TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4764 ~ 4
7
7
0
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.549
7
4764
Re
cei
v
ed
De
cem
ber 2
9
, 2013; Re
vi
sed
March 10, 20
14; Accepted
March 24, 20
14
Instrument and System for Evaluating Thermal
Regulation Properties of Textiles
Bao
-
guo Ya
o*, Jian-ch
a
o Wang, Shu
i
-
y
uan Hong, Li-xia Yan
Coll
eg
e of Mechatron
i
cs Engi
neer
ing, Ch
in
a
Jilia
ng U
n
ivers
i
t
y
, Han
g
zho
u
, 310
01
8, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
y
a
obg
@hotm
a
il.com
A
b
st
r
a
ct
A test instru
ment w
a
s dev
el
ope
d a
nd th
e
testi
ng
metho
d
w
a
s pro
pos
ed to c
har
acteri
z
e
th
e
thermal reg
u
l
a
tion pr
operti
es of textiles bas
ed on the
mec
han
ical d
e
vice,
micro
e
lectro
ni
cs, sensors an
d
control syste
m
.
A series of ind
i
ces w
e
re defi
n
ed bas
ed
o
n
th
e typical h
eat fl
ow
-time curv
e and the r
a
w
data
to characteri
z
e
the thermal re
gul
ati
on p
e
rfor
ma
nce of textil
es. T
he me
as
u
r
ement pri
n
cip
l
e, the mec
han
i
c
al
devic
e and th
e
evalu
a
tion
me
thod for the th
ermal reg
u
l
a
ti
o
n
prop
erties of textiles w
e
re in
troduce
d
. T
w
elve
types of fabr
ic
s ma
de fr
om
different texti
l
e
mat
e
ria
l
s w
e
re tested. T
h
e
one-w
a
y ANO
VA ana
lysis w
a
s
cond
ucted to i
dentify the si
gn
if
icanc
e of the
differenc
es of
the in
dic
e
s a
m
o
ng the fa
brics.
The results show
that each i
ndex
is signific
antly
different (P
<
0
.05) a
m
o
ng the
different sa
mp
l
e
fabrics.
Ke
y
w
ords
: the
r
ma
l reg
u
lati
on
properti
es, ins
t
rume
nt, evalu
a
tion, textiles
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the ra
pi
d developm
e
n
t of econo
m
y
and the improvem
ent of people'
s life,
people
now
ca
re a
b
o
u
t not only a
better visu
al
effect but al
so we
arin
g co
mfort wh
en p
u
rcha
sing tex
t
ile
and cl
othing
prod
uct
s
. Clo
t
hing co
mfort
gene
rally in
clude
s thre
e a
s
pe
cts: the
r
m
a
l-wet comfo
r
t,
conta
c
t co
mfort and visual
comfort [1
-3]
.
Heat-moi
stu
r
e tran
sfe
r
pe
rforma
nc
e of the textiles su
ch
as fab
r
i
c
is o
ne of the
ke
y factors affe
cting
clothin
g
wea
r
in
g co
mfort, whi
c
h
also
de
cide
s
the
perfo
rman
ce
of some spe
c
ial functional
fabric.
Th
e heat-moi
sture transfe
r
pe
rfo
r
man
c
e of fabric
is relate
d to the thermal
-
wet comfo
r
t prop
ertie
s
of
clothing. Th
erefo
r
e,
heat
-moi
sture tra
n
sfer
prop
ertie
s
of
clothin
g
and
its
evaluatio
n
method h
a
s become a
rese
arch fo
cu
s in the fiel
d
of
clothin
g
comfort. The h
eat
transfe
r p
r
op
erties
ar
e im
portant attri
b
utes of h
eat-moistu
r
e tra
n
s
fer
perfo
rman
ce
of textiles, e
s
pe
cially u
n
d
e
r th
e
dyna
mic
wea
r
ing
pro
c
e
s
s du
ri
ng the
dyna
mic
conta
c
t between the skin
and the cl
othi
ng.
