Indonesian Journal of Electrical
Engineer
ing and Computer Scien
ce
V
o
l. 9, N
o
. 2
,
Febr
u
ar
y 201
8, pp
.
29
4
~
29
8
ISSN: 2502-4752, DOI: 10.
11591/ijeecs
.v9.
i
2
.pp294-298
2
94
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Evalu
a
ti
on of En
ergy in Wi
nd Turbine System Using
Probability Distribution
Kal
y
an
S
ag
ar
K
ad
al
i
1
, L.
R
a
jaji
2
1
Res
ear
ch S
cho
l
ar, D
epartm
ent
o
f
E
EEM,
A
MET
Unive
r
sity
,
Chenna
i
2
P
rofes
s
o
r, Dep
artm
ent of
E
lec
t
r
i
ca
l and
E
l
ec
tron
ics
Eng
i
neer
in
g, ARM College of
Engin
eer
ing
& Techno
log
y
, Ch
ennai
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 2, 2017
Rev
i
sed
D
ec 10
, 20
17
Accepte
d Ja
n 1, 2018
In
t
his
work,
annual
energ
y
o
utput
o
f
a
v
a
riable
s
peed
w
in
d
tur
bin
e
i
s
anal
y
z
ed
u
sing
annual
Weibull
w
i
nd
speed
p
robabilit
y
distr
i
buti
on
f
u
n
c
t
i
o
n.
The
power
c
oef
f
icient
v
ariety
w
ith
tip
s
peed
p
roportion
in
t
o
r
q
ue
c
ontrol
district
a
nd
p
itch
point
v
ariety
f
or
m
ost
extre
m
e
power
y
ield
f
rom
wind
turbine
ar
e
examined
f
or
d
istinguishing
control
framework
p
aram
eters
.
T
he
wind
turbin
e
po
wer
output
a
nd
v
ariation
of
pow
er
c
o
e
fficien
t
wi
th
tip
s
peed
ratio
a
s
well
as
p
itch
angle
are
exam
ined
/
r
epo
r
ted
us
ing
annu
al
W
ei
b
u
l
l
distribution
f
u
n
c
tion
.
F
inal
l
y
t
h
e
v
ari
a
tion
of
t
he
e
stim
at
ed
a
n
nual
en
er
g
y
output of
the giv
e
n wind turbin
e
w
ith th
e
m
ean
w
ind s
p
eed
is
pr
es
ented
.
K
eyw
ords
:
Wei Bu
ll Distrib
u
tion
Fun
c
tion
W
i
nd
Pow
er Pr
e
d
i
ction
W
i
nd
Sp
e
ed
Pro
b
a
b
ility
Distribu
tio
n Fun
c
tio
n
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Kalyan Sa
g
a
r
Kadali,
Research Sc
h
olar, Depa
rtm
e
nt of EEEM,
AM
ET
Uni
v
er
sity
,
Ch
enn
a
i.
1.
INTRODUCTION
The
est
i
m
ati
o
n
of
t
he
a
n
nual
ener
gy
o
ut
p
u
t
of
a
w
i
nd
t
u
r
b
i
n
e
t
o
b
e
installed
at
a
p
articu
l
ar
s
ite
i
s
v
e
ry
i
m
p
o
r
tan
t
i
n
th
e
assessmen
t
o
f
economic
f
easib
ilit
y
o
f
w
in
d
tu
rb
i
n
e
in
stallatio
n
[1
],[2
].
T
h
e
o
u
t
p
u
t
po
we
r
o
f
a
w
i
nd
p
o
we
r
pl
a
n
t
depe
n
d
s
o
n
m
any
pa
ram
e
t
e
rs
(
e.g
.
a
v
ailable
wind
s
pee
d
r
e
s
ources
,
operat
ional
and power cha
racteristics
of t
h
e
wind
turb
ine).
2.
