TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 10, Octobe
r 20
14, pp. 7131
~ 714
2
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.532
8
7131
Re
cei
v
ed
De
cem
ber 9, 20
13; Re
vised
June 15, 20
14;
Accept
ed Jul
y
10, 201
4
Strength Analysis for Surface-mounted Permanent
Magnet Rotor in High-Speed Motor
Liang-liang Chen*, Chan
g-sh
eng
Zhu
Z
heji
ang U
n
iv
e
r
sit
y
,
38 Z
hed
a Ro
a
d
, Hangz
ho
u 3
100
27, Ch
ina; telp: 00
86-
057
1
-
879
835
15
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: chenl
ian
0
5
1
0
@
16
3.com
A
b
st
r
a
ct
In the s
u
rface-
mo
unte
d
h
i
g
h
-
s
pee
d
p
e
r
m
a
n
ent ma
gnet motor,
the
magn
ets
are not me
chan
ical
ly
strong e
n
o
u
g
h
to be
ar the c
e
n
t
rifugal stress
r
e
sulte
d
fro
m
th
e hi
gh s
p
e
ed r
o
tating, th
us a
sleev
e co
mpos
ed
of the carbo
n
-fiber b
and
ag
e i
s
usual
ly e
m
pl
oyed to
reta
in
the per
ma
ne
nt mag
nets on t
he rotor surfac
e.
Accordi
ng to
the surface-
mounte
d
hi
gh-s
pee
d per
ma
n
ent mag
net rotor retain
ed
by a carb
on-f
i
be
r
ban
da
ge, in th
is pap
er, an
a
nalytic
al
mo
del
for ca
lcul
atin
g
rotor strength
w
a
s presente
d
bas
ed o
n
th
e
theory of elasti
c mech
an
ics. T
hen the resu
l
t
s of analyt
ical
mod
e
l w
e
re compar
ed w
i
th the calc
ulati
ons
of
finite-e
le
me
nt meth
od. It w
a
s show
n that t
he a
n
a
l
ytic
al
mo
de
l pro
pos
e
d
in th
is p
a
p
e
r
coul
d acc
u
ra
tely
pred
ict the str
e
ss distri
buti
o
n of th
e surfa
c
e-mou
n
ted
hi
gh-sp
eed
p
e
r
m
a
n
e
n
t mag
n
e
t rotor fixe
d
by a
carbo
n
-fiber
b
and
ag
e. F
i
nall
y
, the influe
nc
e of
the ba
nd
age th
ickness
and shr
i
nk ra
nge
betw
een t
h
e
per
ma
nent
ma
gnets a
nd t
he
ban
da
ge o
n
ro
tor stress w
a
s in
vesti
gate
d
ba
sed o
n
this
an
alytical
mod
e
l
o
f
rotor strength.
Ke
y
w
ords
: car
bon-fi
ber b
and
age, hi
gh-s
pee
d, per
ma
n
ent ma
gn
et
motor,
strength
an
alys
is
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
No
wad
a
ys, surface-m
ount
ed high spee
d perm
anent
magnet (PM
)
motor is b
e
comin
g
more
and m
o
re commo
n d
ue to its
simpl
e
stru
ct
u
r
e, hi
gh po
we
r de
n
s
ity and in
cre
a
se
d efficie
n
cy
[1, 2]. In the
surfa
c
e
-
mo
un
ted hig
h
spe
e
d
PM m
o
tor, t
he m
agnet
s
gene
rally
con
s
ist
of sepa
ra
te
blocks whi
c
h
are glu
ed ont
o the rotor su
rface. Severa
l kinds of pe
rmanent mag
netic materi
al
s
,
su
ch a
s
alni
co magn
ets, ferrite m
agn
ets and
ra
re-e
arth mag
nets, are u
s
ually
employed i
n
the
high
spee
d P
M
motor. Am
ong them, th
e ra
re-ea
r
th magnet
s a
r
e
widely ap
plie
d owi
ng to its high
saturation int
ensity and
coercive force
[3]. However, this kin
d
of PM material ha
s hig
h
comp
re
ssive
stren
g
th b
u
t low ten
s
ile
strength, an
d can not
su
stai
n the c
entrifu
gal st
re
ss
du
e to
high speed
rotation. Therefore, it must
be contai
ned
in a sleeve. Gene
rally, there a
r
e two
kinds
of sleeve
s
, o
ne is n
onma
gnetic all
o
y sleeve su
ch
a
s
titanium all
o
y, the other is high
-st
r
en
gth
comp
osite
m
a
terial
s
su
ch
as carb
on-fi
ber
ban
dag
e
s
. The
carbo
n
-fibe
r
b
anda
ge h
a
s
a hi
gh
stren
g
th to
weight ratio an
d low
eddy
-current
lo
sses com
pared t
o
the alloy
sl
eeve [4, 5]. So
carbon
-fibe
r
band
age i
s
more often e
m
ployed a
s
the retai
n
ing
sleeve in the
high-spe
ed
PM
motor [6-9]. The ce
ntrifug
a
l stre
ss of PMs can b
e
comp
en
sated
by pre-st
ress applie
d to the
outer
su
rface
of PMs th
ro
ugh m
agn
et-sleeve i
n
te
rf
eren
ce
fit. In ord
e
r to
det
ermin
e
the
p
r
e
-
stre
ss, sh
rin
k
ran
ge a
nd
sl
eeve thickn
e
ss, the
ro
to
r
stren
g
th mu
st be analy
z
ed
firstly. So rot
o
r
stren
g
th anal
ysis is a
key point in the ro
tor des
i
gn of the su
rface-m
ounted hi
gh speed PM mot
o
r.
