TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 78
0
8
~ 781
5
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.62
59
7808
Re
cei
v
ed Ma
y 13, 201
4; Revi
sed
Jul
y
2
2
, 2014; Acce
pted Augu
st 15, 2014
Resear
ch on Protein Thermal Condensation Detection
Based on Phase Mod
u
lation SPR Imaging
Peng He, Zi-Y
ang Ka
ng, Xiao-Qing
W
a
n, Han
-
Xiong Fang
Coll
eg
e of Co
mmunicati
ons
and El
ectron
ics Engin
eeri
ng,
Qiqih
a
r Univ
er
sit
y
,
Qi
q
i
ha
r H
e
il
o
n
g
j
i
a
n
g
16
10
06
, C
h
i
na
A
b
st
r
a
ct
A novel SP
R i
m
a
g
i
ng b
i
o
m
o
l
ecul
ar inter
a
tction d
e
tectio
n
meth
od
base
d
on time d
o
ma
in ph
ase
mo
du
latio
n
is prese
n
ted in t
h
is thesis. Exp
e
ri
ment
al
ap
pa
ratus of SPR ima
g
i
ng bi
o
m
ol
ecul
ar interacti
o
n
detectio
n
bas
e
d
on T
D
PM is establ
ishe
d. Biomol
ecul
ar int
e
ractio
n is det
ec
ted. 2×
2 lyso
z
y
me array c
h
ip is
prep
ared
and
l
yso
z
y
me ther
mal con
d
e
n
satio
n
is detec
te
d b
y
the exper
i
m
e
n
tal ap
par
atus. Extracting ph
a
s
e
infor
m
ati
on ch
ang
es throu
gh
the Stoilov a
l
g
o
rith
m. SPR
curves of the int
e
ractio
n are ob
taine
d
an
d kin
e
tic
para
m
eters ar
e calcu
l
ate
d
. It can sensitiv
e
l
y acqu
ir
e re
al
-time p
has
e chan
ge ca
use
d
by bio
m
o
l
ec
u
l
ar
interacti
on b
a
s
ed on
interfer
e
n
ce i
m
a
g
in
g, a
nd reso
lve
re
la
ted bio
i
nfor
mation, w
h
ic
h is a
potenti
a
l too
l
for
proteo
mics res
earch.
Ke
y
w
ords
:
su
rface plas
mon
resona
nce (S
PR), time do
ma
in p
hase
modu
latio
n
(T
DPM), biomol
ec
ula
r
interacti
on, Lys
o
z
y
me ther
ma
l
conde
nsati
o
n
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Studies
have
sho
w
n
that
nea
rly 20
kinds
of ne
urodeg
ene
rative disea
s
e
s
,
su
ch a
s
alzh
eime
r’s
d
i
sea
s
e, famili
al amyotro
phi
c late
ra
l sclerosi
s,
huntin
gton’s disea
s
e,
prio
n
di
sea
s
e,
all related
to the
ab
normal
coa
gulat
ion of
prot
ei
n, dep
osit
in
the
co
rresp
ondin
g
tissu
e
s,
unde
rmin
ed i
t
s no
rmal
bio
l
ogical fun
c
tions [1-4]. T
h
ere
are lot
s
of peo
ple
suf
f
ering f
r
om t
he
dise
ase every year, due to the particularity of
diseases, it’s di
fficult to cure, affected the
happi
ne
ss of
itself and the
family, also incre
a
sed
the b
u
rde
n
of the so
ci
ety. Nowadays
sci
enti
s
ts
from all over the world a
nd releva
nt orga
niza
tion
s are actively
study the disea
s
e, prote
i
n
con
den
satio
n
proble
m
is p
a
rticul
arly pro
m
inent.
No
w mo
stly b
y
studying
th
e me
cha
n
ism
of p
r
ot
ein fol
d
ing
or
directl
y
observed
th
e state
of protein a
g
g
reg
a
tes to e
x
plain co
nde
nsatio
n ph
e
n
o
mena
of the protein,
be
cause of the real
stru
cture of protein foldi
n
g is
v
e
ry
co
mplex
,
t
he rese
ar
che
r
s
h
a
ve prop
ose
d
many simp
lified
algorith
m
mo
del, but these algorith
m
s
model wa
s
st
ill proved to
be NP-com
pl
ete probl
em[
5
-6].
