TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 4934 ~ 49
4
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.562
9
4934
Re
cei
v
ed Se
ptem
ber 3, 2013; Re
vi
sed
Februar
y 3, 2
014; Accepte
d
March 16, 2
014
Behavior of DFIG Wind Turbine during Unbalanced Grid
Voltage
Omer Elfaki Elbashir*, Wang Ze
zhon
g, Liu Qihui
Schoo
l of Elect
r
ical a
nd Electr
onics En
gin
eer
ing
T
e
lphone: +
8
6
136
93
044
76
9, North Ch
ina El
ec
tric Po
w
e
r U
n
iversit
y
, Bei
jin
g, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: omer.elb
ashi
r@
yaho
o.com
A
b
st
r
a
ct
T
he use of d
o
ubly fe
d in
ducti
on g
ener
ators
(DF
IGs) in w
i
nd turbin
es h
a
s beco
m
e qu
ite
common
for the last few
years. T
hese machi
nes pr
ovid
e va
ria
b
l
e
spee
d an
d are
driven w
i
th a
pow
er conver
te
r
w
h
ich is si
z
e
d
for a smal
l per
centag
e of the
turbin
e
-rated
p
o
w
e
r. T
h
is pap
er pres
ents a
detai
led
mod
e
l
o
f
an in
ductio
n
g
ener
ator cou
p
l
ed to w
i
nd turb
ine syste
m
. Mode
lin
g an
d si
mu
lati
on of the
inducti
on
mac
h
in
e
usin
g vector
co
ntrol co
mputi
n
g tech
niq
ue
is
don
e. DF
IG
w
i
nd tur
b
in
e is
a
n
int
egrate
d
p
a
r
t of the d
i
strib
u
ted
generation sys
tem
,
therefor
e,
any
abnor
mality
’
s ass
o
ciates with
grid ar
e going to affect the syste
m
perfor
m
a
n
ce c
onsi
dera
b
ly. T
a
kin
g
this into
accou
n
t, the performanc
e of DF
IG variable
spee
d w
i
nd tur
b
in
e
und
er netw
o
rk fault is studie
d
usin
g si
mul
a
tio
n
deve
l
o
ped i
n
MAT
L
AB/SIMULINK.
Ke
y
w
ords
: DFIG, d-q m
odel, vector control
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Wind
po
wer,
one of the
gree
n, saf
e
and lo
w-ca
rb
on en
ergy, i
s
so fa
st dev
elopin
g
in
gene
rating
electri
c
ity that it has be
com
e
the f
ourth
major p
o
wer
sou
r
ce after
coal, water a
n
d
nucl
ear. It i
s
also the
onl
y rene
wa
ble
po
wer re
so
urce
that owns over one
hun
dre
d
mil
lion
kilo
watt glo
b
a
l in
stalled
capa
city apa
rt
from
wa
ter.
The
devel
o
p
ment
of wi
n
d
po
we
r
bro
ught
about a
serie
s
of p
r
o
b
lem
s
at the
sam
e
time, with t
he mai
n
tena
nce
of wi
nd t
u
rbin
es bei
ng
the
foremos
t
[1].
DFIG is a ne
w type of power g
ene
rati
on syst
em. T
he stator
win
d
ing is conn
e
c
ted with
power fre
que
ncy gri
d
. The rotor
windi
ng is conn
ected with thre
e-ph
ase alternating curren
t
s
whi
c
h freq
ue
ncy ca
n be a
d
juste
d
by co
ntrolling the
current pa
ram
e
ters
of the rotor win
d
ing,
not
only ke
ep th
e sa
me frequ
ency, but
also the g
r
id
po
wer facto
r
ca
n be
adju
s
te
d to imp
r
ove
the
stability of the system [2].
For th
e dyna
mic featu
r
e, t
he DFIG b
e
comes the m
o
st po
pula
r
ge
nerato
r
fo
r wi
nd po
we
r
gene
ration sy
stem.