Heat tran
sfe
r
prope
rtie
s a
nd therm
a
l p
e
rf
orm
a
n
c
e d
u
ring the dyn
a
mic conta
c
t pro
c
e
ss
betwe
en the ski
n and the clothin
g
are referred to
as thermal reg
u
lation prope
rties of textiles,
whi
c
h greatly affect the clot
hing co
mfort
and con
s
ume
r
s pu
rcha
sin
g
behaviors.
Acco
rdi
ng to
the he
at tran
sfer
pri
n
ci
ple,
t
he h
eat di
ssipate
s
from
human
bo
dy
throug
h
conve
c
tion, condu
ction, ra
diati
on an
d e
v
aporatio
n. In the previo
us stu
d
ie
s, the heat tra
n
s
fer
performance of the fabri
c
wa
s measured and ev
aluated
base
d on the thermal equilibri
um
theory, an
d t
he fab
r
ics
we
re te
sted
by measuri
ng th
e heat l
o
ss
o
r
suppl
ement
within
a
cert
ain
time to get the heat tran
sfe
r
perfo
rma
n
ce. Fourt
prop
ose
d
the test method
s of thermal in
sul
a
tion
prop
ertie
s
of fabri
c
[4].Thi
s te
st m
e
tho
d
keep
s sam
p
le to
cover
on a
h
o
t plat
e with
con
s
t
ant
temperature
to test a
nd m
a
ke th
e h
eat
dissipatio
n
in
the sp
eci
m
en
orie
ntation,
whi
c
h i
s
calle
d
con
s
tant tem
peratu
r
e
co
ol
ing meth
od.
Acco
rdi
ng to
the heat
nee
ded to
maint
a
in the
hot p
a
lte
with con
s
tant
temperature,
it can b
e
u
s
ed to calc
ulat
e the sampl
e
wa
rmth rete
ntion
rate, et
c.
In
addition, the
r
e are
cooli
n
g rate
metho
d
[5],
plate method
[6], micro-climate
method
[7] and
thermal ma
ni
kin metho
d
[8] for the heat tr
ansfe
r pe
rfo
r
man
c
e eval
u
a
tion of fabrics.
Extensive re
searche
s
h
a
ve
been
carrie
d
out
for the therm
a
l pe
rformance evalu
a
tion of
clothin
g
a
nd t
e
xtiles. Ga
gg
e A. P., Burton A.
C.
and
Bazett
H.
C. pre
s
e
n
ted th
e warm
cl
othi
ng
insul
a
tion ind
e
x – CLO, which a
s
so
ciated with
hum
a
n
physiolo
g
ical para
m
eters, psycholo
g
ical,
sen
s
o
r
y a
n
d
environme
n
tal conditio
n
s [9]. Mu Ya
o an
d
Jian
-y
ong Y
u
[10,
11]
re
spe
c
ti
vely
analyzes th
e
factors that i
n
fluen
ce the
textile steady
-state th
erm
a
l pro
pertie
s
o
f
fabric
usi
n
g
a
self-d
evelop
e
d
he
at tran
sf
er p
e
rfo
r
ma
n
c
e te
ste
r
, an
d foun
d that
thickne
s
s of
the fab
r
ic ha
ve
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Instrum
ent an
d System
for Evaluatin
g Th
erm
a
l
Reg
u
la
tion Prope
rtie
s of Textile
s (Bao-g
uo Yao
)
4765
greate
r
impa
ct on the thermal perfo
rma
n
ce of t
he fabric. The the
r
mal resi
stan