There have
been
some p
apers di
scussing the me
chani
cal stre
n
g
th of the high sp
eed
PM roto
r
co
ntained
in
a
sle
e
ve. Finit
e
-ele
ment
m
e
thod
(FEM
) wa
s
usually
appli
ed to
rotor
stren
g
th a
nal
ysis [10,
11]. Analytical
strength
mo
d
e
l
for the
cylin
drical PM
rot
o
r retaine
d
b
y
a
nonma
gneti
c
alloy
sleeve
we
re
prese
n
ted in
[12-
1
4
]. A simpl
e
cal
c
ul
ation
strategy
for t
h
e
cylindri
c
al
PM roto
r retain
ed by a
ca
rb
on-fibe
r
b
and
age
wa
s p
r
e
s
ented in
[15], but the
effect of
anisotropy of
the carbo
n
-f
iber on rotor stress
was
not con
s
ide
r
ed in the analytical mode
l. At
pre
s
ent,
the rotor stren
g
th of
the
su
rfa
c
e-mo
unted
hi
gh spee
d PM
motor i
s
mai
n
ly analyzed
b
y
FEM. Ho
wev
e
r, FEM i
s
ti
me-con
sumi
n
g
, and
may
lead to
no
converg
e
n
c
e.
The
analytical
method fo
r ro
tor strength
mainly focu
ses o
n
the
cylindri
c
al PM
ro
tor retai
ned
b
y
a nonma
g
n
e
tic
alloy sl
eeve.
Neverth
e
le
ss,
the
st
re
ss di
stributio
n fo
r
the surfa
c
e
-
mounted
PM
rotor retained
by
a ca
rbo
n
-fib
er ba
ndag
e
is differe
nt from that
of
the cylindri
c
al PM roto
r retain
ed b
y
a
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 713
1
– 7142
7132
nonma
gneti
c
alloy sleeve
due to the
ce
ntrifugal fo
rce
s
of sepa
rate
PM blocks a
nd the effe
ct of
anisotropy of
ca
rbo
n
-fib
er band
age.
T
h
erefo
r
e,
the
analytical
me
thod for the
surfa
c
e
-
mo
un
ted
PM rotor
reta
ined by a carbon-fib
e
r b
a
n
dage n
eed
s
f
u
rthe
r study.
In this investi
gation for the
surfa
c
e
-
mo
un
ted PM rotor
with a carb
on
-fiber b
and
ag
e, the analytical mo
del for
cal
c
ulatin
g ro
tor
stren
g
th is d
edu
ced b
a
se
d on the roto
r stre
ss
cond
ition whi
c
h is simp
lified a
s
a plane
stre
ss
probl
em. Th
e
analytical
solution
s a
r
e
validated by
corre
s
p
ondin
g
finite elem
ent re
sult
s. The
comp
ari
s
o
n
result
s dem
on
strate that the
analytical
mo
del presented
in this pa
per
can a
c
cu
ratel
y
predi
ct
the radial stre
ss,
t
angential stress
and
equi
valent
Von-
Mise
s
stre
ss of the surf
ace
-
mounted
hig
h
sp
eed
PM
ro
tor fixed
by a
carbon
-f
ibe
r
band
age. Su
bse
que
ntly, the imp
a
ct
of t
he
band
age thi
c
kne
s
s and
shrin
k
ra
nge
betwe
en the
PMs and b
anda
ge on
rotor st
re
ss i
s
discu
s
sed ba
sed o
n
this a
nalytical mod
e
l of rotor st
rength.
2. Rotor Stru
cture o
f
th
e Surfac
e-mou
n
ted
High Speed PM Mo
tor
The con
s
tru
c
tion of the su
rface
-
mo
unte
d
high
spe
e
d
PM rotor for this investig
ation is
sho
w
n i
n
Fig
u
re
1. The
p
e
rma
nent m
a
gnets ar
e
glu
ed
onto
the rotor su
rface and
fixed by a
carbon
-fibe
r
band
age. To
achieve a
defined p
r
e
-
stre
ss and
a defined
contact force,
the
band
age i
s
d
e
sig
ned a
s
p
r
efabri
c
ated
sl
eeve mad
e
from ca
rb
on-fib
e
r, whi
c
h i
s
e
m
bedd
ed
within
an epoxy re
si
n matrix.
Figure 1. The
Rotor Stru
ct
ure of the Surface-
mounted
Hig
h
Speed PM Motor
Figure 2. The
Dimen
s
ion
s
of the Surface-
mounted
Hig
h
Speed PM Rotor
The
dimen
s
io
ns
of the
roto
r a
r
e
sho
w
n i
n
Fig
u
re
2.
R
zo
is
the out
er
radius of t
he
s
haft,
R
mi
and
R
mo
are the in
ner
radiu
s
and
out
er radiu
s
of the PMs, resp
ectively. Similarly,
R
hi
and
R
ho
are the in
ner radiu
s
and
outer r
adiu
s
of the carbo
n
-fibe
r
ban
da
ge. There is a shri
nk ran
ge
betwe
en the
PMs an
d the
ca
rbo
n
-fibe
r
band
age, th
e
oute
r
radiu
s
of the
sh
aft is e
qual to t
he
inner
radi
us o
f
PMs, i.e.
0
zo
mi
mo
h
i
RR
RR
(1)
Whe
r
e
δ
is
the s
h
rink
range.
3. Analy
t
ical
Model for Ro
tor Stre
ngth
in the Surfa
c
e
-Mou
nte
d
High Speed PM Motor
In orde
r to simplify theoretical analy
s
i
s
, the followi
ng assum
p
tions a
r
e mad
e
: a) all
perm
ane
nt m
agnet bl
ocks
have the
sam
e
prope
rtie
s;
b) the
r
e i
s
n
o
gap
between
PMs, i.e., the
pole covera
g
e
ratio is 10
0
%
; c) the roto
r stre
ss co
ndi
tion is simplifi
ed as a pl
ane
stre
ss p
r
obl
e
m
.
3.1. Analy
t
ic
al Model for
Con
t
ac
t Pre
ssure
s Be
t
w
een th
e PMs and Oth
e
r Rotor Par
t
s
In this pape
r,
it is assu
me
d that
P
1
is the co
ntact p
r
essure betwe
en the PMs
and the
shaft, and
P
2
is the co
ntact
pressu
re b
e
twee
n the PMs and
carbon
-fiber ban
dag
e
.