Firstly,
DFIG can su
pply
po
wer
to
the gri
d
at consta
nt voltage an
d con
s
tant
freque
ncy
wh
ile the rotor
can op
erate at
sub
-
synchro
nou
s mo
de o
r
s
upe
r-syn
c
hron
ou
s mo
d
e
.
Secon
d
ly, the rating of th
e power con
v
erter is
o
n
ly about 30%
of the ra
ted
power of the
wind
turbine. At third, the gene
rated active a
nd re
a
c
tive p
o
we
r ca
n be controlled in
d
epen
dently. For
conve
n
tional wind
farms conne
cted
to an
ele
c
tric
n
e
twork, the turbin
es a
r
e d
i
sconn
ecte
d from
the gri
d
if vol
t
age un
bala
n
c
e of
6% or
more i
s
dete
c
ted [3]. Th
e
n
, the contin
uity of the po
wer
gene
ration i
n
the win
d
e
n
e
rgy
system
may be affe
cted by trippi
n
g
the
wind t
u
rbin
e fro
m
the
utility grid. Hence it is de
sira
ble to im
plement
the
gene
rato
r co
ntrol sy
stem
to withsta
nd
to a
certai
n level
of voltage un
balan
ce
s. If the voltage
u
nbala
n
ce is
not take
n int
o
acco
unt in
the
control syste
m
,
a
hi
ghly unbal
an
ced stator
curr
en
t coul
d b
e
p
r
odu
ce
d eve
n
with
a
sm
all
unbal
an
ced
stator voltage [4].
DFIG
s are
commonly u
s
ed for large
wind turbine
s
operatin
g at variable spe
ed. For
maintainin
g continuo
us op
eration
of su
ch
win
d
tu
rbin
es
duri
ng
po
wer sy
stem d
i
sturb
a
n
c
e
s
, i
.
e.,
fault ride through
cap
abili
ty, extensive studie
s
hav
e bee
n ca
rri
ed out in th
e last fe
w years.
Ho
wever, sy
mmetrical voltages a
r
e con
s
ide
r
ed in mo
st
ca
se
s. In reality, asymmetric faults o
c
cur
more frequ
en
tly than symmetric fa
ults
in tran
sm
i
ssi
on sy
stem. T
he stato
r
current of a
DFIG
coul
d be
high
ly unbala
n
ce
d even
with
a sm
all un
bal
anced g
r
id v
o
ltage if n
o
u
nbala
n
ce con
t
rol
were consi
d
e
r
ed. The u
n
b
a
lan
c
ed volta
ge and
cu
rre
nt cau
s
e a n
u
mbe
r
of pro
b
lems
su
ch
as
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Behavi
o
r of DFIG Wind Tu
rbine Durin
g
Unbala
n
ced Grid Voltage (O
m
e
r Elfaki Elbashir)
4935
overhe
ating of
stato
r
win
d
ing
s
,
extra
mech
ani
ca
l
stresse
s
due
to torque
pul
sation, an
d o
u
t
put
power pul
sati
ons [5-6].
Many n
e
w wi
nd fa
rms
will
empl
oy wi
nd
turbi
n
e
s
b
a
sed o
n
DFIG,
whi
c
h
offer
several
advantag
es
whe
n
compa
r
ed
with fixed-spee
d ge
n
e
rato
rs [7
-10]
. These adva
n
tage
s, incl
u
d
ing
spe
ed contro
l, reduced flicker, and fo
ur-qua
dra
n
t active and re
active po
wer capa
bilities,
are
prima
r
ily achi
eved via cont
rol of a rotor
side
conv
e
r
te
r (RS
C
), whi
c
h is typically rated at aro
u
n
d
30%–35% of
the gene
rato
r rating for a g
i
ven rotor
spe
ed variation
range of
25%
. The steady-
state re
spo
n
se and perf
o
rmance of DF
IG-ba
s
ed
wi
n
d
turbine
s
are now well understoo
d [7, 11,
13]. DFIG sy
stem
s are
co
nventionally controlled u
s
i
ng either
stator voltage
-ori
ented [7, 8] or
stator flux-o
ri
ented [9, 12] contro
ls
ba
se
d on d-q de
couplin
g. For
most of the studies
repo
rt
ed,
symmetri
c
stator voltag
e supply was a
s
sume
d ev
e
n
durin
g n
e
two
r
k di
sturban
ce
. For
small
wi
nd
farms
co
nne
cted to a di
stri
bution n
e
two
r
k, it is
requi
red that they
can
with
stan
d a
steady-st
a
te
maximum value of pha
se voltage un
bala
n
ce of 2% wit
hout trippin
g
[14].
