TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 77
6
4
~ 777
1
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.60
26
7764
Re
cei
v
ed Ma
rch 2
7
, 2014;
Re
vised July
2, 2014; Acce
pted Jul
y
20,
2014
Crack Detection of Power Line Based on Metal
Magnetic Memo
ry Non-destructive
Niu Fenglian
Schoo
l of Mechatron
i
cs Engi
neer
ing / Nin
gb
o Dah
o
n
g
y
in
g Univers
i
t
y
,
No. 1, Xu
e
y
u
a
n
Roa
d
, Yinzh
ou District, Nin
gbo cit
y
, Chi
n
a
E-mail: nfl1
979
@12
6
.com
A
b
st
r
a
ct
Visua
l
insp
ecti
on metho
d
usi
ng he
lico
p
ter e
qui
ppe
d w
i
th infrared a
nd ult
r
aviol
e
t camer
a
is often
empl
oyed to ch
eck the trans
mi
ssion status
of pow
er lin
e, but it is so ex
pens
i
v
e and u
n
safe
relativ
e
to usin
g
pow
er lin
e rob
o
t to imp
l
e
m
e
n
t crack detect
i
on of p
o
w
e
r li
ne. In this pa
p
e
r a new
mea
s
urin
g metho
d
is
prop
osed
usi
n
g metal
mag
n
e
t
ic
me
mory no
n-destructi
v
e
(
MMMNDT
) to to aut
o
m
atica
lly
detect d
e
fects
or
abn
or
mal c
ond
itions b
a
se
d on
a compl
e
tely
auton
o
m
o
u
s mobil
e
pl
atfor
m
capa
ble
of a mean
ingf
ul pay
lo
a
d
for sig
nal
dat
a
process
i
ng. In
this w
o
rk o
ne k
i
nd
of
br
an
d-ne
w
mech
an
ical
structure h
a
s b
een
des
ig
ned
fo
r
insp
ection
ro
b
o
t, and
so
me
i
m
p
o
rtant
parts
of th
e
mec
h
a
n
ical
structure
have
b
een
ful
l
y
exp
l
ai
ne
d. At the
same time, a detectio
n
system
of the ro
b
o
t
has be
en d
e
sig
ned
base
d
on MMMNDT. The results of
exper
iments a
bout the crack
detectio
n
of po
w
e
r line show
that the rob
o
t
can satisfactori
l
y
span obst
a
cl
es
autom
atic
ally and fulfill the
specified inspecti
on tasks,
experiment results
of t
he detection system
verifi
ed
that this diagnosis system
is feasible an
d can
be applied to power line detec
t
ion.
Ke
y
w
ords
:
pow
er li
ne r
o
b
o
t, mec
h
a
n
ica
l
structure, met
a
l
ma
gn
etic memory, mag
n
e
t
ic
elastic
i
ty
ef
fect,
non-
destructiv
e
testing
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Safety detection of power
line is imp
o
rt
ant
in power
transmissio
n whe
n
the po
wer li
ne
are exp
o
sed
for a long ti
me, some
d
a
mage
su
ch
as b
r
ea
k, ab
rasi
on a
nd corrosi
on is of
ten
prod
uced
by suffe
ring
fro
m
sustai
ning
me
chani
cal
tensio
n, the
material
agi
n
g
. If rep
a
ir
a
nd
repla
c
e
m
ent are not prom
pt, the original sma
ll brea
kag
e
and fla
w
will expan
d or even ca
use
seri
ou
s
a
c
cid
ents with big area
po
we
r cut
whi
c
h
will
bring
en
orm
o
us economi
c
loss
a
nd se
ri
ous
so
cial influen
ce. The
r
efore
,
we must inspect the
tran
smissio
n
line
regula
r
ly in orde
r to moni
tor
the wo
rking
situation of th
e tran
smi
ssi
o
n
line a
s
well
as the
chan
ging of e
n
vironment, di
scover
and eli
m
inat
e the hi
dden
dang
er
pro
m
ptly, preve
n
t accide
nt
occurre
n
ce a
nd gu
arantee
the
power supply
security.
In re
cent
yea
r
s,
re
sea
r
che
r
s have
bee
n
wo
rking
on
d
e
sig
n
ing
all
ki
nds of m
obile
ro
bots
to pa
rtly or fu
lly perfo
rm th
e in
spe
c
tion
tasks of
powe
r
tra
n
smissio
n
line
s
[1
-2].