3.1.1. Radial Displacem
e
n
t in the Inn
e
r Surfac
e of the Ca
rbon
-fiber Bandag
e
The carbon
-fiber b
and
age
is co
nsi
d
e
r
e
d
as
the
ort
hotropi
c m
a
terial
s in thi
s
se
ction.
Figure 3
sho
w
s the fo
rce
diagram
of th
e carb
on
-fibe
r
ba
nda
ge. A
s
can
be
see
n
in fig
u
re
3,
the
comp
re
s
s
iv
e st
re
s
s
P
2
acts on the inner
surfa
c
e of the
banda
ge.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Strength Anal
ysi
s for Su
rfa
c
e-m
o
u
n
ted
Perm
anent M
agnet Rotor i
n
… (Lia
ng
-lia
ng Ch
en)
7133
Figure 3. The
Force Dia
g
ra
m
of the Carb
on-fibe
r Band
age
Acco
rdi
ng to
the theory of
elasti
c me
ch
anics,
the eq
uilibriu
m
differential e
quati
on of the
carbon
-fibe
r
band
age i
s
:
2
-
0
r
r
h
d
r
dr
r
(2)
Whe
r
e
r
and
a
r
e the
ra
dial
stre
ss an
d ta
ngential
stress of the
carb
on-fibe
r b
and
age in
the
radiu
s
of
r
, res
p
ec
tively.
ρ
h
is the den
sity of the carbon
-fibe
r
ba
ndag
e, and
ω
is the angular
veloc
i
ty.
The physi
cal
relation
s of the carbon
-fibe
r
band
age a
r
e:
,
rr
r
rr
rr
EE
E
E
(3)
Whe
r
e
r
and
are radial
strain
and t
ange
ntial st
rain of the carbon
-fibe
r
band
age,
r
e
spec
tively.
E
r
and
E
θ
are ra
dial you
ng’s m
odulu
s
and tange
ntial Young’
s
modulu
s
of the
carbon
-fibe
r
band
age, re
spectively, whi
l
e
r
and
r
are ma
jor and mi
nor
Poisson’
s rati
o.
The geo
metri
c
relatio
n
s of
the carbon
-fib
er ban
dag
e a
r
e:
,
rr
r
ud
u
rd
r
(4)
Whe
r
e
r
u
is the radial di
spl
a
cement of the carbon
-fibe
r
band
age in th
e radiu
s
of
r
.
The co
mbin
ation of differen
t
ial Equation (2) with Equ
a
tion (3
) and (4) yields:
2
22
2
2
2
3(
1
)
(
3
)
rr
rr
h
dd
rr
k
r
dr
d
r
(5)
Whe
r
e
r
kE
E
.
Solving differential Equatio
n (5), we obta
i
ned:
22
11
12
2
(3
)
+
9
kk
hr
r
r
cr
c
r
k
(6)
Whe
r
e
1
c
and
2
c
are undete
r
min
ed co
efficient
s.
The bou
nda
ry Condition
s
of the carbon
-fiber b
and
ag
e are:
2
0,
ho
hi
rr
R
r
r
R
p
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 713
1
– 7142
7134
Introdu
cing E
quation (7) int
o
Equation (6
), the coeffici
ents
1
c
and
2
c
ca
n be obtain
ed:
22
3
2
1
11
1
1
2
2
22
3
2
2
11
1
1
2
2
(3
)
(
1
)
()
(
9
)
(
1
)
(3
)
(
1
)
()
(
9
)
(
1
)
k
hh
o
r
kk
k
k
k
ho
ho
k
hh
o
r
kk
k
k
k
ho
h
o
R
P
c
RR
k
R
P
c
RR
k
(8)
The co
mbin
ation of differen
t
ial equation (2) with eq
uati
on (6
) yields:
22
11
2
2
12
2
3(
3
)
9
kk
hr
h
r
kc
r
k
c
r
r
k
(9)
From e
quatio
ns (3
) an
d (4
), we can o
b
ta
in:
()
rr
r
r
ur
EE
(10)
Substituting e
quation
s
(6
) a
nd (9
) into eq
uation (1
0) yi
elds:
23
2
3
12
2
(3
)
3
=
9
kk
rr
r
h
r
h
r
rr
r
rr
kk
ur
r
EE
E
E
EE
k
E
(
-
)
c
(
-
)
c
(
-
)
(11)
Let
r=
R
hi
in
e
quation
(11
)
,
the ra
dial di
spla
cem
ent i
n
the inn
e
r
surface of the
ca
rbo
n
-
fiber ban
dag
e
is obtaine
d:
23
2
3
12
2
(3
)
3
=
9
kk
rr
r
h
r
h
i
h
h
i
hi
hi
hi
rr
r
RR
kk
uR
R
EE
E
E
E
E
k
E
(
-
)
c
(
-
)
c
(
-
)
(12)
3.1.2. Radial Displacem
e
n
ts in the In
ner and Ou
ter Surfac
es
of PMs
The PMs are
con
s
id
ered a
s
the i
s
otropi
c mate
ri
al
s in
this
se
ction.
The force
dia
g
ram
of
the PMs is shown in Figu
r
e 4. The co
mpre
ssive stress
P
2
acts o
n
the outer
surface, while
P
1
acts o
n
the inner
su
rface. As the PMs are segm
ent
ed, the centri
fugal forc
es
of the PM bl
ocks
act o
n
the
in
ner
su
rfa
c
e
o
f
the car
bon
-fiber
ban
dag
e
dire
ctly. Co
n
s
eq
uently,
P
2
is
de
comp
osed
into the centri
fugal pre
s
sure
P
2w
, which
is pro
d
u
c
ed b
y
the centrifugal forces of the PM blocks,
and th
e
sh
rin
k
ing
pressu
re
(
P
2
-P
2w
) gen
erated
by m
a
gnet-sleeve
i
n
terferen
ce fi
t. Similarly,
P
1
is
decompo
se
d into the centri
fugal pre
s
su
re
P
1w
, and th
e shri
nki
ng p
r
essure (
P
1
-
P
1w
).