2. D
y
namic
d-q Model o
f
Induction G
e
nera
tor
The
dq
axi
s
re
pre
s
entatio
n
of an
indu
ctio
n ge
ne
rator i
s
u
s
e
d
fo
r
si
mulation, ta
ki
ng
flux linkage a
s
a ba
si
c variable. It is ba
sed o
n
fifth-o
rde
r
two axi
s
representati
ons
comm
only
kno
w
n a
s
the “Park mod
e
l” [15]. Here an equi
val
ent 2-ph
ase machi
ne re
prese
n
ts 3-pha
se
machi
ne, wh
ere
s
s
dq
corre
s
p
ond to the st
ator direct a
nd qua
dratu
r
e axes, and
rr
dq
corre
s
p
ond t
o
the roto
r
dire
ct and
q
uadrat
ure ax
es a
nd a
synch
r
on
ou
sly rotating
dq
referen
c
e fra
m
e is u
s
ed wi
th the direct
da
x
i
s
oriente
d
alon
g the stator fl
ux position.
A symmetri
c
a
l
3-p
h
a
s
e i
n
d
u
ction
ma
chi
ne
with
statio
nary
axes
,,
as
bs
c
s
separated
by
an an
gle
23
is
con
s
id
ere
d
. Assu
me that
the
s
s
dq
axes
are
oriente
d
at
angle
. If the
synchro
nou
sl
y rotating
dq
ax
es
rotate
at a
syn
c
hrono
us sp
eed
e
with
respec
t to
s
s
dq
axes, then t
he voltage
s
on the
s
s
dq
axes can be
conv
erted
into
dq
a
synchro
nou
sly
rotating fram
e as follo
ws:
co
s
s
i
n
si
n
c
o
s
ss
qs
qs
e
d
s
e
ss
ds
qs
e
d
s
e
vv
v
vv
v
(1)
Re
solving the
rotating fram
e para
m
eters into stationary frame:
co
s
s
i
n
si
n
c
o
s
s
qs
qs
e
d
s
e
s
ds
qs
e
d
s
e
vv
v
vv
v
(2)
Acco
rdi
ng to Kron'
s equ
ation, the
stator
circuit equ
ations a
r
e:
s
ss
qs
s
q
s
q
s
s
ss
ds
s
d
s
d
s
d
vR
i
dt
d
vR
i
dt
(3)
Whe
r
e
s
qs
is the
qa
x
i
s
stator flux
linkage, a
n
d
s
ds
is the
da
x
i
s
sta
t
or flux lin
ka
ge
respe
c
tively.