Due to th
e li
mitation of th
e time of p
r
ot
ein c
oag
ulati
on, ope
ration
method
and t
he in
strum
ent
an
d
so o
n
,
Direct
obse
r
vation method exist
s
the pro
b
lem
of
time-con
suming, compl
i
cated ope
rati
on
and
expen
siv
e
expe
rime
ntal eq
uipme
n
t. Then
it
can
be
seen
by
studyin
g th
e
me
cha
n
ism
of
protein
foldin
g an
d the
m
e
thod
of dire
ctly ob
se
rve
d
state
of p
r
o
t
ein ag
gre
gat
es to
inte
rpret
protein
con
d
e
n
satio
n
phe
n
o
meno
n also has ma
ny disadvantag
es.
SPR (Surfa
ce Plasmo
n Re
son
a
n
c
e)
sen
s
in
g tech
nology co
mp
ared
with traditional
detectio
n
met
hod
s, has th
e advantag
e
of real-tim
e a
nd fast dete
c
tion, no use of tag sampl
e
s,
high sen
s
itivity, able to testing in the turb
id or
op
aqu
e
sampl
e
s [7
-9]
.
Above all, this pap
er i
s
put
forwa
r
d
the
m
e
thod
ba
sed
on SPR ima
g
i
ng d
e
tectio
n.
To g
e
t the
ch
ange
of
refle
c
ted light
pha
se
cau
s
e
d
by protein in the proc
ess of co
nden
se
d thro
ugh the interf
eren
ce ima
g
i
ng, analysi
s
the
relevant biol
o
g
ical info
rmat
ion and find t
he law of
the
con
den
satio
n
process of protein [10-1
1
].
2. Materials
and Method
s
2.1. The Experimental De
v
i
ce
Experiment
d
e
vice i
s
co
nstituted by the
li
ght
sou
r
ce,
SPR int
e
rfe
r
ence im
agin
g
light
path, SPR
sensor
unit, t
he mi
crofluid
ic
sy
stem,
CCD im
age
acqui
sition
system
an
d
the
comp
uter.
Lig
h
t so
urce
emi
tted the l
a
se
r
go th
rou
gh th
e ph
ase m
o
d
u
lation
and
b
eam
expand
e
r
,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Protein The
r
m
a
l Conden
sation Dete
ctio
n Based o
n
Phase… (Pe
n
g
HE)
7809
rea
c
h to th
e
pri
s
m an
d
gold film int
e
rface of S
P
R sen
s
or
unit
,
after th
e refle
c
ted li
ght
intervention,
the imaging l
ens ima
g
ing
the sen
s
o
r
chip su
rface in CCD targ
e
t
surface. CCD
image
acquisition syste
m
put the ima
g
e
data i
n
to
th
e co
mpute
r
, then p
r
o
c
e
s
sing an
d an
alysis.
SPR imaging
detectio
n
of biomole
c
ula
r
intera
ct
ion ex
perim
ent devi
c
e is
sho
w
n i
n
Figure 1.
Figure 1. SPR Imaging
De
tection of Biomol
ecula
r
Intera
ction Expe
riment Device
2.1.1. The Light Sourc
e
The light wa
velength fro
m
600 nm to 900 nm can inspi
r
e S
P
R. We ch
o
o
se the
semi
con
d
u
c
t
o
r la
se
r
as
lig
ht
so
ur
ce,
be
cau
s
e
it
’s
adv
antage
of
sm
all si
ze, l
o
w consumption
a
nd
preh
eat fast.
Beside, u
s
e t
he semicond
uctor ref
r
ig
e
r
ator
buil
d
ing thermo
static device
to co
n
t
rol
the workin
g tempe
r
ature o
f
semico
ndu
ctor lase
r
ca
n
significa
ntly redu
ce the p
o
we
r noi
se a
n
d
rest
rain the temperature drift
caused by
wa
velength drift.
Semicon
ductor laser output
wavele
ngth is 635 nm, couple
d
to the single mo
de fiber whi
c
h the core d
i
ameter is 4
μ
m,
connected to the fiber optic collimator by FC optic
al fi
ber connectors. The
fiber collimator
output
beam dia
m
et
er is ab
out 4
mm, divergen
ce Angle i
s
le
ss tha
n
1mra
d.