Figure 4. The
force dia
g
ra
m of segme
n
ted PMs
With the acti
on of shri
nki
ng pre
s
su
re (
P
1
-
P
1w
) and (
P
2
-
P
2w
), the radial displa
cement in
the inner
su
rface of PMs [1
6] is:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Strength Anal
ysi
s for Su
rfa
c
e-m
o
u
n
ted
Perm
anent M
agnet Rotor i
n
… (Lia
ng
-lia
ng Ch
en)
7135
22
2
12
2
2
22
22
2(
)
()
()
w
m
i
m
o
m
i
w
mi
mo
mi
p
m
m
m
o
m
i
m
mo
mi
P
PR
R
R
P
P
R
R
u
ER
R
E
R
R
(
)
(13)
whe
r
e
E
m
and
μ
m
are You
ng’s mo
dulu
s
and Poisson’
s ratio of the
PMs, re
spe
c
ti
vely.
The ra
dial di
splacement in
the outer
surf
ace of PMs i
s
22
2
11
2
2
22
22
2(
(
)
()
()
)
w
m
i
m
o
w
mo
mo
mi
mo
p
m
mm
o
m
i
m
m
o
m
i
P
PR
R
P
P
R
R
R
u
ER
R
E
R
R
(14)
The ce
ntrifug
a
l force of a
PM block in the radi
us of
r
is
22
2
()
(
)
()
2
mi
mi
m
w
rR
L
r
R
Fr
N
(15)
whe
r
e
ρ
m
is the de
nsity of
the PMs,
N
i
s
the nu
mbe
r
of PM blo
c
ks,
L
is the axial
length.
If the force
F
w
is evenly distribute
d
alo
n
g
the ci
rcumf
e
re
n
c
e
of the
PM, the cent
rifugal p
r
e
s
su
re
P
w
in the radius of
r
is o
b
ta
ined:
22
2
()
(
)
4
2
w
mm
i
m
i
w
rR
r
R
r
NF
P
rL
(16)
Let
r
=
R
mi
and
r
=
R
mo
in equation (16
)
, re
spe
c
tively,
P
1w
and
P
2w
can be obtaine
d:
22
2
2
1
()
(
)
4
0
2
mm
o
m
i
m
o
m
i
w
mo
w
w
mo
RR
R
R
P
R
P
NF
RL
(
17)
Negl
ectin
g
the intera
ctive force bet
wee
n
PMs,
the def
ormatio
n
of PMs in the
radi
us of
r,
gene
rated by
the cent
rifuga
l force, is
22
3
3
23
3
()
(
l
n
l
n
(
)
)
43
2
6
mi
r
mm
i
m
i
mi
mi
m
i
m
i
R
mm
w
PR
r
R
r
rd
r
R
r
R
r
R
R
EE
(18)
Gene
rally, tensile di
re
ctio
n is reg
a
rded
as the
po
sitive directio
n in the elasti
c theory, so
the radial di
splacement of the PM, re
sul
t
ed from the centrifugal fo
rce, is
22
3
3
23
3
()
()
(
l
n
l
n
(
)
)
43
2
6
mm
i
m
i
mm
i
m
i
m
i
m
i
m
Rr
R
r
ur
r
R
r
R
r
R
R
E
(19)
Let
r=R
mi
and
r
=
R
mo
in eq
u
a
tion (19
)
, re
spe
c
tively, the radial
displ
a
cem
ent in
t
he in
ner
surfa
c
e a
nd o
u
ter su
rfa
c
e o
f
the PMs, result
ed fro
m
centrifugal fo
rce, can be o
b
tained:
23
2
3
23
3
0
(
l
n(
)
l
n(
)
)
43
2
6
mi
mm
o
m
i
m
o
m
i
mo
mi
mo
mi
mo
mi
mi
m
u
RR
R
R
uR
R
R
R
R
R
E
(20)
Con
s
id
erin
g
the pre-p
r
e
s
sure an
d
centrifugal fo
rce of theP
Ms, the tot
a
l radi
al
displ
a
cement
in the inner surface of PMs is:
22
2
12
2
22
22
2(
)
()
()
mi
mo
mi
w
m
i
m
o
mi
mi
p
m
i
m
mm
o
m
i
m
m
o
m
i
PR
R
R
P
P
R
R
uu
u
ER
R
E
R
R
(21)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 713
1
– 7142
7136
The total radi
al displ
a
ceme
nt in the outer surfa
c
e of PMs is:
22
2
12
2
22
22
23
2
3
23
3
2(
)
()
()
(l
n
(
)
l
n
(
)
)
43
2
6
mi
mo
w
m
o
m
o
m
i
mo
mo
p
m
o
m
m
m
o
m
i
m
mo
mi
mm
o
m
i
m
o
m
i
mi
mo
mi
m
o
mi
mi
m
PR
R
P
P
R
R
R
uu
u
E
RR
E
R
R
RR
R
R
RR
R
R
R
R
E
(22)
3.1.3. Radial Displacem
e
n
t in the Ou
ter Surfac
e of the Shaft
The sh
aft is also co
nsi
d
e
r
e
d
as the isotropi
c mate
rial
s in this se
cto
n
. Figure 5 sh
ows the
force
diag
ra
m of the shaf
t. There i
s
a
comp
re
ssive
stre
ss
P
1
in the oute
r
surf
ace
of the sh
aft.
Und
e
r the a
c
tion of con
t
act pre
s
su
re
P
1
and centrifugal force of
the
shaft, the radial
displ
a
cement
in the outer surface of the shaft [16] is:
23
1
1
(1
)
(
1
)
4
zo
z
z
o
z
oz
z
zz
PR
R
u
EE
(23)
Whe
r
e
E
z
an
d
μ
z
are Young’s modulus and Poisson’
s ra
tio of the
shaft, respect
i
vely.