ce and thickne
s
s
of the fa
bri
c
sho
w
e
d
a
go
od lin
ear rela
tionshi
p. Ji
an
-ch
u
n
Zha
ng
and In
du
She
k
ar b
o
th
studi
ed
the thermal resi
stan
ce of textiles usi
ng
the
THERMO
LABO-type te
ster devel
ope
d by Japa
ne
se
Ka
w
a
ba
ta
. J
i
a
n
-
c
h
un
Zh
an
g
us
ed
th
e
tes
t
er to tes
t
the thermal
insul
a
tion p
r
o
pertie
s
of
col
d
prote
c
tive clo
t
hing and Ind
u
Sheka
r
stu
d
ied the im
p
a
ct of wool f
abri
cs o
n
the
r
mal resi
stan
ce
[12]. Fang
-lo
ng Zh
u et
al
develop
ed a
novel in
st
rum
ent which ca
n mea
s
u
r
e
ra
diation
coeffi
cient
of prote
c
tive fabri
c
s und
er
high
conve
c
ti
ve and
radi
an
t heat flux [13
]. Wei-zho
ng
Gong, Vmb
a
ch
and Pei-qing
Jiang d
e
vel
oped diffe
ren
t
micro
-
clim
ate instrument
s su
cce
ssivel
y
. These mi
cro-
climate i
n
stru
ments
ca
n m
easure
the p
a
ram
e
ters
of
five asp
e
ct
s: (a) In
sid
e
and o
u
tsid
e
air
layer’s tem
p
e
r
ature of fabri
cs mi
cr
o-clim
ate; (b) Insi
d
e
and out
side
air layer’
s m
o
isture of fab
r
ics
micr
o-
climat
e
;
(c
) Th
erm
a
l re
sist
a
n
ce o
f
the fabri
c
; (d) Moi
s
tu
re
resi
stan
ce of
the fabri
c
s; (e)
Equivalent thermal resi
sta
n
ce of the fab
r
ics [14-16].
Although, the
r
e a
r
e
som
e
stand
ard
met
hod
s an
d test instrum
ents can
be e
m
pl
oyed to
measure the fabri
c
heat tra
n
sfer p
r
o
perti
es an
d
therm
a
l perfo
rman
ce, but most of them can onl
y
be used to m
easure the fabric ther
m
a
l properties
under static co
nditions
or equilibrium stat
es,
and
can
not
simulate
the t
herm
a
l regul
ation p
r
o
c
e
s
s
duri
ng clothi
ng
conta
c
ts with
hu
man skin.
This pap
er report
s
th
e d
e
velopme
n
t
of a n
e
w
te
st in
strum
ent
and
sy
stem
ba
sed
on
the
mech
ani
cal device, microele
c
troni
cs,
se
nsors
an
d control
system fo
r th
ermal
regula
t
ion
prop
ertie
s
ev
aluation of te
xtiles. The in
strum
ent can
measure th
e
thermal
regu
lation prope
rties
by simulating
the dynamic t
herm
a
l co
nta
c
ts bet
wee
n
the skin an
d textiles.
2. Test Princ
i
ple and Ev
aluation Me
th
od
2.1. Test Principle
As sh
own in
Figure 1, the
mech
ani
cal d
e
vice of
the i
n
stru
ment
co
nsi
s
ts of the f
o
llowin
g
six main co
m
pone
nts:
(1) L
o
wer me
asu
r
ing h
ead
1;
(2)
Heatin
g pl
ate 2;
(3)
Upp
e
r me
asu
r
ing h
ead
3
(4) Lifting e
q
u
i
pment 4;
(5) Driving co
mpone
nt
5;
(6) In
strum
e
n
t
frame 6.