Conve
r
t equa
tion (3) to the
synch
r
on
ou
s rotating fram
e, we get:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4934 – 49
43
4936
qs
s
q
s
q
s
e
ds
ds
s
d
s
d
s
e
qs
d
vR
i
dt
d
vR
i
dt
(
4
)
The ma
chin
e rotor e
quatio
ns can be
wri
tten in a similar way a
s
the
stator eq
uations:
qr
r
q
r
q
r
e
dr
dr
r
d
r
d
r
e
qr
d
vR
i
dt
d
vR
i
dt
(
5
)
If we put
()
er
in the place of
e
Equation (5
) be
comes:
qr
r
q
r
q
r
e
r
d
r
dr
r
d
r
d
r
e
r
q
r
d
vR
i
dt
d
vR
i
dt
(6)
(7)
()
ds
l
s
d
s
m
d
s
d
r
s
ds
m
d
r
L
iL
i
i
L
i
L
i
(8)
()
qr
l
r
qr
m
q
s
q
r
r
qr
m
q
s
L
iL
i
i
L
i
L
i
(9)
()
dr
l
r
dr
m
d
s
d
r
r
dr
m
d
s
Li
L
i
i
L
i
L
i
(10)
3. RSC Co
nt
rol
The m
a
in
pu
rpose of th
e
RSC i
s
to
main
tain the
roto
r
spe
ed
co
nsta
nt irrespe
c
tive of th
e
wind
sp
eed
and al
so th
e
control st
rat
egy ha
s b
e
e
n
implem
ent
ed to control
the active a
n
d
rea
c
tive po
wers flow of th
e ma
chin
e u
s
ing the
roto
r
curre
n
t comp
onent
s. The
active p
o
wer
flow
is controlled
throug
h
dr
i
and
the re
active
power flo
w
i
s
controlled t
h
rou
gh
qr
i
. The
stand
ard
voltage ori
ent
ed vecto
r
co
ntrol
strategy
is u
s
ed
for t
he RS
C to i
m
pleme
n
t co
ntrol a
c
tion.
Here
the real axis
of the stator
voltage is ch
ose
n
as the
d
-axis. Since th
e stator is co
nne
cted to the
utility grid and the influence of stator re
sista
n
ce
is small, the stator mag
netizin
g curre
n
t
m
i
ca
n
be co
nsi
d
e
r
e
d
as
con
s
tant
. Unde
r voltage ori
entat
io
n, the relatio
n
shi
p
betwee
n
the torqu
e
and
the
dq
axis v
o
ltage
s, currents
and
flu
x
es
ca
n
b
e
written
with
negl
ectin
g
of lea
k
ag
e
indu
ctan
ce
s
(0
)
ls
L
.
To maximi
ze
the turbi
ne o
u
tput po
we
r, DFIG m
u
st b
e
co
ntroll
ed t
h
rou
g
h
the control of
dr
i
and
qr
i
. To simplify the control and
cal
c
ulate
*
dr
i
, the stator flux compone
nt
ds
is
s
e
t to z
e
ro.
0
(
)
(
)
ds
qs
s
q
s
m
qr
ls
m
q
s
m
q
r
l
s
q
s
qs
qr
m
mm
Li
L
i
LL
i
L
i
Li
i
i
L
Li
(11)
()
qs
l
s
qs
m
q
s
q
r
s
qs
m
q
r
Li
L
i
i
L
i
L
i
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Behavi
o
r of DFIG Wind Tu
rbine Durin
g
Unbala
n
ced Grid Voltage (O
m
e
r Elfaki Elbashir)
4937
The equ
ation
s
of rotor flux
es are:
2
mm
qr
q
s
r
q
r
m
r
q
r
ss
m
d
r
ds
r
d
r
r
dr
s
LL
L
ii
L
i
LL
L
Li
L
i
L
(12)
Whe
r
e
2
1
m
s
r
L
L
L
By sub
s
tituting the valu
e
s
of
dr
and
qr
from
equatio
n (1
2) in equ
ation
(6), the
roto
r
voltages a
r
e:
()
qr
r
q
r
r
qr
e
r
r
d
r
d
vR
i
L
i
L
i
dt
(
1
3
)
2
.
()
(
)
m
dr
r
d
r
r
dr
e
r
m
r
qr
s
rd
r
r
d
r
e
r
e
q
u
m
r
q
r
L
d
vR
i
L
i
i
L
i
dt
L
d
Ri
L
i
L
i
L
i
dt
(14)
Whe
r
e
.
eq
u
L
is the equivalent in
ducta
nce.