Figure 5. The
Force Dia
g
ra
m of the Shaft
3.1.4. Solutions of
P
1
an
d
P
2
Acco
rdi
ng to
the b
ound
a
r
y co
ndition
s of the PM
roto
r, the f
o
llowin
g
e
q
u
a
tion i
s
obtaine
d:
0
mi
zo
hi
m
o
uu
uu
(24)
Substituting
Equation (1
2
)
,
(2
1), (2
2) and (23
)
i
n
to
Equatio
n
(2
4),
P
1
a
nd
P
2
c
a
n be
obtaine
d:
22
1
1
2
2
1
11
2
2
12
21
22
1
1
2
22
KK
P
K
KK
K
KP
P
K
(25)
Whe
r
e,
22
11
22
()
(
1
)
mi
mo
m
i
z
o
mz
mm
o
m
i
z
RR
R
R
K
ER
R
E
,
2
12
22
2
()
mi
mo
mm
o
m
i
RR
K
ER
R
,
2
21
22
2
()
mi
mo
mm
o
m
i
RR
K
ER
R
,
22
22
11
1
1
1
1
2
2
()
()
()
kk
h
i
r
h
i
r
mo
mo
mi
m
kk
k
k
k
k
ho
r
h
o
r
m
m
o
m
i
RR
R
R
R
kk
K
RE
E
R
E
E
E
R
R
(
-
)
-
(
-
)
,
23
2
2
1
22
2
1
(1
)
4(
)
z
z
o
w
mi
mo
z
z
mm
o
m
i
RP
R
R
EE
R
R
,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Strength Anal
ysi
s for Su
rfa
c
e-m
o
u
n
ted
Perm
anent M
agnet Rotor i
n
… (Lia
ng
-lia
ng Ch
en)
7137
2
22
3
2
2
3
12
2
1
2
2
2
3
2
23
23
2
2
(3
)
(3
)(
1
)
(3
)(
1
)
(9
)
(
1
)
(
9
)
(
1
)
9
3
++
(
43
2
kk
k
k
hr
h
h
o
h
i
r
r
h
ho
hi
r
r
kk
k
k
ho
r
h
o
r
hi
r
r
h
h
i
m
mo
mi
mo
mi
m
o
m
m
RR
R
R
kk
Rk
E
E
R
k
E
E
k
R
EE
R
RR
R
RR
R
EE
(
-
)(
-
)
-
()
32
2
33
2
22
ln
(
)
l
n
(
)
)
(
)
6
mo
mi
w
m
o
m
i
im
o
m
i
m
i
m
mm
o
m
i
PR
RR
R
RR
R
ER
R
3.2. Stress M
odel for th
e Surfac
e-mou
n
ted
High Speed PM Ro
tor
After obtaini
ng the
co
ntact p
r
e
s
sure
s
P
1
an
d
P
2
,
the stre
sse
s
in th
e
carbon-fib
e
r
band
age a
nd
PMs ca
n be d
edu
ced b
a
se
d on the theo
ry of elastic
mech
ani
cs.
3.2.1. Stress
Model for th
e Carb
on-fib
e
r Ban
d
age
The
radial
st
ress of the
carbon-fib
e
r
ban
dage
ca
n
b
e
cal
c
ulate
d
by Equation (6
) and (8),
while the tan
gential stress is com
puted
by Equation (8) and
(9).
The equival
e
nt Von-Mises
stre
ss of the carbon
-fibe
r
band
age i
s
:
22
2
1
[
(
)(
)(
)
]
2
hM
i
s
e
s
r
r
(26)
3.2.2. Stress
Model for th
e PMs
The sh
rin
k
in
g
radial st
re
ss
of the PMs is expre
s
sed a
s
:
22
2
2
2
2
12
1
2
2
22
22
2
2
2
2
()
(
)
(1
)
()
mi
mo
mi
mo
mo
mi
rm
w
mo
m
i
mo
mi
mo
mi
P
RP
R
R
R
P
P
R
R
P
RR
RR
r
R
R
r
(27)
The sh
rin
k
in
g
tangential stress is:
22
2
2
2
2
12
1
2
2
22
22
2
2
2
2
()
(
)
(1
)
()
mi
mo
mi
mo
mo
mi
mw
m
o
mi
mo
mi
mo
mi
PR
P
R
R
R
P
P
R
R
P
R
RR
R
r
R
R
r
(28)
The ce
ntrifug
a
l radial
stre
ss is:
23
3
3
3
2
22
2
22
()
=
[
(
l
n
l
n
)
]
14
(
1
)
3
2
6
m
m
m
m
mi
m
i
m
i
mi
mi
r
m
m
m
i
m
i
m
mi
mi
mm
Ed
u
u
R
R
r
R
R
R
r
rR
r
R
R
r
R
dr
r
r
r
r
r
(29)
The ce
ntrifug
a
l tantengial
stre
ss is:
23
3
3
3
2
22
2
22
()
=
[
l
n
l
n
(
)
(
)
]
14
(
1
)
3
2
6
m
m
m
m
mi
mi
mi
mi
mi
mm
m
i
m
i
m
m
i
m
i
mm
Eu
d
u
R
r
R
R
R
R
r
Rr
R
r
R
r
R
rd
r
r
r
r
r
(30)
The total radi
al stre
ss of PMs is:
d
rm
rm
rm
(31)
The total tantengial
stre
ss
of PMs is:
d
mm
m
(32)
The total equi
valent Von-Mi
se
s stress of the PMs ca
n be cal
c
ul
ated
as:
22
2
1
[(
)
(
)
(
)
]
2
dd
d
d
d
mM
i
s
e
s
r
m
m
r
m
m
(33)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 713
1
– 7142
7138
4. Comparis
on of the
An
aly
t
ical Mod
e
l and Finite Element Re
s
u
lts
In orde
r to v
a
lidate the
a
nalytical mo
d
e
l for
rotor
st
rength, the
st
ress di
stri
buti
on of
a
surfa
c
e
-
mo
un
ted high
sp
e
ed PM rotor
retaine
d
by a
ca
rbon
-fibe
r
band
age i
s
a
nalyze
d
by th
e
analytical
mo
del p
r
e
s
ente
d
in thi
s
pa
p
e
r a
nd FEM,
re
spe
c
tively. In FEM, a t
w
o-dime
nsio
nal
model
wa
s
use
d
to
ana
lyze the
stre
ss of
the
ro
tor, and
the
avera
ge
stress al
ong t
h
e
circumfe
ren
c
e is
comp
are
d
with
the
an
alytical
re
sult
s. Th
e
rated
spe
ed
of the
motor i
s
240
00
rpm
, the number of PM blocks is 4, and the sh
rin
k
ran
ge bet
ween the PMs and ca
rbo
n
-fiber
band
age i
s
0.1
mm
. Table 1 sho
w
s the basi
c
pa
ram
e
ters of the PM rotor.
