V
p1
V
q1
V
p2
V
q2
V
p7
5
V
p74
300
m
s
t
1
t
2
E
R
1
K
C
R
2
i
1
i
2
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 97 – 10
2
100
Cf
R
k
1
Cf
R
k
Cf
R
k
1
C
R
t
1
p
1
p
1
q
1
2
1
1
off
e
e
1
E
e
1
V
E
V
V
(4)
(3)
Whe
n
in the
2
nd
discha
r
g
i
ng, the cha
r
ging time ton remain
s th
e same, an
d
the
voltage
V
p2
is
:
Cf
R
k
q
p
e
V
V
2
1
1
2
(5)
(4)
Whe
n
in the
2
nd
cha
r
ging,
the ch
argi
ng
time toff remains th
e sa
m
e
, and the vo
ltage
V
q2
is:
Cf
R
k
1
1
p
1
p
2
q
1
e
1
)
V
E
(
V
V
(6)
From the ite
r
ation, it can b
e
got t
hat the
energy stora
ge capa
city voltage
V
qm
after the m
times chargin
g
and voltage
V
pm
after m times di
scha
rg
ing are a
s
foll
owin
g:
Cf
R
k
m
p
m
p
qm
e
V
E
V
V
1
1
)
1
(
)
1
(
1
)
(
(
m
=
2
,3...
n
)
(7)
Cf
R
k
m
q
pm
e
V
V
2
)
1
(
(
m
=
2
,3...
n
)
(8)
It can be se
en that the remai
n
ing vo
ltage in
ene
rgy storag
e capa
city after every
discha
rgin
g a
r
e d
e
ci
ded
b
y
the last
ch
argi
n
g
voltag
e, the d
r
iving
sign
al frequ
ency
f
, the
duty
ratio
k, the e
nergy
storag
e ca
pa
ci
ty C
and the
disch
a
rgin
g resi
sto
r
R
2
;
T
he di
scha
rgin
g voltage
is de
cide
d by last rem
a
inin
g voltage, in cha
r
gi
n
g
, the
drive sig
nal
freque
ncy f, the duty ratio
k,
the en
ergy
storage
capa
city
C an
d th
e charging
resi
stor
R
1
;
T
he o
p
timizati
ons of ratio
k,
cha
r
gin
g
re
si
st
or
R
1
and di
scharging
re
sistor
R
2
ca
n b
e
done to ov
ercomin
g
the
high amplitu
d
e
attenuation.
3. The parame
ter simulatio
n
of chargin
g
and discha
r
ging proce
s
ses
The
en
ergy storage ca
pa
citor
ch
argi
ng and
di
sc
ha
rgi
ng processe
s in the main
circuit
were di
scussed in the la
st se
ction. It sh
o
w
ed the
analytic ex
pre
ssi
on of
energy stora
g
e
cap
a
cito
r voltage at the e
nd of the ch
argin
g
and
d
i
scharging. B
y
adjusting p
a
ram
e
ters, the
voltage of the energy st
o
r
age
cap
a
cit
o
r befo
r
e 75
th
disch
arge
wa
s solve
d
, the suita
b
le h
i
gh-
freque
ncy bu
rst para
m
eters were fou
nd to r
edu
ce the
high-f
r
eq
uen
cy amplitude a
ttenuation.
In ord
e
r to
re
sea
r
ch the i
n
fluence that t
he
dut
y
ratio
of the
driving
sign
al on
the
ene
rgy
stora
ge
cap
a
c
itor voltag
e high-f
r
eq
uen
cy
attenuation
,
the cha
r
gin
g
re
sisto
r
R
1
was val
ued
as
1000
Ω
, the
d
i
scharging
re
sisto
r
R
2
w
a
s valued as
200
Ω
and
en
e
r
gy stora
ge capa
citor
C
was
valued as 1
n
F
, acco
rdi
ng to the formula (7),
the la
w of the ene
rgy storage capa
citor volta
ge
amplitude
attenuatio
n wa
s found out through
cha
ngin
g
the duty rati
o with the iterative algorith
m
.
Figure 6
sho
w
ed
curve
s
t
hat the
en
ergy sto
r
ag
e
capa
citor volta
ge va
ried
wit
h
duty
ratio.