Figure 1. Mechani
cal Device
of the Instru
ment System
The upp
er m
easurin
g hea
d can be mo
ved vertic
ally
and the motion is co
ntroll
ed by the
lifting equipm
ent and
drivi
ng comp
one
nt. There
are
three
kin
d
s
of sen
s
o
r
s u
s
ed for
mea
s
u
r
ing
the tempe
r
at
ure of the u
p
per a
nd lo
we
r mea
s
u
r
ing
head
s, the h
eat flow pa
ssing thro
ugh t
h
e
5
6
1
2
3
4
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4764 – 4
770
4766
fabric
and the
pre
s
sure lo
a
d
whi
c
h is a
p
p
lied to the te
st sam
p
le fab
r
ic. As
sho
w
n
in Figure 2
(
a
)
,
three
tempe
r
ature
sen
s
ors are eve
n
ly in
stalled
in bot
h
the upp
er measuri
ng he
ad
a
nd
th
e
lo
wer
measuri
ng h
e
ad for mea
s
u
r
ing th
e temp
eratu
r
e
ch
a
n
ges of the t
w
o mea
s
u
r
ing
head
s. Th
ere
are
spri
ng and p
r
essu
re se
nsor
in
stalled
b
e
twee
n
the l
o
we
r me
asuring he
ad a
n
d
the in
strum
e
nt
frame fo
r me
asu
r
ing th
e p
r
essu
re fo
rce
applie
d to
th
e test fab
r
ic.
A heating
pla
t
e is in
stalled
in
the upp
er
m
easurin
g he
a
d
and
is
used to h
eat the he
ad to
kee
p
con
s
ta
nt temperatu
r
e
differen
c
e bet
wee
n
the upp
er and l
o
we
r
measuri
ng he
ads. In order
to ensu
r
e the
whole
sam
p
l
e
is h
eated
uni
formly an
d
si
multaneo
usly
, the an
nula
r
heatin
g
wire
s a
r
e
appli
e
d
in the
he
ating
plate of the m
e
ch
ani
cal dev
ice a
s
sho
w
n
in Figure
2(b). A heatflux sensor i
s
insta
lled on the to
p
side of the lo
wer m
e
a
s
uri
n
g head for th
e measuri
ng
of the heat flow.
(a) Me
asuri
n
g head
s an
d sen
s
o
r
s
(b)
Heatin
g pl
ate
Figure 2. Structure of Me
asuring
Hea
d
s
Before te
stin
g, the
uppe
r
measuri
ng
h
ead i
s
l
o
cate
d at th
e initi
a
l po
sition.
Whe
n
the
measurement
start
s
, the
heating
wires of the
heati
ng plate
beg
in to heat to
make
the t
w
o
measuri
ng h
ead
s have the pred
etermi
ned tempe
r
at
ure differe
nce. Then the uppe
r mea
s
u
r
ing
head
move
s
down a
nd fix
e
s th
e
sam
p
l
e
bet
wee
n
th
e fre
e
su
rface
s
of
the
upp
er mea
s
u
r
ing
h
ead
and th
e lo
we
r me
asuri
ng
head.
The
m
o
tor
stop
s
ru
nning
an
d th
e up
pe
r me
a
s
uri
n
g
hea
d
stop
s
moving do
wn
by a signal
trigge
r whi
c
h
come
s fro
m
a pre
s
sure sen
s
o
r
in
stall
ed between t
he
lowe
r mea
s
u
r
ing he
ad an
d the instrum
ent frame,
and the sam
p
le is kept at static conditi
on.
Mean
while, t
he he
atflux sensor
start
s
t
o
wo
rk
an
d
t
he
test data begin
s
to be recorded.
T
h
ree
minutes late
r, wh
en th
e h
e
a
t flow
pa
ssi
ng th
roug
h th
e fab
r
ic is cl
o
s
e to
be
ste
a
d
y, the he
ating
plate sto
p
s
h
eating, the m
o
tor
starts to
rotate
in
reve
rse,
and th
e u
pper mea
s
u
r
i
ng he
ad
rises up
and de
part
s
from the samp
le to return to
initial positio
n.
2.2. Ev
aluation Metho
d
Figure 3
is a
typical
heat flo
w
-time
curve
from
the
dyn
a
m
ic
heat t
r
an
sfer testin
g.
Derive
d
from the me
a
s
uri
ng
curve
s
and the te
st data, f
our in
di
ce
s have b
e
e
n
defined
an
d cal
c
ulate
d
for
evaluation of
thermal regul
ati
on pro
p
e
r
ties of textiles.