Table 1. The
Basic Pa
ram
e
ters of the P
M
Rotor
Shaft
PM
Carbon
-fiber
ba
n
dage
Inner ra
dius (
mm
) 0
43
50
Outer radius
(
mm
)
43
50
54
Densit
y
(
kg/m
3
)
7850
8300
1750
Radial
Y
oun
g’s modulus (
P
a
)
2.1×10
11
1.08×10
11
2.7×10
10
Tangential Y
oun
g’s
modulus(
P
a
)
2.1×10
11
1.08×10
11
4.56×10
11
Poisson’s r
a
tio
μ
z
=0.31
μ
m
=0.24
μ
θ
r
=0.3,
μ
r
θ
=0.01
8
4.1. The Str
ess
Distribu
tion of th
e
PMs a
nd Ca
rbon-fiber Bandag
e
w
i
th
out Rotation
al
Speed
In ca
se of n
o
rotation, th
e stresse
s
of
PMs alo
ng t
he ra
diu
s
di
rection
are
sh
own i
n
Figure 6
~
Fig
ure
8,
while
the
stre
sse
s
of
the
ca
rbon-fib
e
r ba
ndag
e a
r
e
shown in
Fig
ure
9
~
Figu
r
e 11.
In the figure
s
, the stars repre
s
e
n
t th
e
calculation
s
of FEM, while the solid li
ne
stand
s fo
r
cal
c
ulatio
ns of t
he a
nalytical
model
. T
he
d
o
tted line
re
p
r
esents the
e
rro
r
betwe
en
th
e
results
cal
c
ul
ated by two
different met
hod
s. The
ne
gative value i
ndicates that
the stre
ss is a
comp
re
s
s
iv
e stre
s
s
.
Figure 6. The
Radial Stre
ss of PMs alon
g the
Radi
us Dire
ct
ion
Figure 7. The
Tangential S
t
ress of PMs
along
the Radi
us
Di
rectio
n
Figure 8. The
Equivalent Von-Mi
se
s Stress of
PMs alon
g the Radi
us
Dire
ction
Figure 9. The
Radial Stre
ss of Ca
rbon
-fi
ber
Bandag
e alo
ng the Ra
diu
s
Directio
n
43
44
45
46
47
48
49
50
-6
.
3
5
-6
.
3
-6
.
2
5
-6
.
2
-6
.
1
5
-6
.
1
-6
.
0
5
-6
-5
.
9
5
x 1
0
7
r/
m
m
R
adi
al
s
t
r
e
s
s
/
P
a
43
44
45
46
47
48
49
50
0.
16
0.
18
0.
2
0.
22
0.
24
0.
26
0.
28
0.
3
0.
32
E
r
ro
r/
%
F
i
ni
t
e
E
l
em
en
t
M
e
t
h
o
d
A
nal
y
t
i
c
al
M
e
t
h
od
E
rro
r
43
44
45
46
47
48
49
50
-4.
1
-4.
0
5
-4
-3.
9
5
-3.
9
-3.
8
5
-3.
8
-3.
7
5
x 1
0
7
r/
m
m
T
a
nge
nt
ia
l s
t
r
e
s
s
/
P
a
43
44
45
46
47
48
49
50
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
E
r
ro
r/
%
F
i
ni
t
e
E
l
em
ent
M
e
t
hod
A
nal
y
t
i
c
al
M
e
t
hod
Er
r
o
r
43
44
45
46
47
48
49
50
5.
25
5.
3
5.
35
5.
4
5.
45
5.
5
x 1
0
7
r/
m
m
V
o
n
-
M
i
se
s
st
r
e
ss/
P
a
43
44
45
46
47
48
49
50
0.
16
0.
18
0.
2
0.
22
0.
24
0.
26
E
rro
r/
%
F
i
ni
t
e
E
l
em
ent
M
e
t
hod
A
nal
y
t
i
c
al
M
e
t
hod
E
rro
r
49.
5
50
50
.
5
51
51.
5
52
52.
5
53
53.
5
54
-1
0
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
x 1
0
7
r/
m
m
R
a
d
i
a
l
st
r
e
ss/
P
a
49.
5
50
50
.
5
51
51.
5
52
52.
5
53
53.
5
54
0
2
4
E
r
ro
r/
%
F
i
ni
t
e
E
l
em
en
t
M
e
t
hod
A
nal
y
t
i
c
al
M
e
t
hod
E
rror
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Strength Anal
ysi
s for Su
rfa
c
e-m
o
u
n
ted
Perm
anent M
agnet Rotor i
n
… (Lia
ng
-lia
ng Ch
en)
7139
Figure 10. Th
e Tange
ntial Stress of Ca
rbon-
fiber Band
ag
e along the
Radiu
s
Directio
n
Figure 11. Th
e Equivalent Von-Mi
se
s Stress of
Carbon
-fibe
r
Bandag
e alo
ng the Ra
diu
s
Dire
ction
As
can
be
se
en fro
m
the
s
e figures, th
e
cal
c
ul
ation
result
s of th
e
analytical
mo
del a
r
e
clo
s
e to
finite
-elem
ent
cal
c
ulation
s
, an
d
the m
a
ximu
m erro
r i
s
le
ss tha
n
4%.