'
dr
v
and
'
qr
v
can be
found from
the current
erro
rs p
r
o
c
essing throu
gh stan
dard
PI
controlle
rs an
d the
refe
re
n
c
e
cu
rrent
*
dr
i
can b
e
fo
und
either from
th
e refere
nce t
o
rqu
e
or from
the spee
d e
r
rors throug
h
standar
d PI
controlle
rs. Si
milarly
*
qr
i
ca
n
be fou
nd f
r
o
m
the
re
activ
e
power e
r
rors.
The a
c
tive p
o
we
r an
d the
spe
ed a
r
e co
ntrolled usi
n
g
the
cu
rrent control lo
op. T
h
e
electroma
gne
tic torque
can
be expre
s
se
d as:
3
2
m
eq
s
d
r
s
L
TP
i
L
(15)
The value of
*
dr
i
can b
e
found
usin
g Equatio
n (15
)
:
*
*
es
dr
qs
m
TL
i
L
(16)
Figure 1 belo
w
sh
ows the
RSC
with
the vector control
.
Figure 1. Vector Cont
rol Struture of RSC
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4934 – 49
43
4938
4.
Modeling an
d Simulation
4.1. Modeling of DFIG Sy
stem
The voltag
e
equatio
ns
of an in
du
ction
machine
in
arbitrary
refe
ren
c
e f
r
ame
can
be
written in terms of the cu
rrents a
s
:
0
'
'
'
0
00
00
00
0
0
0
00
00
00
0
0
0
ss
s
s
s
m
m
bb
b
b
ss
s
s
s
m
m
qs
bb
b
b
ds
sl
s
s
b
qr
rr
mm
r
r
r
r
r
bb
b
b
dr
rr
r
mm
r
r
r
r
r
bb
b
b
rl
r
b
PP
RX
X
X
X
PP
XR
X
X
X
v
v
P
RX
v
v
PP
XX
R
X
X
v
PP
v
XX
X
R
X
P
RX
0
'
'
'
0
qs
ds
s
qr
dr
r
i
i
i
i
i
i
(17
)
Whe
r
e
qs
v
,
ds
v
are q-axis an
d
d-axis stato
r
voltages,
qs
i
,
ds
i
are q-axi
s
and d-axis st
ator
cur
r
e
n
t
s
,
'
qr
v
,
'
dr
v
,
'
qr
i
an
d
'
dr
i
are q
-
axis and d
-
axi
s
rotor volt
ag
es and
cu
rre
nts referre
d
to the
stator
windin
g
s by app
ro
priate turns
ratio,
is the ro
tating spe
e
d
of the arbitrary refe
ren
c
e
frame,
r
is the
roto
r
sp
eed,
s
s
X
,
rr
X
are
stator an
d rotor self in
ductive
re
act
ances,
m
X
i
s
the
mutual rea
c
tance, and
ls
X
,
lr
X
,
s
R
and
r
R
are
sta
t
or an
d roto
r lea
k
a
ge
re
actan
c
e
s
a
n
d
resi
st
an
ce
s.
The swing e
q
uation is:
2
er
m
TH
T
(18)
Whe
r
e
m
T
is the mecha
n
ical torqu
e
and
H
is the inertia.
The d
oubly fe
d indu
ction
g
enerator
mod
e
l co
ns
i
s
ts of
Equation
(17
)
, the swing
Equation
(18
)
, an
d
rot
o
r
sid
e
controller. T
he
co
mplete
DFIG
syste
m
with
co
ntrolle
rs i
s
m
odele
d
i
n
Matlab/Simuli
nk. Th
e in
put
s of th
e mo
d
e
l are voltag
e an
d rotor
speed, m
e
cha
n
ical
torq
ue
and
the output i
s
a cu
rrent vect
or an
d ele
c
tro
m
agneti
c
torq
ue. The
simul
i
nk mo
del of
DFIG
system
is
sho
w
n in Fig
u
re 2 bel
ow.