2.1.2. SPR Interferen
ce Imaging Light Path
Shown
in Fi
gure
2, la
se
r device
1 e
m
itted
the li
ght, pola
r
izer 2 adj
uste
d
the light
intensity b
e
tween th
e p
a
n
d
s light,
ele
c
tro-o
p
ti
c
cryst
a
l 3
mod
u
late
d the
pha
se,
the mo
dulated
light throug
h the beam exp
ande
r len
s
group 4, re
a
c
h
to the surfa
c
e
betwee
n
the prism and g
o
ld
film of SPR sensor
unit through th
e p
r
ism 5, t
he refle
c
ted lig
ht inte
rvention th
ro
ugh the
anylyzer
6, the imagi
n
g
len
s
7 i
m
a
g
ing the
sen
s
or chip
su
rface
i
n
CCD 8
targ
et
su
rf
ace. CCD
im
age
acq
u
isitio
n sy
stem put the i
m
age data int
o
the comp
uter9, then p
r
o
c
e
ssi
ng an
d analysi
s
.
Figure 2. SPR Interferen
ce Imaging Lig
h
t Path
2.1.3. SPR Sensor
Unit
Functio
n
of S
P
R sen
s
o
r
u
n
it is
co
nvert
ed the
biom
o
l
ecul
ar i
n
tera
ction
re
spo
n
se si
gnal
into the cha
n
ges of ph
ase or inten
s
ity of the li
ght. Most importa
nt part in SPR se
nso
r
unit is S
P
R
sen
s
in
g chip.
SPR chip
i
s
mainly comp
ose
d
of gla
s
s
su
bst
r
ate,
g
o
ld
m
e
mbran
e
an
d
the
p
r
o
b
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 78
08 – 781
5
7810
molecule
s lin
ked
on it, pl
ating the thi
c
k of 2
n
m
ch
romium film
o
n
the
sub
s
tra
t
e as
adh
esi
v
e
layer, then
pl
ating the thi
c
k of 5
0
nm
go
ld film
on it, t
hus
co
nstitut
ed the
bare g
o
ld film SPR
chip.
The ba
re
gol
d film need
s l
i
nk the
pro
b
e
molecu
le
s when SPR
chi
p
used in
biol
ogical dete
c
ti
on.
But the gold film surfa
c
e i
s
hydroph
obi
c, need
ed
ch
emical m
odifi
cation fo
r ba
re gold film chip
surfa
c
e, in
order to lin
k th
e pro
be mol
e
cule
s, con
s
tituted the
sen
s
ing
chi
p
. Th
e pro
be in th
is
pape
r i
s
ly
so
zyme m
o
le
cu
les, ta
king
th
e lyso
zyme
solution
(1m
g
/mL)
ma
ke fo
ur
sam
p
le
po
ints
whi
c
h
diamet
er i
s
1
mm in
the chip
su
rfa
c
e,
con
s
titute
d a
2×2 a
rray
.
The p
r
e
para
t
ion process i
s
s
h
ow
n
in
F
i
gu
r
e
3
.
Figure 3. SPR Sensor
Chi
p
s Pre
par
atio
n Process Schematic
Diag
ram
The
chi
p
a
nd
prism ni
cely
linke
d by
ref
r
a
c
tive ind
e
x oil
(methyl
iodid
e
, ref
r
active
i
ndex i
s
1.740). Mate
rial of prism a
nd chip
s is Z
F
5 glass (r
efractive index is 1.740
),
se
ction of prism
is
iso
s
cele
s tra
pezoid, the base an
gle is
60°. Microflui
d
ic pool (vol
u
m
e is 30
μ
L
)
installe
d on the
chip surfa
c
e, the
approp
ri
a
t
e pressu
re
can be seal.
2.1.4. Microfluidic Sy
stem
Function of
microfluidi
c
filling sy
stem i
s
le
t the test
sampl
e
soluti
on, buffer and eluent
respe
c
tively and continu
o
u
s inje
cted to
the fluid pool
. In the SPR
sen
s
o
r
, the reflection p
h
a
s
e is
very sen
s
itive
to the ch
ang
e of the sen
s
i
ng surfa
c
e di
electri
c
refra
c
tive index, so
don’t allo
w a
i
r
into the liqui
d pool in th
e
pro
c
e
ss
of experim
ent. Then u
s
in
g a
u
tomatic inj
e
ction pu
mp i
nput
sampl
e
soluti
on, imple
m
e
n
ted diffe
rent
sol
u
tion
of
contin
uou
s i
n
jecte
d
to th
e fluid
pool
by
swit
chin
g the valve, to avoid air into the liquid po
ol.