T
he
radial
stre
ss
and eq
uivale
nt Von-Mises
stre
ss of the PMs both de
crea
se with th
e increa
se of radiu
s
, whil
e the
tangential stress
in
crea
se
s with
the ra
dius.
T
he m
a
ximum equiv
a
lent Von
-
Mi
se
s
stre
ss of
PMs
occurs at the
inne
r
su
rface.
In Engi
nee
ring, th
e max
i
mum e
quival
ent Von
-
Mi
se
s
stre
ss
sho
u
l
d
not excee
d
the com
p
ressive strength
of the PM
s. From Figu
r
e 8, We ca
n learn that
the
maximum e
q
u
ivalent Von
-
Mises
stress is ab
out
55
Mp
a
, which is much less than the
comp
re
ssive
strength of
PMs (abo
u
t
600
Mp
a
). The ra
dial stress, tange
ntial stre
ss
and
equivalent Vo
n-Mi
se
s stress of the carbo
n
-fibe
r
ban
da
ge all de
crea
se al
ong the
radiu
s
directio
n.
The maximu
m equivalent
Von-Mi
se
s stress of the
ca
rbon-fib
e
r b
a
n
dage al
so o
c
curs at the in
ner
surfa
c
e. T
h
e
carbon
-fibe
r
banda
ge i
s
orthotropi
c
m
a
terial
s. So it must be e
n
su
red th
at the
maximum ra
dial st
re
ss
a
nd tang
ential
stre
ss of th
e ca
rb
on-fib
e
r
ba
nda
ge d
o
not ex
cee
d
the
radial te
nsil
e
stren
g
th an
d
tangential te
n
s
ile
stren
g
th, respe
c
tively. In this sectio
n, the maxim
u
m
radial
st
re
ss
of the
ca
rbo
n
-
fiber ba
nda
g
e
is ab
out
60
MP
a
, whi
c
h
i
s
m
u
ch le
ss
than the
radi
a
l
tensile
streng
th (ab
out 40
0
MP
a
), on the
other
han
d, the maximum
tangential
stress (about
7
9
0
MP
a
) is also less than the tange
ntial ten
s
ile strength
(about 26
00
MP
a
).
4.2. The Stre
ss Dis
t
ributi
on of the P
M
s and
Carb
on-fib
e
r Ban
d
age a
t
th
e
Speed of
24
000
rpm
At the rate
d
spe
ed, the
st
resse
s
of PM
s a
r
e
shown
in Figu
r
e
12
~
Figure 1
4
,
and th
e
stre
sse
s
of carbo
n
-fib
er
b
anda
ge are shown in Figure 15
~
Figure
17. The resu
lts demon
stra
te
that the
stre
sse
s
cal
c
ulate
d
by two
met
hod
s a
r
e
also in g
ood
ag
reement
with
each othe
r, a
nd
the maximum
error i
s
le
ss t
han
3.5%.
Compa
r
ed
with
no
rotation
case,
here the
radi
al
stre
ss
of
PMs be
com
e
s le
ss, a
nd th
e radi
al st
re
ss in
cre
a
ses
a
l
ong the
radi
u
s
directio
n, which i
s
o
ppo
si
te
to that in no rotation ca
se.
Beside
s, the tange
nt
ial stre
ss a
nd e
quiv
a
lent Von-Mises st
re
ss of t
h
e
PMs also be
come less o
w
i
ng to the effect of c
entrifu
g
a
l force. In the desi
gn of surface-m
ount
ed
high
spe
ed P
M
roto
r, it mu
st be
en
sure that the
PM
s
are i
n
comp
re
ssi
on at th
e rated spee
d, i.e.,
the ra
dial
stress an
d tang
ential ste
s
s should
be le
ss than zero. T
he maximu
m
equivale
nt Von-
Mise
s stress of the PMs
transfe
rs from the inner su
rf
ace to
the
out
er su
rfa
c
e du
e to the effect of
centrifu
gal fo
rce,
and it is also l
e
ss th
an the
co
mp
ressive streng
th of PMs. T
he ra
dial
stre
ss,
tangential
stress a
nd
equi
valent Von
-
M
i
se
s
stre
ss
of
the carbon
-fi
ber ban
dag
e become
l
a
rg
er
due to
the
effect of
the
ce
n
t
rifugal fo
rce.
At high
sp
ee
d case, the
m
a
ximum Vo
n-Mise
s
stre
ss
of
the carbon
-fiber ba
ndag
e
also o
c
cu
rs at the
inn
e
r su
rfa
c
e. T
h
e maximu
m
radial
stre
ss
and
tangential
stress are al
so
less than the
radial
te
nsil
e stre
ngth a
n
d
tangential t
ensil
e strengt
h,
r
e
spec
tively.
49
.
5
50
50
.
5
51
51
.
5
52
52.
5
53
53
.
5
54
6.
5
6.
7
6.
9
7.
1
7.
3
7.
5
7.
7
7.
9
8
x 1
0
8
r/
m
m
T
ang
ent
i
a
l
s
t
res
s
/
P
a
49
.
5
50
50
.
5
51
51
.
5
52
52.
5
53
53
.
5
54
0
0.
2
0.
4
0.
6
Er
r
o
r
/
%
F
i
ni
t
e
E
l
em
en
t
M
e
t
h
o
d
A
n
al
y
t
i
c
al
M
e
t
h
od
E
rro
r
49
.
5
50
50.
5
51
51
.
5
52
52
.
5
53
53.
5
54
6
6.
5
7
7.
5
8
8.
5
9
x 1
0
8
r/
m
m
V
o
n
-
M
i
se
s st
r
e
ss/
P
a
49
.
5
50
50.
5
51
51
.
5
52
52
.
5
53
53.
5
54
0
0.
2
0.
4
0.