Figure 2. Simulink Mo
del o
f
DFIG System
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Behavi
o
r of DFIG Wind Tu
rbine Durin
g
Unbala
n
ced Grid Voltage (O
m
e
r Elfaki Elbashir)
4939
5. Results a
nd Discu
ssi
on
The ind
u
ctio
n machine i
s
sim
u
lated
usin
g MAT
L
AB/SIMULINK environ
ment. The
perfo
rman
ce
of the DFIG
system i
s
an
alyzed u
nde
r disturban
ce
of the grid vo
ltage. The m
a
in
obje
c
tive of t
h
is
Wo
rk is to stu
d
y the
perfo
rman
ce
analysi
s
of
the DFIG
fo
r a
wi
nd
tu
rbin
e
appli
c
ation
d
u
ring volta
g
e
fluctuation
s
.
The vo
ltag
e
fluctuation
s
are m
ade
b
y
loweri
ng a
n
d
raisi
ng th
e vo
ltage valu
es i
n
the
utility grid intentio
nall
y
for
simulati
on
kee
p
ing
in
view
of different
grid di
sturban
ce
s.
5.1. Simulation Unde
r No
rmal Conditi
on
Time (sec
)
Figure 3. Stator Cu
rrents d
u
ring Bal
a
n
c
e
Conditio
n
Time (sec
)
Figure 4. Rot
o
r Cu
rrents d
u
ring Bal
a
n
c
e
Conditio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4934 – 49
43
4940
5.1.1. Discus
s
ion
The
tra
n
si
ent
torque and spe
ed cha
r
a
c
teristics
with
time are diffe
rent from th
e
steady
state torq
ue
and spee
d
cha
r
a
c
teri
stics
with time
sho
w
n in
Figure 5.
The variatio
n
in
instanta
neo
u
s
torque i
s
du
e to the tr
an
sient offset in
stator
cu
rrent
s.
Althoug
h the offset i
n
e
a
ch
of the
cu
rren
ts de
pen
ds
upon
the
value of
sour
ce
voltage
at t
he time
of
a
pplication. T
he
instanta
neo
u
s
to
rque
is in
depe
ndent
of
the initia
l
va
lues of b
a
lan
c
ed
source
voltage
be
cau
s
e
the machine
is symm
etri
cal.
Als
o
ma
chine
cu
rre
nts varie
s
du
rin
g
tran
sie
n
t p
e
riod
.
due to
the
intera
ction of the stator a
n
d
rotor ele
c
tri
c
transi
ents.
Time (sec
)
Figure 5. Speed and To
rq
u
e
durin
g Bala
nce
Con
d
ition
Time (sec
)
Figure 6. Active and Re
acti
ve Power d
u
ri
ng Balan
c
e Condition
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Behavi
o
r of DFIG Wind Tu
rbine Durin
g
Unbala
n
ced Grid Voltage (O
m
e
r Elfaki Elbashir)
4941
5.2. Simulation under Vol
t
age
Dip
Time (sec
)
Figure 7. Stator Voltage d
u
r
ing Voltag
e Dip
Time (sec
)
Figure 8. Stator Cu
rr
e
n
t
s
du
r
i
n
g
Vo
ltag
e D
i
p
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4934 – 49
43
4942
Time (sec
)
Figure 9. Rot
o
r Cu
rrents d
u
ring Volta
g
e
Dip
Time (sec
)
Figure 10. Speed an
d Torq
ue duri
ng Vol
t
age Dip
Time (sec
)
Figure 11. Active and Rea
c
tive Power du
ring Voltag
e Dip
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Behavi
o
r of DFIG Wind Tu
rbine Durin
g
Unbala
n
ced Grid Voltage (O
m
e
r Elfaki Elbashir)
4943
5.2.1. Discus
s
ion
In Figure 9, the rotor currents of the ma
chi
ne are
shown for a
voltage dip of 85%,
implying, that
only 15%
o
f
the gri
d
vol
t
age remain
s. It can b
e
seen that th
e
roto
r curren
ts
oscillate
s to
about fou
r
ti
mes th
e rate
d cu
rrent. Thi
s
implie
s that
a voltage di
p ca
n cau
s
e
high
indu
ced volta
ges o
r
curren
ts in the roto
r circui
t. These cu
rre
nts mi
ght dest
r
oy the co
nverte
r, if
nothing i
s
do
ne to prote
c
t it.