2.2. Experimental Me
tho
d
Protein th
ermal cond
en
sation i
s
a
co
mmon
biolo
g
i
cal m
o
le
cula
r inte
ra
ction
pro
c
e
ss,
Before did no
t reach the p
r
otein de
natu
r
ation te
mpe
r
ature, prot
ein
thermal co
n
den
sation, form
micelle
s, afte
r the temp
erature
dro
p
, can al
so b
e
d
i
ssoci
a
ted to
the ori
g
inal
state, this i
s
a
reversibl
e
pro
c
e
ss. Lyso
zy
me is one ki
n
g
of
common
protein, easil
y getting from the biologi
cal
prod
uct
s
ma
rket. The p
r
o
b
e
in this p
a
p
e
r is ly
so
zy
me mole
cule
s,
t
a
king t
h
e ly
s
o
zy
me
solut
i
on
make f
our
sa
mple poi
nts
whi
c
h di
amet
er is 1mm i
n
the chip
surfa
c
e, con
s
tituted a 2
×
2 a
r
ray. By
detectin
g
the intera
ction be
tween the p
r
o
be lyso
zy
me molecule
s an
d the lysozy
me mole
cule
s in
the fluid pool
after heating,
resolved the
dy
namics pa
rameters of the intera
ction.
2.2.1. Recep
tor and Ligan
d
Reac
tion P
r
oces
s
In orde
r to m
a
ke th
e probl
em sim
p
le, u
s
ing th
e mo
st simple bi
o
m
olecula
r
intera
ction
model, the re
cepto
r
and th
e ligand bin
d
i
ng equ
ation i
s
:
12
1
2
a
d
k
k
A
AA
A
(1)
A
1
is the rece
ptor, A
2
is the ligand, A
1
A
2
is the polymer formation of A
1
and A
2
.
a
k
is the
asso
ciation
rate co
nsta
nt, unit is (m
ol/L)
-1
s
-1
;
d
k
is
the diss
oc
iation
rate cons
tant, unit is
s
-1
. In
the SPR sen
s
or, rea
c
tion
s on solid ph
a
s
e surfa
c
e, [A
1
] is
the mo
larity of A
1
, [A
2
] and [A
1
A
2
] is
the numbe
r o
f
molecule
s, shown as Fig
u
r
e 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Protein The
r
m
a
l Conden
sation Dete
ctio
n Based o
n
Phase… (Pe
n
g
HE)
7811
Figure 4. Solid Phase Su
rface Mol
e
cule
s Refle
c
t Sch
e
matic Di
ag
ram
In the pro
c
e
s
s of a
s
soci
ation re
actio
n
,
continuously filling it with
a certain tem
perature
of A
1
, [A
1
] is con
s
tant. At the time of t,
asso
ciation
reactio
n
rate i
s
12
[A
][A
]
a
k
, dissoci
a
tion
reac
tion rate is
12
[A
A
]
d
k
, the differe
nce valu
e is
A
1
A
2
generation rate.
12
1
2
12
[A
A
]
/
[
A
][A
]
[
A
A
]
ta
t
d
t
dd
t
k
k
(2)
As
A
1
A
2
generated, the correspon
ding
re
ductio
n
in the
numbe
r of A
2
.
12
1
2
0
1
2
1
2
[A
A
]
/
[
A
]([A
]
[A
A
]
)
[
A
A
]
ta
t
d
t
dd
t
k
k
(3)
At the time of t,
the numbe
r of A
1
A
2
is:
1
([
A
]
)
t
1
12
2
0
1
[A
]
[A
A
]
[A
]
[
1
]
[A
]
ad
kk
a
t
ad
k
e
kk
(4)
At the time of
t
, asso
ciation
and di
ssoci
a
tion rea
c
h
ed e
quilibri
um.
1
([
A
]
)
t
0
ad
kk
e
(5)
No
w, the nu
mber of A
1
A
2
is
:
1
12
2
0
1
[A
]
[A
A
]
[A
]
[A
]
a
ad
k
kk
(6)
Stop injecting A
1
at
the time of t=
t
1
, to inject the buffer
excludi
ng A
1
. At this
time, [
A
1
] =
0
,
rea
c
tion towa
rds to di
ssoci
a
tion, the rate
of reaction i
s
:
''
12
12
d[
A
A
]
/
[
A
A
]
td
t
dt
k
(7)
Then at the time of t, the n
u
mbe
r
of A
1
A
2
as
follows
:
1
1
(t
)
'
12
12
[
A
A]
[
A
A]
e
d
kt
tt
(8)
Disso
c
iatio
n
reactio
n
rea
c
h
to a certain e
x
tent, change
into the elue
nt, A
1
was qui
ckly
sep
a
rate
d fro
m
the surfa
c
e
of the solid p
hase, [A
1
A
2
] =
0.