BA
C
KGR
OUN
D
W
i
n
d
s
pee
d
c
i
r
cul
a
t
i
o
n
i
nves
t
i
g
at
i
on
i
s
r
eq
ui
re
d
fo
r
ch
oi
ce
of
wi
n
d
t
u
r
bi
ne
a
nd
fu
rt
herm
ore
t
o
d
e
sign
its
c
on
tro
l
f
ram
e
wo
rk
.
Th
e
Weibu
ll
cap
acity
i
s
th
e
o
n
e
t
h
a
t
m
o
st
u
sually
u
tiliz
ed
f
o
r
w
ind
v
italit
y
forecast
despite
t
he
f
act
t
hat
num
erous
numerical
capacities
ha
v
e
b
een
p
ro
po
sed
fo
r
w
i
n
d
sp
eed
lik
elih
ood
ap
pro
p
riatio
n cap
acities [3
].
3.
THE PROBLEM
The
rene
wa
ble
ene
r
gy
i
s
use
d
i
n
rece
nt
d
a
y
s
especially
s
olar
i
s
w
i
d
ely
used.
T
h
e
s
o
lar
powe
r
gene
rat
i
o
n
i
s
onl
y
i
n
d
ay
h
ou
rs
b
ut
i
n
wi
nd
h
a
s
g
ene
r
at
es
p
o
w
er
i
n
bo
th
d
u
r
i
n
g
d
a
y
and
n
i
gh
t.
T
he
w
ind
gene
rat
e
s
hi
g
h
p
o
w
e
r
c
om
pared t
o
ot
h
er
re
n
ewabl
e
e
ne
rgy
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Eva
l
ua
tion
o
f
En
erg
y
in Wind
Tu
rb
in
e S
y
st
em
Using
Proba
b
ility Distributio
n
(Ka
l
yan
Sa
ga
r K
a
d
a
li)
29
5
4.
PROP
OSE
D
S
OLUTI
O
N
T
h
i
s
p
a
p
e
r
i
n
t
r
o
d
u
c
e
s
t
h
e
p
o
r
t
r
a
y
s
an
a
pproach
o
f
asses
s
ing
the
y
early
v
i
t
ality
yield
for
a
varia
b
le
spee
d
FRC
wi
nd
t
u
rbine
c
o
m
b
ined
w
ith
a
s
ynchronous
g
ene
r
ator
u
t
ilizin
g
Weibu
ll
factu
a
l
ap
pro
p
ri
atio
n
of
wind
s
p
e
ed
E
xp
erim
en
tal
Investig
at
i
ons
o
n
The
Per
f
o
r
m
a
nce
o
f
A
S
o
l
a
r
Po
nd
b
y
usi
n
g
Enca
ps
ul
at
ed
P
cm
with
N
ano
p
a
rt
icles
is
d
iscu
ssed
i
n
[4
]-[6
]
.
Add
itio
n
a
lly
i
n
th
is
w
o
r
k
,
v
ariety
o
f
th
e
yearly
v
italit
y
yie
l
d
wit
h
t
h
e m
ean wi
n
d
spee
d i
s
c
on
si
d
e
red
f
o
r
au
gm
ent
i
n
g
t
h
e
wi
n
d
t
ur
bi
ne c
ontr
ol yield [
7]
.
Fi
gu
re
1
.
Ty
pi
cal
FR
C
W
i
n
d
T
ur
bi
ne
C
o
n
fi
gu
rat
i
o
n
W
i
n
d
t
u
r
bi
ne
s
ho
ul
d
be
ope
rat
e
d
bet
w
ee
n
cut
-
i
n
w
i
n
d
s
p
eeda
n
d
ra
t
e
d
w
i
n
d
s
p
e
e
d
t
o
e
x
t
r
a
c
t
t
h
e
m
a
xim
u
m
pow
er f
r
o
m
t
h
ewi
n
d
by
kee
pi
n
g
t
he
p
i
t
c
h a
ngl
e
and
t
h
e t
ip sp
e
ed
ratio
at th
ei
ro
p
tim
u
m
v
alu
e
s [8
].