6. Conclusi
on
The dyna
mic behavio
r of
DFIG u
nde
r
power
syste
m
distu
r
ba
nce wa
s
simula
ted usi
n
g
MATLAB/SIMULINK. T
he
DFIG
con
s
id
ered
in thi
s
a
nalysi
s
is a
wound
roto
r in
ductio
n
ge
ne
rator
with slip
ring
s. The stator i
s
dire
ctly conn
ected
to the g
r
id and th
e ro
tor is interfa
c
e via a back to
back power conver
ter. Power
converter are usually contro
lled utilizing vector
control techniques
whi
c
h allo
w the de
cou
p
le
d cont
rol of both active a
nd rea
c
tive p
o
we
r flow to
the grid. In the
pre
s
ent
inve
stigation, th
e
dynami
c
DFIG pe
rform
ance i
s
pre
s
ente
d
fo
r b
o
th no
rmal
and
abno
rmal g
r
i
d
con
d
ition
s
. The control
perfo
rman
ce of DFIG i
s
satisfa
c
tory in normal
grid
con
d
ition
s
an
d it is found t
hat, both acti
ve and rea
c
tive powe
r
mai
n
tains a
stud
y pattern in spite
of fluctuatin
g
win
d
spe
e
d
and
the
net
of the
el
e
c
trical
po
wer supplie
d to
gri
d
is maintai
n
ed
c
o
ns
tant.
Referen
ces
[1]
Z
hai Yo
ngj
ie,
W
ang D
ong f
eng, Z
h
a
ng J
u
n
y
i
ng, Ha
n Y
ueji
ao. R
e
se
ar
ch on
earl
y
f
a
ult di
agn
ostic
method
of
w
i
n
d
turb
in
es.
T
E
LKOMNIKA In
don
esia
n J
our
nal
of E
l
ectric
al E
ngi
ne
erin
g
.
201
3; 1
1
(5)
:
330 -2
34
1.
[2]
Ding
Shu
y
e
,
Z
han
g Ni
ng. An
al
ysis
of electr
omag
netic pro
perties of
do
u
b
l
y
-fed tur
b
in
e
gen
erator
.
TEL
K
OMNIKA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2013;
Vol. 1
1
, Issues 2, pag
e 783 -7
88.
[3]
T
Brekken, N Moha
n.
A nov
el d
oub
ly-fed
i
nducti
on w
i
n
d
gen
erator c
ont
rol sch
e
m
e for
reactive
pow
er
control a
nd tor
que p
u
ls
ation
compe
n
satio
n
und
er un
bal
an
ced gri
d
volta
ge con
d
iti
ons.
IEEE PESC
Conf Proc.,
20
03
; 2: 760-
764
.
[4]
L Xu, Y W
ang. D
y
namic m
ode
ling
and c
ontrol
of DF
IG-based
w
i
n
d
turbi
nes
under u
n
b
a
la
n
c
ed net
w
o
r
k
cond
itions.
IEE
E
T
r
ans. on Pow
e
r System,
2007
;
22, 1: 31
4
–
32
3.
[5]
F
M
Hughes, O Ana
y
a-L
a
ra,
N Jenki
n
s, G
Strbac. Control
of DF
IG based
w
i
n
d
ge
nerat
ion for p
o
w
e
r
net
w
o
rk su
pp
o
r
t.