1) Maximum
heat flow:
M
AX
Q
,
q(
t)
MA
X
M
AX
Q
(1)
2) Heat flow at equilibri
um
state:
E
q
,
()
E
tt
qE
q
t
(2)
Whe
r
e t
E
is th
e time wh
en the heat tran
sfer is ju
st fro
m
the dynami
c
state to the
steady
state and the
heat flow be
comes
con
s
ta
nt.
Lo
wer m
easuri
n
g
hea
d
Up
pe
r m
easuri
n
g
hea
d
Fabric
Heating plate
Heat
fl
ux
sen
s
or
Tem
p
erature s
e
ns
or
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Instrum
ent an
d System
for Evaluatin
g Th
erm
a
l
Reg
u
la
tion Prope
rtie
s of Textile
s (Bao-g
uo Yao
)
4767
3) Thermal regulation ability: TRA,
t
0
()
E
E
E
qt
d
t
TRA
t
(3)
Whe
r
e,
()
,
(
)
()
0,
(
)
EE
E
E
qt
q
q
t
q
qt
qt
q
(4)
4) Rel
a
tive thermal regul
ation ability: TRA_r (%),
_
r
10
0%
+
E
TR
A
TR
A
qT
R
A
(5)
Indice
s TRA
and TRA_
r reveal
the
the
r
mal re
gulati
on
a
nd buffe
ring
ability
of
textiles
durin
g the dynamic h
eat transfe
r.
Figure 3. The
Typical He
at Flow vs. Tim
e
Curve
3. Experiments Setup
Table 1. Fab
r
ic Structu
r
al
Paramete
rs
Sample code
Fabric cons
truction
Mass/unit area (g/m
2
)
Thickness (mm) at 4.14KPa
1
#
Tw
ill-brushed
290
0.57
2
#
Cordu
r
o
y
308
0.93
3
#
Fanc
y
weave
245
0.57
4
#
Denim
359
0.75
5
#
Denim-bleached
360
0.86
6
#
Velvet
268
0.98
7
#
Fleec
y
fabric-
we
ft knitted
251
1.37
8
#
Fleec
y
fabric-
we
ft knitted
256
1.81
9
#
Polar
fleece
296
3.06
10
#
Pile fabric-w
eft k
n
itted
205
0.97
11
#
Pile fabric-w
eft k
n
itted
272
1.35
12
#
Mesh fabric-w
arp
knitted
96
0.32
Twelve type
s of fab
r
ics
with differe
nt st
ructur
al featu
r
es
and
mad
e
from diffe
rent
textiles
were te
sted
for the the
r
mal re
gulatio
n experi
m
ent
s. The
sa
m
p
le was
cut
to the si
ze
of
180mm
×
1
8
0
mm an
d
any
obviou
s
wrin
kle
s
we
re
re
mo
ved. Fo
r
each
set
of fabri
c
, 5
pie
c
es
of
d
y
nam
ic proce
s
s
static
p
rocess
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4764 – 4
770
4768
spe
c
ime
n
s were
cut for th
e testin
g. Th
e
fabri
c
stru
ctu
r
al p
a
ramete
rs a
r
e
liste
d in
Tabl
e 1. Bef
o
re
testing, all th
e spe
c
im
en
s were kept in a con
d
itionin
g
room,
controlled at 21
±1
°C an
d 65
±2
%
RH a
c
cording
to ASTM D1776 for at lea
s
t 24 hou
rs.
4. Results a
nd Analy
s
is
All the sp
eci
m
ens were t
e
sted
on the
inst
rument and system of
thermal re
gulatio
n
prop
ertie
s
by
the same te
st
ing p
r
oto
c
ol
a
c
cordi
ng to
th
e expe
rime
nts
setup.
The
mean val
u
e
s
o
f
the thermal regulatio
n pro
pertie
s
mea
s
urem
ents a
r
e
summa
rized
in Table 2.