2.2.2. The Calculation Method of Dy
na
mic
Parameters and the
Equilibrium
Constant
The dyna
mic para
m
eters [12] asce
rta
i
n re
a
c
tion speed of
the biologi
cal
m
o
lecul
e
s
asso
ciation a
nd disso
c
iati
on, inclu
d
ing
the asso
ciat
ion rate
con
s
tant
a
k
and the
dissoci
a
tion
rate cons
tant
d
k
. Equilibrium
constant ascertains the
relative number of molecul
a
r compl
e
xes
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 78
08 – 781
5
7812
when biomol
ecul
es
reacti
on reac
hes to balance, includi
ng the asso
ci
ation equilibrium constant
a
K
and the dissociatio
n equili
brium
con
s
ta
nt
d
K
. The relatio
n
shi
p
betwee
n
the 4 con
s
t
ants is:
/
/
aa
d
dd
a
Kk
k
Kk
k
(9)
SPR se
nsi
n
g
method
can
be linea
r a
nd re
al-t
ime
detectio
n
the
surfa
c
e
den
sity of
biologi
cal
mo
lecul
e
s re
acti
on p
r
od
uct
s
, so
the
cu
rve of the
sig
nal
R
chan
gi
ng
with time
is
obtaine
d. Accordin
g to the formul
a 3 and
formula 7:
1m
a
x
1
/[
A
]
R
(
k
[
A
]
k
)
R
ta
a
d
t
dR
dt
k
(10)
''
/
td
t
dR
d
t
k
R
(11)
Dra
w
in
g
with
a tempe
r
atu
r
e a
s
so
ciatio
n sig
nal
cu
rve abo
ut
/
t
dR
dt
and
R
t
,
getting
1
k[
A
]
k
ad
after fitting.
Dra
w
in
g
with
disso
c
iation
sign
al curve
about
'
/
t
dR
d
t
and
'
t
R
, gettin
g
d
k
after fitting. Therefo
r
e, according to
the
complet
e
testing cu
rve can be calcul
ated the
asso
ciation rate
co
nsta
nt
a
k
, the disso
c
i
a
tion rate
consta
nt
d
k
, the association equilibrium
con
s
tant
a
K
and the dissoci
a
tion equilib
riu
m
con
s
tant
d
K
.
2.2.3. Time Phase Mod
u
la
tion SPR Imaging De
tec
t
ion Method
s
The freq
uen
cy of visible
light is mu
ch hig
her th
an the re
sp
o
n
se frequ
ency of the
photoel
ectri
c
detectio
n
d
e
vice, the
ch
ange
of the
optical
pha
se
must b
e
co
nverted to li
ght
intensity cha
nge
s whi
c
h can
be
mea
s
ured. Usin
g
interfe
r
omet
ry can
co
nve
r
t the
ch
ang
e of
pha
se to the cha
nge of
interfero
g
ra
m light in
tensity, calcul
ating pha
se a
c
cordi
ng to
the
measured lig
ht intensity. Some comm
only pha
se
d
e
tection
algo
rithm can b
e
use
d
for S
P
R
inclu
d
ing St
oilov algo
rithm
、
three
steps fixed l
e
ngth alg
o
rith
m
、
four
step
s fixed len
g
t
h
algorith
m
、
fo
ur step
s
Carre algorith
m
a
nd Ha
riha
ran
algorith
m
.
The compa
r
i
s
on of variou
s perfo
rman
ce
of the algorit
hm is
sho
w
n
in Table 1, th
e more
“
√
” said the stronge
r the a
b
ility to suppress the noise
or erro
r. Visi
ble from the table, the more
pha
se shift steps, stro
nge
r the ability to supp
re
ss
random n
o
ise
,
Stoilov is the algo
rithm
o
f
s
t
r
o
ng
es
t a
b
i
lity.
Phase
erro
r
of variou
s al
gorithm
s
sho
w
n in T
able
2, light inten
s
ity noise is
the main
sou
r
ce of error. In this 5
kind
s of alg
o
rith
m
s
, Stoilov algorithm
has the st
ronge
st ability to
rest
rain th
e li
ght inten
s
ity noise, ca
n eli
m
inate the
li
n
ear
error of p
hase shifter, the e
rro
r of
re
al-
time calculati
ng pha
se si
gnal is sm
all
e
r. Ther
efore
,
choose Stoilov algorith
m
to calculat
ing
pha
se.