6
E
r
ro
r/
%
F
i
ni
t
e
E
l
em
en
t
M
e
t
h
od
A
n
al
y
t
i
c
al
M
e
t
hod
Er
r
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 713
1
– 7142
7140
Figure 12. Th
e Radi
al Stre
ss of PMs al
o
ng the
Radi
us
Dire
ct
ion at the Speed of 240
00
rpm
Figure 13. Th
e Tange
ntial Stress of PMs alon
g
the Radi
us
Di
rectio
n at the Speed of 240
00
rpm
Figure 14. Th
e Equivalent Von-Mi
se
s Stress of
PMs alon
g the Radi
us
Dire
ction at the Speed
of 24000 rpm
Figure 15. Th
e Radi
al Stre
ss of Carbon
-fiber
Bandag
e alo
ng the Ra
diu
s
Directio
n at the
Speed of 240
00 rpm
Figure 16. Th
e Tange
ntial Stress of Ca
rbon-
Fiber Ban
dag
e along the
Radiu
s
Directio
n at
the Speed of
2400
0 rpm
Figure 17. Th
e Equivalent Von-Mi
se
s Stress of
Carbon
-fibe
r
Bandag
e alo
ng the Ra
diu
s
Dire
ction at the Speed of
2400
0 rpm
5. Discussio
n
for the
Rotor Streng
th
In this
se
ctio
n, the imp
a
ct
of the
ban
da
ge thi
c
kne
s
s
and th
e
shri
n
k
rang
e b
e
tween th
e
PMs an
d carbon-fib
e
r
ban
dage
on
rotor stre
ss is i
n
vestigate
d
ba
sed on th
e a
n
a
lytical mod
e
l
of
rotor
stren
g
th
propo
se
d by this pape
r. The sh
rin
k
range
δ
an
d thickne
s
s of the ca
rbo
n
-fib
er
band
age a
r
e
taken a
s
th
e input varia
b
les, while t
he re
sid
ual
conta
c
t pressure
P
2
and
the
maximum eq
uivalent Von-Mise
s st
re
ss
σ
ma
x
of the carbo
n
-fib
er b
anda
ge a
r
e regarded
as t
h
e
output varia
b
l
e
s. Fig
ure
1
8
sh
ows the
relation
ship
b
e
twee
n
P
2
an
d input va
riab
les at the
spe
e
d
of 24000
rp
m
, while Figure 19
sho
w
s the variatio
ns of the ma
ximum equiv
a
lent Von-Mi
se
s
stre
s
s
σ
ma
x
of the carbon
- fiber ba
nda
ge
with the input
variable
s
. As can be
en se
en from the two
43
44
45
46
47
48
49
50
-7
-6
.
5
-6
-5
.
5
-5
-4
.
5
-4
x 1
0
7
r/
m
m
R
adi
al
s
t
r
e
s
s
/
P
a
43
44
45
46
47
48
49
50
0
1
2
3
E
rro
r/
%
F
i
ni
t
e
E
l
em
e
n
t
M
e
t
hod
A
n
a
l
y
t
i
c
al
M
e
t
h
od
E
rror
43
44
45
46
47
48
49
50
-3
-2
.
9
-2
.
8
-2
.
7
-2
.
6
-2
.
5
-2
.
4
-2
.
3
-2
.
2
-2
.
1
-2
x 1
0
7
r/
m
m
T
ang
ent
i
a
l
s
t
r
e
s
s
/
P
a
43
44
45
46
47
48
49
50
0
0.
5
1
1.
5
2
2.
5
Er
r
o
r
/
%
F
i
n
i
t
e
E
l
em
en
t
M
e
t
h
o
d
A
n
al
y
t
i
c
a
l
M
e
t
h
od
Er
r
o
r
43
44
45
46
47
48
49
50
4
4.
2
4.
4
4.
6
4.
8
5
5.
2
5.
4
5.
6
5.
8
6
x 1
0
7
r/
m
m
Vo
n
-
M
i
se
s
st
r
e
s
s
/P
a
43
44
45
46
47
48
49
50
0
2
4
Er
r
o
r
/
%
F
i
ni
t
e
E
l
em
en
t
M
e
t
h
o
d
A
n
a
l
y
t
i
c
al
M
e
t
h
od
Er
r
o
r
49.
5
50
50
.
5
51
51
.
5
52
52.
5
53
53.
5
54
-7
-6
-5
-4
-3
-2
-1
0
x 1
0
7
r/
m
m
R
adi
al
s
t
r
e
s
s
/
P
a
49.
5
50
50
.
5
51
51
.
5
52
52.
5
53
53.
5
54
0
0.
5
1
1.
5
2
2.
5
3
3.
5
E
rro
r/
%
F
i
ni
t
e
E
l
em
ent
M
e
t
hod
A
nal
y
t
i
c
al
M
e
t
hod
E
rro
r
49
.
5
50
50
.
5
51
51
.
5
52
52
.
5
53
53.
5
54
7
7.
2
7.
4
7.
6
7.
8
8
8.
2
8.
4
8.
6
8.
8
9
x 1
0
8
r/
m
m
T
a
ngent
i
a
l
s
t
res
s
/
P
a
49
.
5
50
50
.
5
51
51
.
5
52
52
.
5
53
53.
5
54
0
0.
2
0.
4
E
rror/
%
F
i
n
i
te
El
e
m
e
n
t M
e
th
o
d
A
nal
y
t
i
c
al
M
e
t
h
o
d
E
rror
49.
5
50
50
.
5
51
51
.
5
52
52.
5
53
53.
5
54
7
7.
5
8
8.
5
9
x 1
0
8
r/
m
m
V
o
n
-
M
i
se
s st
r
e
s
s
/
P
a
49.
5
50
50
.
5
51
51
.
5
52
52.
5
53
53.
5
54
0
0.
1
0.
2
0.
3
0.
4
E
rro
r/
%
F
i
ni
t
e
E
l
em
ent
M
e
t
hod
A
n
al
y
t
i
c
al
M
e
t
h
o
d
Er
r
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.