Table 2. The
Mean Valu
es
of the Therm
a
l Reg
u
lation
Prope
rties M
easure
m
ent
s
Fabric
Heat flo
w
Ma
x
Q
MA
X
(KW/m.m)
Thermal
Regulation Ability
TRA (KW/m.m)
Relative thermal regulation abilit
y
TRA_r (%
)
1# 2.2796
0.312
18.67
2# 2.8341
0.5344
30.48
3# 2.0396
0.242
15.24
4# 2.2026
0.3577
22.79
5# 2.2774
0.3357
20.10
6# 2.5472
0.3591
20.75
7# 2.5312
0.5462
42.84
8# 1.2316
0.3157
42.53
9# 0.7873
0.2397
55.50
10# 1.896
0.2779
23.56
11# 2.6274
0.5145
33.49
12# 1.5261
0.092
6.81
A one-way ANOVA anal
ysis was
ca
rrie
d
out to identify the significan
c
e
of the
differen
c
e
s
o
f
the evaluati
on indi
ce
s
a
m
ong th
e fa
b
r
ics u
s
in
g p
r
ofession
al st
atistical
software
SPSS and the results are
summ
ari
z
ed i
n
Table 3.
Table 3. One
-
way ANOVA
Analysis
Re
sults of Evaluation Indice
s
Dependent
Variable
Sum of
Squares
df
Mean
Square
F Si
g.
Q
MA
X
20.574
11
1.870
72.178
0.000
TRA
0.988
11
0.090
36.580
0.000
TRA_r
1.042
11
0.095
70.838
0.000
The
one
-way ANOVA
re
sults in
dicate t
hat ea
ch
index is
significantl
y different
(P<0.0
5)
among
different fabri
c
s in
this st
u
d
y. Therefore, th
e fabri
c
s’ be
haviors si
gnif
i
cantly affect
the
thermal regul
ation pro
p
e
r
ties of all indi
ces.
Figure 4. Mean Value of the Mea
s
u
r
em
ent Re
sults of
Heat Flow M
a
x Q
MA
X
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Instrum
ent an
d System
for Evaluatin
g Th
erm
a
l
Reg
u
la
tion Prope
rtie
s of Textile
s (Bao-g
uo Yao
)
4769
Figure 4 is th
e mean valu
e chat of the
meas
ure
m
e
n
t results for
the indices h
e
at flow
max Q
MA
X
.
Fabri
c
2
h
a
s t
he highe
st value of heat flow
, and is fol
l
owe
d
by fabric 11, whe
r
e
the
Q
MA
X
is 2.834
and 2.627 (K
W/m.m) re
sp
ectively.
The mea
s
u
r
e
m
ent results
of evaluation index
TRA are sho
w
n in Fi
gure 5. Fab
r
i
c
12 ha
s
the lowest value of therm
a
l
regu
lation ability where T
R
A is 0.092
(K
W/m.m),
whil
e fabri
c
7 i
s
t
h
e
best the
r
mal
regul
ation fa
bric
sin
c
e fab
r
ic 7 h
a
s
the
highe
st value of thermal
regul
ation abi
lity
whe
r
e T
R
A is 0.546 (KW/m
.
m).
Figure 5. Measurem
ent Result
s of Thermal Regulation Ability (TRA)
The mea
s
u
r
e
m
ent re
sults
of ev
aluation
index TRA_
r
are
sho
w
n in
Figure 6. Fab
r
ic 9 i
s
the be
st
relati
ve therm
a
l re
gulation
fabri
c
com
par
ed with
the
he
at flow
at equili
b
r
ium state sin
c
e
fabric 9
has
the highest value
of rel
a
tive ther
m
a
l regulation abilit
y where
TRA
_
r i
s
55.5
(%),
while fabri
c
12 has the l
o
west
value of
relative thermal regula
tion ability where TRA_r i
s
6.81
(%
).