Table 1. The
Comp
ari
s
o
n
of Variou
s Performa
nce of the Algorithm
Error sources
Three s
t
eps
Four s
t
ep
s
Carre
Hariharan
Stoilo
v
Ligh
t in
tensi
t
y
noise
√
√
√√
√√
Phase-s
h
if
tin
g
noise
√
√
√√
Linear phase
-sh
i
ftin
g
error
√√
√
√√
Op
tical p
o
w
e
r fluctu
atio
ns
√
√
√
SPR
signal cha
nges o
v
er
ti
me
√√
√
√
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Protein The
r
m
a
l Conden
sation Dete
ctio
n Based o
n
Phase… (Pe
n
g
HE)
7813
Table 2. Pha
s
e Error of V
a
riou
s Algo
rithms(Unit °)
Error sources
Three s
t
eps
Four s
t
ep
s
Carre
Hariharan
Stoilo
v
Ligh
t in
tensi
t
y
noise
0.035
0.03
0.03
0.025
0.025
Linear phase
-sh
i
ftin
g
error
5
0.1
0
0
0
Op
tical p
o
w
e
r fl
uctu
atio
ns
0.2
0.3
<0.005
<0.005
<0.005
SPR
signal cha
nges o
v
er
ti
me
0.02
0.01
<0.01
<0.01
<0.01
3. The Res
u
lts and
Discu
ssion
Injec
t
ed ly
s
o
z
y
me
s
o
lution with different te
mpe
r
at
ure
s
, the di
stribution of
refractive
index chan
ge
after the rea
c
tion
wa
s carried o
u
t 5 mi
nutes i
s
sho
w
n in
Figu
re
5. Four
ellipti
cal
area represented the
four lysozyme probe
ar
ea. Background repres
ented the
BSA molecul
a
r
area. Oval
p
r
obe are
a
i
s
caused by
ima
g
ing
system
i
m
aging
rate i
s
in
co
nformit
y
in two
mutu
ally
perp
endi
cul
a
r dire
ction
s
.
It’s the in
he
rent e
r
ror,
will n
o
t affe
ct the te
st
and
cal
c
ulati
on
results.Also visible from the figure, sp
ecific
ity polymeri
z
ation is exist betwe
en the lysozyme
molecule
s in
the solutio
n
and p
r
ob
e lysozyme
mol
e
cul
e
, the hi
gher th
e tem
peratu
r
e of t
h
e
solutio
n
, the stron
g
e
r
the signal, the dee
per the
colo
r.
Figure 5. Distribution of Refractive Inde
x C
hang
e after the Re
acti
on wa
s Carri
ed out 5 minu
tes
We ca
n kno
w
from
the
formula
4, si
gnal
t
R
in
cre
a
se
s a
s
t
h
e i
n
cr
ea
sing
of
t
h
e
temperature
of the sampl
e
unde
r test, b
u
t after t
he temperature i
n
crea
se
s to a certain valu
e, the
signal will be saturated. 5 minut
es after injecting the
lysozym
e
solution, the relationship
curve
betwe
en the respon
se
sig
nal and lyso
zyme solution
temperature i
s
sh
own in F
i
gure 6. Visib
l
e
from the figu
re, along
with
the inje
ction
of lysozy
me
solution temp
e
r
ature in
cre
a
ses, the
sign
al
is
stron
g
e
r
and
stron
g
e
r
, with
the increa
se
of t
he temp
eratu
r
e, curv
e slop
e g
r
ad
ually decre
ases,
this co
nsi
s
ten
t
with the results of theoret
ical an
alysi
s
.
Figure 6. Rel
a
tionship Curve betwee
n
t
he Re
sp
on
se
Signal and L
y
sozyme Sol
u
tion
T
e
mp
er
a
t
ur
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 78
08 – 781
5
7814
There a
r
e
m
any influe
nce facto
r
s of
biom
ole
c
ul
ar
interaction
experim
ent, need
by
repe
ated ex
perim
ents, o
b
tain the averag
e, to
accurately cal
c
ulate the reactio
n
kinet
ics
con
s
tant
s. G
e
t four
re
al-ti
m
e dete
c
tion
curve
s
of
different te
mpe
r
ature ly
so
zyme solution
b
y
four
times of experiment
s, shown in Fi
gure
7. Visible from the figure,
when t=2min,
start filling it with
lysozyme, la
sting for 5
m
i
nutes, at the
time of
t=7min stop inj
e
cting lyso
zy
me sol
u
tion, then
c
ontinue to injec
t
PBS buffer.