IEEE
Trans. On Power Sys
t
em
s,
20
05
; 20
; 1958-1
9
6
6
.
[6]
S Seman, J Niiranen, S Kanerva, A Arkkio,
J Sa
itz. Performance stu
d
y
of
a do
ubl
y fe
d
w
i
n
d
-p
o
w
e
r
ind
u
ction
ge
ne
rator Un
der N
e
t
w
ork
Disturb
a
n
ces.
IEEE Trans. on Energy
Conv
ersion.
20
06
;
21: 8
83-
890.
[7]
T
T
h
iringer, A Petersson, T
Petru.
Grid distu
r
banc
e resp
on
se of w
i
nd turbi
nes eq
ui
ppe
d w
i
th inductio
n
gen
erator a
n
d
doub
ly-fed
i
n
ductio
n
ge
ner
ator.
Proc.
IEEE Pow
e
r Engin
eeri
ng Soc
i
ety Genera
l
Meetin
g,
200
3
; 3: 13-17.
[8]
T
Sun, Z
Chen,
F
Blaa
bj
erg. V
o
ltag
e rec
o
ver
y
of
gri
d
-co
nne
cted
w
i
nd
turbi
nes
w
i
t
h
DF
IG
after a s
hort-
circuit fault.
Proc. 35
th
IEEE
POWER Electronics
Specialis
ts Conferenc
e
200
4
; 3: 1991-
199
7.
[9]
S Muller, M De
icke, RW De D
oncker. Do
ub
l
y
fed ind
u
ction
gen
erator s
y
st
ems for
w
i
nd t
u
rbi
nes.
IEEE
Ind. Appl. Mag.
,
2002
; 8(3): 26
–33.
[10]
H Akag
i H S
a
to. Contro
l a
nd
performa
nce
of a
do
ub
l
y
-fed i
nducti
on m
a
chi
ne i
n
ten
ded f
o
r
a fl
y
w
h
ee
l
ener
g
y
stor
ag
e
s
y
stem.
IEEE Trans. Power Electron.,
20
02
;
17(1): 109
–11
6
.
[11]
R Pen
a
, JC Cl
are, GM Asher
. Doubl
e fed
in
ducti
o
n
ge
ner
a
t
or usin
g back-
to-back PW
M converter
an
d
its ap
plic
atio
n t
o
var
i
ab
le-
spe
ed
w
i
n
d
-e
nerg
y
ge
nerati
on.
Proc. Inst. Ele
c
t. Eng., 19
96;
14
3(3): 231
-
241.
[12]
M Yamamot
o
,
O Moto
yosh
i.
Active a
nd r
e
a
c
tive
p
o
w
e
r
co
ntrol for
do
ub
l
y
-fed
w
o
un
d r
o
tor i
nducti
on
gen
erator.
IEEE Trans. Power Electron.,
199
1; 6(4): 624
–62
9
.
[13]
JB Ekana
ya
ke,
L Hol
d
s
w
ort
h
, XG W
u
, N Jen
k
ins.
D
y
nam
ic
mode
lin
g of do
ubl
y fe
d in
ducti
on g
ener
ato
r
w
i
nd tur
b
in
es.
IEEE Trans. Power Syst.,
2003; 18(2): 80
3–8
09.
[14]
Natio
nal
Grid
T
r
ansco, App
end
i
x
1, E
x
tra
c
ts from the
Grid Co
de-C
o
nnecti
on
Co
nd
itions. 2
0
0
4
.
Avail
abl
e: http://
w
w
w
.
nati
o
n
a
l
g
rid.com.
[15]
GR Slemo
n
. Mode
lli
ng i
n
d
u
ction m
a
chi
n
es for el
ectri
c
drives.
IEE
E
T
r
ansactio
n
on Ind
u
stry
Appl
icatio
n.
19
89; 25(6): 1
126
-113
1.
Evaluation Warning : The document was created with Spire.PDF for Python.