5.
WIND S
PEED DIST
R
IBUTION
Th
e
wi
n
d
d
a
t
a
can
b
e
well
fitted
in
to
W
eib
u
ll
d
i
stribu
t
i
o
n
fun
c
t
ion
.
T
h
e
e
xp
r
e
ssion
o
f
W
eibu
ll
d
i
stribu
tio
n
fun
c
tio
nwh
i
ch
d
escrib
es
t
h
e
p
ro
b
a
b
ility
o
f
hav
i
ng
a
wind
s
peed
u
duri
ng
t
h
e
year
i
s
expre
ssed
in
(
1
)
[
9
]
.
F
o
r
t
h
e
e
x
a
m
p
l
e
,
i
t
i
s
characterize
d
w
ith
s
pecified
W
e
i
bullpa
r
ameters:
a
=
8
.
3
ms
−
1
, k
=
1
.
9
and
illu
strated
in Fi
g
ure 2
.
Fig
u
re 2
. W
ei
bu
ll Prob
ab
ility Den
s
ity Distribu
tio
n of Wind
Sp
ee
d
at 9
0
m
A
bov
egro
und
6.
OPERATIONAL CHARACTERISTI
CS OF THE WIND
TUR
BIN
E
Th
e
op
eration
o
f
t
h
e
w
ind
tu
rb
in
e
is
d
i
v
id
ed
i
n
t
o
fewreg
ion
s
,
i
n
o
r
de
r
wi
nd
t
u
r
bi
ne
t
o
b
e
o
perat
e
d
t
o
m
a
xim
i
zet
he powe
r
o
ut
p
u
t
w
h
i
l
e
ens
uri
n
g
t
h
e sa
fet
y
o
f t
h
e
sy
st
e
m
asillu
st
rated
i
n
Fi
g
ure 3
[8
].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISS
N
:
2502-
4
752
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
, Vol
.
9
,
N
o.
2
,
Fe
br
uar
y
20
1
8
:
2
94 – 298
29
6
Fi
gu
re
3
.
O
p
er
at
i
onal
R
e
gi
on
s o
f
a
W
i
n
d
Tu
rbi
n
e
Th
e ou
tpu
t
pow
er of
a w
i
nd
t
u
r
b
i
n
e
is expr
essed
i
n
(
1)
[
8
]
.
Pout
=1/
2
ρ
Au
3
Cp
(
λ
,
β
)
(
1
)
whe
r
e,
ρ
:
t
h
e ai
r
de
ns
i
t
y
(1.
25
kg/
m
3)
A
:
t
h
e a
r
ea s
w
ept
by
t
he
r
ot
or
i
n
m
2
u
: th
e wi
n
d
speed
in
ms
−
1
Cp
: the powe
r coefficient
β
: p
itch
ang
l
e in
d
egrees
λ
: tip
sp
e
ed
rat
io
In
t
h
i
s
work
,
MOD-2
wind
t
u
r
b
i
n
e
i
s
u
tilized
a
nd
a
fter
t
hat
th
e
p
o
w
e
r
c
o
e
f
f
i
c
i
e
n
t
(
C
p
)
o
f
M
O
D
-
2
wi
n
d
t
u
r
bi
ne a
nd
t
he t
i
p
s
pee
d
p
r
o
po
rt
i
o
n
o
f
t
he t
u
r
bi
ne a
re
co
m
m
unicated in
(4
)
[1
0]
an
d
(
5
) s
e
pa
rately
.
7.