(a)
(b)
(c
)
(d)
Figure 7. Rea
l
-time Dete
cti
on Cu
rves of
Differ
ent Te
m
peratu
r
e Ly
so
zyme Solutio
n
Obtain by
Four Tim
e
s o
f
Experiments
Curve fitting
use
d
the met
hod
s de
scrib
ed abov
e, av
erag
ed the
result
s of four times,
obtaine
d the
asso
ciation
rate co
nsta
nt is 1.13
×1
0
3
(mol/L)
-1
s
-1
, the diss
oc
iation rate cons
tant is
0.84×10
-3
s
-1
.
Accordi
ng t
o
the formul
a 9, obtai
ned t
he associ
ation equilibrium constant
is
1.35×10
6
(mol/L)
-1
and the
disso
c
iation e
quilibri
um co
nstant is 8.4
×
10
-7
mol/L.
Comp
ared
with method
s
of tradition
al
biom
ol
ecula
r
interactio
n
analysi
s
, it h
a
s two
advantag
es.
First, witho
u
t tags, to avoid the infl
uen
ce on the a
c
tivity of biological mol
e
cul
e
s,
eliminating th
e compli
cate
d and time-co
n
sumi
ng ma
rkup
step
s; Secon
d
, real
-time detectio
n
, can
be real
-time
and
dynam
ically record
the bi
omol
ecul
ar i
n
tera
ction
pro
c
e
s
s, getting
m
o
re
informatio
n compa
r
ed
with
the ELISA a
nd other e
nd
sign
al dete
c
tion method
s.
4. Conclusio
n
Thro
ugh
anal
yzing of the
model of
re
ce
ptor
an
d liga
n
d
rea
c
tion, p
r
oved that the
method
of SPR
sen
s
i
ng p
h
a
s
e m
e
asu
r
em
ent
can d
e
termi
n
e
the bi
omole
c
ular i
n
teractio
ns. Put fo
rwa
r
d
the detection
method ba
sed on pha
se
modulat
ion
SPR imaging
, analyzed the pre
c
i
s
ion
of
pha
se
cal
c
ul
ating al
gorith
m
, the results
sho
w
th
at
Stoilov algo
rithm ha
s t
he h
i
ghe
st a
c
cura
cy.
Build the exp
e
rime
nt device of SPR im
aging
dete
c
tion of bi
omol
ecul
ar i
n
tera
ction, an
alyzi
n
g
some
error
source
s of the
appa
ratu
s, and put forw
ard the way to improve d
e
te
ction p
r
e
c
isio
n.
Biomole
c
ula
r
intera
ction
e
x
perime
n
t was
ca
rrie
d
o
u
t in this
experim
ental d
e
vice, getting
the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
Protein The
r
m
a
l Conden
sation Dete
ctio
n Based o
n
Phase… (Pe
n
g
HE)
7815
lysozyme th
ermal
coa
gul
ation kin
e
tics paramet
e
r
s. It is proved that this method is
high
sen
s
itive, lab
e
less, real-ti
m
e an
d capa
ble ofa
rra
y dete
c
tio
n
,
wh
ich c
a
n me
e
t
th
e r
e
qu
ir
eme
n
t
s o
f
the resea
r
ch of lysozyme t
herm
a
l co
agu
lation.
Ackn
o
w
l
e
dg
ements
This inve
stig
ation is sup
ported
by Mini
stry of
sci
en
ce an
d
technol
ogy
national
internatio
nal
scien
ce a
n
d
technol
og
y coope
ratio
n
proje
c
t (S2013
GR026
4
)
; Science and
techn
o
logy
project i
n
Heilo
ngjian
g
p
r
ovi
n
ce
ed
ucatio
n de
partm
ent
(1
1521
331
);
Natural S
c
ien
c
e
Found
ation o
f
Heilongji
a
n
g
, China
(F2
0080
4) a
nd
Ministry of scien
c
e a
nd t
e
ch
nolo
g
y hu
imin
proje
c
ts(2
013
GS2303
01
).
Referen
ces
[1]
Xi
ao
jun T
,
Xia
o
y
in
g W
,
Huali
Z
h
, etc.