The
curve
B re
pre
s
ente
d
the
ch
ange
wh
en b
u
rst frequ
en
cy is 100
kHz,
The
curve B
repre
s
e
n
ted t
he
cha
nge
whe
n
bu
rst
freq
u
ency i
s
500
kHz an
d
D i
s
100
0kHz. In
the Fi
gure
6, the a
b
sci
s
sa
rep
r
e
s
ent
s the duty factor k, the ordin
a
te is the
ratio
of the last discha
rgin
g voltage value of the
energy storag
e cap
a
cito
r to the powe
r
su
pply voltage.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
High F
r
eq
uen
cy Am
plitude
Attenuation o
f
Electric Fa
st
Tran
sient …
(Wu Zhu
)
101
The Fi
gu
re
6
sh
owed
that
the im
pa
ct t
hat t
he duty ratio of
the dri
v
ing sign
al
to
sto
r
ag
e
cap
a
cito
r am
plitude attenu
ation is little whe
n
the fr
eq
uen
cy is lo
w, and that with
the the increa
se
of frequen
cy, the energy
stora
ge capa
citor vo
ltage
amplitude att
enuatio
n become larg
er.
So,
whe
n
the burst repetition freque
ncy wa
s higher,
the e
nergy sto
r
ag
e capa
cito
r voltage amplit
ude
attenuation
could
be
re
du
ced
by
red
u
ci
ng the
valu
e
of the
duty ra
tio and
exten
d
ing th
e
storage
c
a
pac
i
tor c
harging time relatively.
Figure 6. Amplitude attenu
ation ch
angi
n
g
with the dut
y cycle and freque
ncy
The time-to
-
h
a
lf value of t
d
= 50 ns of burst was d
e
te
rmine
d
by the value of R
2
and C,
whi
c
h is
con
s
tant in comm
on. If the burst repet
ition fre
quen
cy is very high and voltage amplitu
de
attenuation
wa
s too hi
gh
, the high
-fre
quen
cy a
tten
uation i
s
sue
s
coul
d be
so
lved by way
of
redu
cin
g
the value of R
1
, improvin
g the cha
r
gin
g
sp
e
ed and
cha
n
g
i
ng the duty ratio.
Whe
n
set discha
rgin
g re
si
stor
R
2
a
s
200
Ω
,e
nergy st
orag
e
ca
pacit
or
C
as 1n
F a
nd b
u
rst
freque
ncy a
s
1.2 MHz, the paramete
r
simul
a
tion
of the energ
y
storage
ca
pacito
r
voltage
amplitude ch
ange
s
is sho
w
ed
in
the Figure
7.
Th
e cu
rve B showed the chang
e wh
en
the
cha
r
gin
g
r
e
si
st
or i
s
3
0
0
Ω
,
the cu
rve i
s
5
0
0
Ω
a
nd
D i
s
700
Ω
. T
he a
b
scissa
rep
r
e
s
ente
d
the d
u
t
y
factor, the
ordinate i
s
the
ratio of the
last
di
scharging voltag
e
value
of the
energy sto
r
a
ge
cap
a
cito
r to the po
wer
sup
p
ly voltage.
Figure 7. Amplitude attenu
ation ch
angi
n
g
wi
th the different cha
r
gin
g
resi
stan
ce
The Fi
gure 7
sho
w
e
d
that i
n
the
sam
e
d
u
ty ratio, the
cha
r
gin
g
re
sistor R
1
i
s
sm
aller, the
voltage ampli
t
ude attenuati
on is sm
aller.
When
the ch
argin
g
re
sisto
r
is less than
500
Ω
,duty ratio
of the driving signal is le
ss than 0.125
and bu
rst
fre
quen
cy is less than 1.2MHz, the amplitude
attenuation
of
the e
n
e
r
gy
storage
capa
ci
tor voltage
i
s
less tha
n
9%,
whi
c
h
is met
IEC61
000
-4-4
stand
ard.
0.
05
0.
10
0.
1
5
0.
20
0.
25
0.
30
0.
35
0.
50
0.
55
0.
60
0.
65
0.
70
0.
75
0.
80
0.
85
0.
90
0.
95
1.
00
1.
05
1.
10
amplitude
atteneution
puls
e
duty
fac
t
or
B
C
D
0.
05
0.1
0
0
.
1
5
0.
20
0
.
2
5
0
.
30
0.3
5
0.
50
0.
55
0.