OUTPUT CHARACTERISTI
CS
O
F TH
E SY
NC
HR
O
N
O
U
S
GENE
RATO
R
The
s
h
aft
of
t
he
w
ind
turbi
n
e
is
c
onnected
t
o
the
ge
nerat
o
rt
hro
ugh
a
gear
b
ox.The
n
at
t
he
g
ene
r
ator,
the
transm
ittedmechani
cal
e
nergy
is
t
ransfe
red
into
e
lectrical
energy
t
hr
o
u
gha
m
agnet
i
c
m
edi
u
m
Anal
y
s
i
s
o
n
So
lar
Pan
e
l
C
r
ack
D
etectio
n
Using
Op
timizatio
n
Techn
i
q
u
e
s. Jou
r
nal
of
N
a
n
o
-
&
El
ect
ro
ni
c
Phy
s
i
c
s
i
s
expl
ai
ne
d
i
n
[
1
1
]
. Hence
, t
h
e t
o
t
a
l
p
o
we
r o
u
t
put
f
rom
t
h
et
ur
bi
n
e
is n
o
t
c
onv
erted
in
t
o
e
lectrical
p
ower
a
s
it
is,
due
t
othe
m
echanical
a
nd
el
ectrical
l
osses
in
t
he
e
nergy
conve
r
sion
process
[8
].
I
n
th
i
s
w
o
r
k
,
t
yp
ical
p
ow
er
characte
r
istic
o
f
an
m
edium
s
cale
syn
c
h
r
on
ou
sgen
er
ator
c
ou
p
l
ed
wi
t
h
a
n
AC
-
D
C
-
AC
l
i
nk
s
h
ow
n
i
n
F
i
g
u
r
e
4
i
s
use
d
[1
2]
.
Fi
gu
re
4
.
Va
ri
at
i
on
of
t
he
E
f
f
i
c
i
e
ncy
o
f
Sy
n
c
h
r
o
no
us
G
e
n
er
at
or
with t
he R
elative
m
echanical
Po
wer
o
f
T
ur
bi
ne
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Eva
l
ua
tion
o
f
En
erg
y
in Wind
Tu
rb
in
e S
y
st
em
Using
Proba
b
ility Distributio
n
(Ka
l
yan
Sa
ga
r K
a
d
a
li)
29
7
8.
ESTIMATI
O
N
O
F
AN
NU
AL ENE
RG
Y
OUTP
UT
O
F
THE WI
ND
T
URBI
N
E
B
y
i
n-co
ope
rat
i
ng
t
h
e
W
e
i
b
u
l
l
di
st
ri
but
i
o
n,
t
he
e
ne
rgy
c
o
nt
ri
b
u
t
i
o
nat
wi
nd
spee
d
u
t
o
t
he
e
ne
rgy
out
put
o
f t
h
e
s
y
st
em
can be e
x
p
r
esse
d i
n
(
2
)
[
12]
.
P
(
u
) =
w
(
u
)
Pel
ectrical
(2
)
whe
r
e,
P
(
u
) :
Pre
d
i
c
t
e
d e
n
er
gy
out
pu
t
[
W
h]
w
(
u
) : Prob
ab
ility o
f h
a
v
i
n
g
a wind
sp
eed
u
Pelectrical
: The ou
tpu
t
power of th
e syn
c
h
r
on
ou
sg
en
er
ator
at w
i
nd
sp
e
ed
(
u
)
For
eac
h
set
o
f
W
ei
b
u
l
l
para
m
e
t
e
rs,
t
h
e
vari
at
i
on
o
f
t
hee
n
er
gy
co
nt
ri
b
u
t
i
on
t
o
t
he
a
n
nual
ene
r
gy
out
put
i
s
c
o
n
s
i
d
ere
d
wi
t
h
t
he
1
.
0
ms
−
1
clas
s
intervals
ove
r
t
he
r
an
ge
o
f
wi
n
d
s
peed
0
−
30
ms
−
1.