T
he in
flu
ence of
pr
otein aggr
eg
at
i
on
ca
used b
y
heat
sh
ock
protei
n on tran
sient m
y
ocar
di
al isch
emia.
Jo
urna
l of Chin
es
e Arterioscl
ero
s
is.
2003; 1
1
(5
): 391-39
6.
[2]
W
e
n
w
ei
L, Din
gfen C, H
u
imi
n
R.
Neuro
d
e
g
e
nerativ
e confor
mation
al d
i
sea
s
es an
d its mol
e
cul
a
r bas
is
.
Physica
l scien
ce and pr
ogr
es
s
. 2006; 37(
2): 97-1
02.
[3]
Qiming X.
T
h
e
e
x
pl
orati
on of bioc
hemic
al in
gred
i
ents s
u
ch
as pr
otei
n a
g
g
r
egati
on
an
d c
ontai
ns b
o
d
y
in nerv
e
cells.
Stroke and
neu
rolo
gica
l dise
a
s
es
. 2003; 2
0
(
1
): 5-8.
[4]
Virgin
ia C
a
stil
l
o
, Ricard
o
Cr
ana-M
ontes,
Ra
imo
n
Sa
bat
e et al. Pred
iction of th
e aggr
egati
o
n
prop
ensit
y
of
prote
i
ns
fro
m
t
he
prima
r
y
s
e
q
uenc
e.
Aggr
eg
atio
n
pro
perties
of prote
o
mes,
Biotech
nol
ogy Journ
a
l
. 20
11; 6(6): 674-
68
5.
[5]
De Sim
one
A, Kitchen
C, K
w
a
n
A
H
, et al
.
Intrinsic dis
o
rder
mo
dul
ate
s
protei
n se
lf-asse
mb
ly an
d
aggr
egati
on.
P
r
ocee
din
g
s of t
he N
a
tio
nal
Ac
adem
y
of Sci
e
nc
es of
the Uni
t
ed
States
of A
m
erica. 2
0
1
2
;
109(
18): 69
51-
695
6.
[6]
Shan
pin
g
Q, Baoq
ian
g
Y. A
Java Pro
g
ram
of
F
eature E
x
t
r
action A
l
gor
ith
m
s for Protein
Sequ
enc
es.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2014; 1
2
(6): 4
322-
432
9.
[7]
Jie Z
,
Dakai
L, Z
hen
xi
n C. T
he rese
arch of o
p
tica
l fi
ber SP
R sens
or meas
urin
g li
qui
d refr
active i
nde
x.
Journ
a
l of Chi
n
ese gra
i
n a
nd
oil.
Pie
z
oelectrics & Acoustooptics
. 2005; 2
7
(
1): 18-20.
[8]
Hui Ch, C
haof
eng H, Z
i
yua
n
D. SPR bi
os
ensor a
nd its app
licati
on pr
o
g
ress.
Journ
a
l
of Chines
e
biotec
hn
olo
g
y
. 200
3; 23(5): 46
-49.
[9]
Lei W
,
Qi Z
h
,
Li S. Effects
of smal
l mo
l
e
cul
a
r i
nhi
bitor
s
on t
he
bin
d
i
ng
bet
w
e
en
H
I
V-1 revers
e
transcriptas
e
a
nd D
N
A as
re
veal
ed
b
y
SP
R bi
ose
n
sor.
Sensors
an
d
Actuators. B, Che
m
ic
al.
2
0
07;
122(
1): 243-
25
2.
[10]
Xi
uli
Li, T
i
an
xin
W
e
i. T
he combin
ation
of surf
ace p
l
asmo
n
w
a
ve res
ona
nce
and c
onve
n
tio
nal
detectio
n
technology
.
Pr
ogress i
n
che
m
ical
. 20
07; 19(
1): 193-1
99.
[11]
Kretschman
n
E, Raether H.
R
adi
ative d
e
c
a
y
of no
nrad
ia
tive surface p
l
asmons e
x
c
i
te
d b
y
li
ght. Z
Naturforsch A. 196
8; 23: 213
5
–21
36.
[12]
Yuan
ho
ng D,
Z
u
shu L. Ki
net
ic Paramet
e
rs Identificati
on
o
f
Doubl
e Pe
nd
ulum R
o
b
o
t.
TELKO
M
NI
KA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2013; 1
1
(3): 1
111-
111
8.
Evaluation Warning : The document was created with Spire.PDF for Python.