Figure 6. Measurem
ent Result
s of Rela
tive Thermal
Regulation A
b
ility (TRA_r)
5. Conclusio
n
Heat tran
sfe
r
prope
rtie
s a
nd therm
a
l p
e
rf
orm
a
n
c
e d
u
ring the dyn
a
mic conta
c
t pro
c
e
ss
betwe
en the ski
n and the clothin
g
are referred to
as thermal reg
u
lation prope
rties of textiles,
whi
c
h g
r
eatl
y
affect the
clothin
g
co
mfor
t
and consume
r
s p
u
rcha
sing b
ehaviors.
A new
instru
ment a
nd syste
m
for therm
a
l reg
u
lation pr
ope
rties evalu
a
tion of textiles was d
e
velop
e
d
.
The inst
rume
nt and syste
m
can me
asure the the
r
ma
l reg
u
latio
n
prop
ertie
s
by simulating
the
dynamic the
r
mal conta
c
ts
betwe
en the
ski
n a
nd text
iles. Fo
ur indi
ce
s
were d
e
fined to
evalu
a
te
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4764 – 4
770
4770
the therm
a
l regulatio
n pro
pertie
s
of th
e textile
s de
rived from th
e ra
w data.
Twelve type
s
o
f
fabrics with
different stru
ctural featu
r
e
s
and
ma
de from different
textiles were tested for the
thermal
regul
ation p
r
op
erti
es. T
he
anal
ysis
of th
e
varian
ce
resul
t
s sho
w
th
at the i
n
strum
ent
system i
s
abl
e to dete
r
min
e
the
signifi
cant differe
nce
s
in fa
bri
c
th
ermal
re
gulati
on p
r
op
ertie
s
to
all indi
ce
s wi
th P level <0
.05. The fab
r
ic 7 i
s
the
b
e
st the
r
mal
regulatio
n fab
r
ic
and
ha
s t
h
e
highest value of thermal regulation ability.
Ackn
o
w
l
e
dg
ements
This work wa
s su
ppo
rted
by National
Natural Scien
c
e Fou
ndatio
n of China (Grant No.
5117
5487
) a
nd Zhejia
ng
Provinci
al Na
tural Scie
nce Found
ation of
China (Grant
No. Y11107
2
0
).
Referen
ces
[1]
A W
ong, Y
L
i
, KW
Yeun
g.
Ps
y
c
h
o
l
ogic
a
l
sensor
y perc
e
ptions
an
d pr
efer
enc
es of yo
un
g
a
d
u
l
ts
tow
a
rds tightfit sports
w
e
ar.
J. Text.
Inst
. 2002.
[2]
ASW
W
ong, Y Li. Com
paris
on
of differe
nt h
y
brid m
ode
ls'
pe
rformances in pred
iction
of ov
erall
cloth
i
n
g
comfort from fabric ph
ys
ical pr
operti
es.
J. Soc. F
i
ber Sci. T
e
chno
l
. 200
2.
[3]
T
F
u
kaza
w
a
, H Ka
w
a
m
u
ra. Exp
e
rim
ent an
d Anal
ys
is of Combi
n
e
d
Hea
t
and W
a
ter Vapor T
r
ansfe
r
throug
h Clot
h
e
s
w
i
th C
o
n
den
sation.
T
e
xtile Rese
arch
Jour
nal
. 20
03; 73(
9
)
: 774-78
0.
[4]
F
ourt L, Holli
es
NRS. Clothi
n
g
Comfort and F
unctio
n
. Ne
w
Y
o
rk Marcel D
e
k
k
er. 1970.
[5]
B F
a
rn
w
o
rth. Mecha
n
im of H
eat
F
l
o
w
T
h
rough Cl
othin
g
Ins
u
lati
on.
T
e
xtile Rese
arch
Jour
nal
. 19
83; 1
2
(53): 717-
75
3.
[6]
Salmo
n
D.