T
he
n
t
h
e
total
annual
energy
g
e
n
eration
of
t
he
s
ystem
foreach
s
et
o
f
W
e
i
bul
l
pa
r
a
m
e
t
e
rs
over
t
h
e
co
nsi
d
e
r
ed
r
an
g
e
ofm
ean
s
pee
d
,
can
b
e
calcula
ted
by
t
aki
n
g
s
u
m
m
a
t
i
on
of
t
heest
i
m
a
t
ed
e
ner
g
y
ou
tpu
t
o
f
th
e
w
i
nd
t
ur
b
i
n
e
o
f
wind s
peed
u
o
v
er t
he
r
an
ge
o
f p
o
ssi
bl
e wi
nd
spee
d
0
−∞
. T
he est
i
m
at
edt
o
tal
ann
u
al
e
ner
g
y
out
put
o
f
t
h
e
wi
n
d
t
u
r
b
i
n
e
ove
r
t
h
e
ran
g
e
o
f
m
e
an
w
i
nd
s
p
ee
d
5
−
15
ms
−
1
for
differe
n
t
shape
fact
ors
r
anging
f
rom
1
.
4
−
1
.
9
i
s
illu
strated
in Fi
g
ure 5
.
Fi
gu
re
5
.
Va
ri
at
i
on
of
Est
i
m
ated T
ot
al
A
n
n
u
a
l
Ener
gy
O
ut
p
u
t
o
f
t
h
e
W
i
n
d
T
ur
bi
ne
wi
t
h
t
he
M
ean
W
i
n
d S
p
ee
d at
D
i
ffe
re
nt
S
hap
e
Fact
o
r
s
9.
CO
NCL
USI
O
N
Thi
s
w
or
k i
n
t
r
od
uces a m
et
hod
of est
i
m
at
i
n
g t
h
e an
n
u
al
en
ergy
o
u
t
p
ut
f
or
a vari
a
bl
e s
p
e
e
d FR
C
wi
n
d
tu
rb
in
e
coup
led
w
ith
a
s
yn
chrono
u
s
g
enerat
or
u
sing
W
ei
bull
stati
stica
l
d
istrib
u
tion
o
f
win
d
sp
eed.
So
a
s
to
su
rv
ey
t
he
m
o
n
e
tary
a
ttain
abilit
y,
o
p
e
rational
ex
ecu
tio
n
of
a
t
wi
st
t
u
r
bi
ne
t
o
be
i
nt
ro
duce
d
,
ass
u
ra
n
ce
o
f
yearly
v
italit
y
yield
b
y
t
h
e
fram
e
wo
rk
i
s
essen
tial.
T
h
e
w
ind
t
ur
bi
ne
c
ont
rol
y
i
el
d
and
vari
et
y
of
e
ner
g
y
co
efficien
t
with
tip
s
p
e
ed
p
ro
portio
n
an
d
also
p
itch
po
in
t
are
analyzed.
It
h
as
b
ee
n
observe
d
that
t
he
p
ower
reg
u
l
a
t
i
on
of
t
hewi
nd
t
u
r
b
i
n
e
sy
st
em
can
b
e
im
prove
d
usi
n
g
pi
t
c
h
co
nt
r
o
l
l
i
ngab
o
v
e
t
h
e
r
a
t
e
d
wi
n
d
s
pee
d
a
n
d
bel
o
w t
h
e
cut
-
of
f
wi
n
d
s
pee
d
.
REFERE
NC
ES
[1]
Haque
M
.
H.,
et al.
,
“Estimatio
n
of
a
nnual
en
erg
y
d
eliv
ered
b
y
a
var
i
able
s
peed
w
ind
g
en
era
t
ing
s
y
s
t
em
u
s
i
ng
historical
w
ind
data,”
i
n
Develo
pments in Renewable Energy
T
echnology (
I
CDRET)
,
2014 3
r
d Internationa
l
Confer
enc
e
,
pp. 1-6, 2014
.
[2]
Sunderland
K.,
et al.
,
“Small
wind
turbines
i
n
turbulent
(urb
an
)
environments:
A
con
sideratio
n
of
normal
and
Weibull
distribu
tions
f
or
power
p
rediction,”
Jou
r
nal of Wind Engineering and I
ndustrial Aerodynamics
, vo
l
.