60
0.
65
0.
70
0.
75
0.
80
0.
85
0.
90
0.
95
1.
00
1.
05
1.
10
amplitude at
tenuation
pu
ls
e
du
t
y
f
a
c
t
or
B
C
D
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 97 – 10
2
102
4. Conclu
sion
Without
co
nsi
derin
g th
e im
pact
of the
m
a
in
circuit
distribution
pa
ra
meters a
n
d
p
a
ra
sitic
para
m
eters, t
he a
nalysi
s
a
nd
simulatio
n
that en
ergy storage
capa
ci
tor cha
r
gin
g
and disch
a
rgi
ng
voltage of the electri
c
al f
a
st tran
sient
are stu
d
i
ed i
n
this articl
e. The results
of the simula
tio
n
sho
w
e
d
that
the impa
ct
of the
duty
ra
tio of t
he
dri
v
ing
sign
al o
n
sto
r
ag
e ca
pacito
r
volta
g
e
amplitude
attenuatio
n wa
s little when freque
ncy wa
s low. Wh
en t
he freq
uen
cy
of the drivin
g
sign
al is hig
h
e
r, cha
r
ging
resi
stor
and
ra
tio of
driving
sign
al have
e
ffect on the
voltage, the
hi
gh-
freque
ncy att
enuatio
n co
ul
d be re
du
ced
by means
of redu
cin
g
the
value of R
1
, improving th
e
cha
r
gin
g
spe
ed a
nd
ch
an
ging th
e d
u
ty ratio.
Wh
en t
he
cha
r
gin
g
resi
stor is le
ss than
500
Ω
,duty
ratio of the driving si
gnal
is less than
0.
125 and
burst frequ
en
cy is less than 1.2MHz, the
amplitude
attenuatio
n of the ene
rgy st
orag
e capa
ci
tor voltage i
s
less than 9
%
, which i
s
met
IEC6100
0-4-4 stand
ard
s
.
Ackn
o
w
l
e
dg
ment
T
his pap
er was su
ppo
rted
by
Shan
ghai
Tec
hnol
ogy I
nnovation P
r
oject
(10
110
5
0220
0),
innovation Progra
m
of Shanghai Mu
nici
pal Education
Commi
ssi
on
(11Z
Z173
)
Referen
ces
[1]
Che
ng-C
h
e
ng
Yen, Ming-
Do
u
Ker, Yung-Ya
ng Ch
en. T
r
ansient-i
nduc
ed
Latchu
p
in CM
OS Ics Under
Electrical T
a
st-T
ransient T
e
st.
IEEE
T
r
ansactions o
n
Devi
ce an
d Materri
als Re
lia
bil
i
ty.
200
9; 9(2):
255-
264.
[2]
Le
Xu, Shu
j
ua
n W
ang, Gu
of
u Z
hai, Z
h
en
g
q
ia
ng
Che
n
. Stud
y o
n
EMS
of DC SSR
Un
d
e
r interfer
enc
e
of EFT
Burst.
IEEE Conference on Industrial
Electronics and Applications.
201
1; 6:193
8-1
942.
[3]
W
ang Yufe
ng,
Li Shi
w
e
i
,Z
o
u
Ji
yan.N
anos
ec
ond-ris
e
ti
me H
i
gh-v
o
ltag
e Ele
c
trical F
a
st T
r
ansi
ent/Burst
Generator.
Aut
o
mation of Electric Power Sy
stem
s
.2
006, 1
1
(22): 96-
10
0.
[4] F
r
anceco M
u
solin
o, F
r
anc
o F
i
ori. M
o
d
e
lin
g th
e IE
C61
000-
4-4 E
F
T
Injection
Clamp.
IE
EE
Tra
n
s
a
c
ti
on
s on
El
e
c
trom
ag
ne
ti
c C
o
m
p
a
t
i
b
il
ity.
2008; 50(4):
869-8
7
5
.
[5]
Niu Bo, So
ng
Z
heng
xian
g, W
ang Ji
an
hu
a. Stud
y
on E
l
ec
tri
c
al F
a
st T
r
ansient Burst Immunit
y
of Dig
ita
l
Rela
y.
Hi
gh Vo
ltage Ap
par
atu
s
. 2007; 2(1): 1
4
-17.
Evaluation Warning : The document was created with Spire.PDF for Python.