T
hermal c
ond
u
c
tivit
y
of ins
u
la
ti
ons usi
n
g
guard
ed h
o
t plates, incl
u
d
in
g recen
t
deve
l
opm
ents
and s
ourc
e
of
referenc
e mat
e
rials.
M
easur
ement Sci
enc
e
and
T
e
chn
o
l
o
gy
. 20
01; 1
2
(12): 89-9
8
.
[7]
B F
a
rn
w
o
rth. A
Numer
i
cal m
o
del
of the c
o
m
b
in
ed
diffusio
n
of he
at an
d
w
a
ter vap
o
r thro
ugh c
l
oth
i
ng
.
T
e
xtile Res
ear
ch Journ
a
l
. 19
86; 11 (56): 6
5
3
- 665.
[8]
Ingvar H
o
lmer.
T
hermal mani
kin h
i
stor
y an
d ap
plic
atio
n.
Eu
ro
pe
an
Jo
u
r
n
a
l
o
f
Ap
pl
i
ed Ph
ysi
ol
o
g
y
.
200
4; 92 (6): 6
14-6
18.
[9]
Gagge AP, Bur
t
on AC, Bazett HD. A Practical
S
y
stem
of Unit
s for the Descri
p
tion of H
eat Exch
an
ge o
f
Man
w
i
th H
i
s Enviro
nment.
Scienc
e
. 194
1; 94(24
45): 42
8-4
30.
[10]
Mu Ya
o, Me
i-
w
u
S
h
i. D
e
ve
l
opi
ng t
he f
abri
c
microl
imate
instrume
nt t
y
p
e
Ⅱ
.
Jo
urn
a
l of
Northw
est
Institute of T
e
xtile Scie
nce a
n
d
T
e
chno
lo
gy
. 200
1; 15 (2): 5
0
-52.
[11]
Jian
yo
ng
Yu,
S
huij
i
n
g
Z
h
ao. S
t
udies
of
he
at transfer
prop
erti
es of c
l
oth
i
ng
materials.
Jour
anl
of C
h
i
n
a
Textile Un
ivers
i
ty
. 1989; 15(
6)
: 1-9.
[12]
Indu S
hek
ar R
,
Kasturi
y
a
Ni
shkam. Influ
e
n
c
e of
w
o
o
l
-s
yn
thetic fibrc
bl
e
nds
on th
erma
l ins
u
l
a
tion
.
India
n
jo
urna
l of fibre & textile researc
h
. 20
01; 3 (26): 28
7
-
295.
[13]
F
ang-l
ong
Z
h
u
,
W
e
i-
yua
n
Z
h
ang.
Nov
e
l r
a
d
i
atio
n co
efficie
n
t for pr
otectiv
e
fabr
ies.
J
our
anl
of T
e
xtil
e
Research
. 20
0
6
; 27(5): 34-4
0
.
[14]
Ji-qu
an F
u
, T
i
an-
w
e
n C
hen.
Progress
of Stud
y
on F
a
br
ic Heat-mo
istu
re T
r
ansport Porperti
es an
d
Clothi
ng H
eat-
m
oisture
C
o
mfort Evaluati
on.
Journ
a
l of Bei
j
i
ng Instit
ute of
Clothi
ng T
e
c
h
n
o
lo
gy
. 200
5;
25(2): 66-
72.
[15]
Pei-qi
ng J
i
a
ng,
Hao-j
i
n
g
Ya
n.
Stud
y on
cha
r
acterizati
on a
nd a
ppl
icati
o
n
of heat fl
o
w
curve of t
h
e
fabric.
Journ
a
l
of Qingda
o Un
i
v
ersity
. 2003; 1
8
(4): 1-5.
[16]
Vmbach
KH. A
s
pects of
Cl
oth
i
ng
Ph
ysi
o
l
o
g
y
in
the
Dev
e
lo
pment
of Sp
orts W
ear.
Kni
tti
ng
Te
chn
i
qu
e
.
199
3; 15(3): 16
5-16
9.
Evaluation Warning : The document was created with Spire.PDF for Python.