Powe
r lin
e
ro
bot
is effective a
nd safe tool
s along the transmi
ssi
on li
ne to perfo
rm part of po
wer lin
e in
sp
ection
tasks,
and
th
e research
o
n
hig
h
-voltag
e
tra
n
smi
s
sio
n
line
in
spe
c
tion robot
be
gan i
n
th
e la
te
1980
su
ch a
s
the re
sea
r
ch
institutions
o
f
J
apa
n, Can
ada, Ameri
c
a
n
and
Chin
a have develo
p
ed
different kind
s
of ro
bot succe
ssively
[
3
].
T
here a
r
e two
ki
nd
s of robot
s
which
have
b
een
develop
ed so far: One h
a
s the fun
c
tion of span
ni
ng ob
stacl
e
s,
but large st
ructu
r
e
size and
weig
ht cau
s
e
s
poo
r pra
c
ti
cability, and most of
them are unde
r la
borato
r
y con
d
itions. The
other
robot
of po
wer lin
e
can
o
n
ly inspe
c
t b
e
twee
n two p
o
le to
wers, t
hat is, it
ca
n’
t spa
n
o
b
sta
c
le
s,
whi
c
h limits i
n
sp
ectio
n
wo
rk
scope. In
chin
a,
the re
sea
r
ch on
hi
gh-voltag
e transmi
ssion li
ne
bega
n in the
late 19
90’s,
su
ch
as
Wuhan
Un
ive
r
sity, Shando
ng University, the Sheny
ang
Institute of A
u
tomation
of
the
Chi
n
e
s
e
Aca
dem
y
of Scie
nce, th
e Automatio
n
institute
of t
h
e
Chin
ese Aca
demy of Science an
d othe
r the sci
entif
ic re
sea
r
ch u
n
its also d
e
velope
d the powe
r
transmissio
n line inspe
c
tion
robots.
In the re
se
arch o
n
po
we
r line robot, ther
e
are so
me urgent p
r
oblem
s ne
ed
ed to be
solved. In
spe
c
tion
rob
o
t m
u
st pla
n
its
b
ehavior to
ne
gotiate ob
sta
c
le
s. A navig
ation sy
stem
is
need
ed to re
cog
n
ize and l
o
cate the
ob
stacl
e
s
with
its sen
s
ors, an
d then t
he co
ntrol
sy
stem of
insp
ectio
n
ro
bot will plan i
t
s motions a
c
cordi
ng to the ob
stacle i
n
formatio
n to negotiate these
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cra
c
k Dete
cti
on of Powe
r Line Based o
n
Metal Magn
etic Mem
o
ry… (Niu F
engli
an)
7765
obsta
cle
s
a
u
tonomo
u
sly. A
t
pre
s
ent, the
insp
ectio
n
ro
bot wa
s
equi
pped
with diff
erent
se
nsors to
recogni
ze th
e obsta
cle a
nd navigate t
heir in
spe
c
tio
n
robot to avoid the colli
si
on agai
nst th
e
obsta
cle, such as ultrason
ic se
nsor, co
ntacti
ng
sen
s
or and
cam
e
ra [4]. The limitation of the
battery capa
city, most insp
ection
rob
o
ts
are p
o
we
red
by Li battery
packs. The
robot can’t wo
rk
contin
uou
sly
for a
long
out
ime an
d
req
u
i
res pe
rio
d
ica
l
mainten
a
n
c
e, so
continu
ous lon
g
p
e
ri
od
working ability of robot becom
e
s one of the vital
difficulties before
putting it into practical
appli
c
ation
s
[5-6]. To solve
this probl
em,
on-line p
o
we
r sup
p
ly syste
m
is need
ed.
The impo
rta
n
t function o
f
power line
robot need
s to have the ability to de
tect the
cra
c
king of p
o
we
r line, while different
method
s fo
r detectin
g
insulator faults
exist, e.g. vis
ual
insp
ectio
n
o
r
elect
r
o te
ch
nical
mea
s
u
r
ement. In thi
s
p
ape
r we
pre
s
ent
a no
vel re
cog
n
ition
method u
s
ing
metal magn
etic memo
ry non-de
stru
cti
v
e sen
s
ors to
reco
gni
ze th
e faults of po
wer
line, whi
c
h can be u
s
ed
compl
e
me
nta
r
y with ot
he
r method
s an
d esp
e
ci
ally for identifyin
g
mech
ani
cal
damag
e an
d
flashove
r
marks.