12
1,
pp. 70-81
, 2013
.
[3]
Olim
po
A.
L
.,
et al.
,
“Wind
Energ
y
G
ener
ation
Modelling
and
Control,”
in
Lib
r
ary of Congress Cataloguing-in-
Publica
tion
Dat
a
,
2009
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISS
N
:
2502-
4
752
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
, Vol
.
9
,
N
o.
2
,
Fe
br
uar
y
20
1
8
:
2
94 – 298
29
8
[4]
Sarathkumar
P
.,
et al.
,
“Experimental
I
nvestig
ations
on
The
Performance
of
a
S
olar
P
o
nd
by
u
sing
Encapsulated
P
c
m
with Nanop
arti
cles
,
”
Ma
terials Today: Proceedings,
vol/issue: 4(2)
, pp
. 2314
-2322, 2017
.
[5]
N.
M
.
Ahmed,
et al.
,
“Optimal
S
izing
and
Eco
nomical
A
naly
sis
of
P
V-Wind
H
y
brid
P
ow
er
S
y
s
tem
for
Water
Irrigation
using
Genetic
Algorithm,”
Internatio
nal Journal of
Electr
ica
l
and
Computer Engineering
,
vo
l/iss
u
e:
7(4), pp
. 1797
, 2
017.
[6]
M.
A
.
Ebr
a
him,
“
Towards
Robust
Non-Fragile
C
ontrol
in
W
ind
Ener
g
y
E
ngi
neering
,
”
Indo
n
e
sian Journal o
f
E
l
ec
t
r
i
c
al
E
n
gi
ne
e
r
i
n
g
and
Computer Science
, v
o
l/issue: 7
(1), pp
. 29-42
, 2017
.
[7]
A.
S
undaram
an
d
G.
P
.
Ra
mesh,
“Sen
sor
less
C
o
n
trol
o
f
BLDC
M
oto
r
using
Fuz
z
y
log
i
c
contro
ller
f
or
S
olar
power
Generation,”
IJM
S
R
, vo
l/issue: 9(2), pp
. 70-79
, 2017.
[8]
Celik
A
.
N
.,
et a
l
.
,
“Critical
e
v
a
luation
of
w
ind
speed
frequen
c
y
distribution
fun
ctions,”
Journal o
f
renewable and
sustainable ener
gy
, vo
l/issue: 2(
1
), pp
. 013102
, 2010.
[9]
Anderson
P.
M
.
and
Bose
A
.,
“
Stabili
t
y
s
im
ulation
of
w
ind
turbi
ne
s
y
s
t
e
ms,
”
IEEE transactions on
pow
er
apparatus and systems
, vol. 12
,
pp. 3791-3795
, 1983.
[10]
K
onara
K
.
M
.
S
.
Y
.,
et al.
,
“Estimation
of
a
nnu
al
e
nerg
y
outpu
t
of
a
w
ind
turbine
using
w
ind
speed
p
robability
distribution
,
”
in
Electrica
l
En
erg
y
Systems (
I
CEES)
,
2016 3
rd
Inter
national Con
f
erence,
pp. 117-121
, 2016
.
[11]
L
y
d
i
a M
. D
.,
et al.
, “Analy
s
is on Solar Panel Crack
Detec
tion Usi
ng Optim
ization
T
echn
i
ques
,
”
Jo
urnal of Nano-
&
E
l
ec
t
r
oni
c P
h
y
s
ic
s
, vol/issue: 9(2
), 2017
.
[12]
Celik
A
.
N.
a
n
d
K
olhe
M
.,
“
G
eneral
iz
ed
f
ee
d-forward
bas
e
d
m
e
tho
d
for
wind
energ
y
p
r
e
diction,”
Applied
ener
gy
, vol. 101
, pp
. 582-588
, 2
013.
Evaluation Warning : The document was created with Spire.PDF for Python.