Howe
ver, there
is no in
sp
e
c
tion meth
o
d
or
measurement
device that is able to
detect all possi
ble i
n
sul
a
tor fault
s
.
The po
wer lin
e using n
o
n
-
d
e
stru
ctive det
ection (NDT)
is an interdisciplinary field d
ealing
with non
-inva
s
ive inspe
c
tio
n
of comp
on
ent and p
r
od
uct structu
r
e
and integ
r
ity. It plays a criti
c
al
role in
assu
ri
ng that st
ru
ctural
com
pon
e
n
ts an
d sy
ste
m
s p
e
rfo
r
m their fun
c
tion i
n
a reliable
a
nd
co
st effective fashion. Met
a
l Magneti
c
Memory
Non
-
destructive te
sting a
s
one
of the NDT
was
first intro
d
u
c
e
d
by the auth
o
r in 1
994. In
rec
ent years
metal magn
et
ic mem
o
ry (M
MM) ha
s b
e
e
n
a newly dev
elopin
g
techn
i
que to effectively di
agnose early defe
c
t of ferromag
netic items [
7
-
9].Tradition
al method
s of diagno
stics such as ultra
s
o
n
i
c
inspe
c
tion, magneti
c
pa
rticle in
spe
c
tio
n
,
X-ray are o
r
i
ented to detect the alrea
d
y exis
ting defects, but cannot predi
ct sudde
n fatigue
damag
es of
equipm
ent, which a
r
e the
main re
as
o
n
s
of failure
s and source
s
of maintenan
ce
staff traumati
s
m. In ou
r e
a
rly re
se
arch
, para
llel
po
rt base
d
sam
p
ling
system
is ad
opted
to
sampl
e
m
agn
etic
sign
als;
Ho
wever, it
i
s
in
co
nvenie
n
t rel
a
tive to
USB ba
se
d
sampling
sy
stem,
so o
n
the
ba
se of ea
rlier re
sea
r
ch, a n
e
w
ba
se
d-US
B data a
c
qui
sition syste
m
i
s
devel
ope
d
and
applie
d to cra
ck d
e
tectio
n of powe
r
line.
2. Robot M
e
chanism De
sign
The hi
gh-volt
age tran
smission li
ne i
n
spectio
n
robot
is a
comple
x electrome
c
hani
cal
system
whi
c
h
involves ma
ny different fi
elds,
and
the
overall
syste
m
is ba
sed
o
n
the
mechan
ica
l
stru
cture, wh
ich
sho
u
ld f
u
lfill the fun
c
tion
s t
hat
wal
k
ing
stea
dily along th
e line, span
ning
obsta
cle
s
aut
omatically, p
o
se
balan
ce
and
so on. T
he po
we
r lin
e rob
o
t is co
mposed of fi
ve
comp
one
nts:
power source
and
c
ontrolli
ng, flexible
arm, bra
k
in
g d
e
v
ice, d
r
iving
device,
ope
ni
ng
and cl
osi
ng d
e
vice, and d
e
t
ecting sy
ste
m
, the
3D structure is
sho
w
n in Figu
re
1.
Figure 1. Structure of Po
we
r Line Robot
2.1. Flexible Arm De
sign
Before the
ro
bot wal
k
s on
the line, the
p
o
we
r line
sho
u
ld be
pla
c
ed
at the botto
m of the
whe
e
l and g
uara
n
tee the
robot walkin
g prop
erly,
so the two rot
a
ting joints i
s
neede
d to meet
with the abov
e requi
rem
e
n
t
s. There a
r
e
four deg
re
es
of freedom fo
r this ro
bot, wherei
n the ro
bot
determi
ne
s t
he p
o
sitio
n
o
f
the first two
,
the tw
o
a
r
ms
of the
ge
sture
d
e
termi
ned to
finali
z
e its
stru
cture as
shown in Figu
re 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 77
64 – 777
1
7766
Figure 2. Flexible Arm Stru
cture
Flexible a
r
m
is compo
s
e
d
of the sh
ould
e
r,
ba
se, a
r
m
,
forearm, el
b
o
w, an
d the
end of
the a
c
tuator
comp
one
nts,
whi
c
h
ha
s f
our
deg
re
es
of freed
om i
n
ord
e
r to
real
ize th
e bi
g a
r
m
swi
ng, pitchi
ng arm, a
n
d
down tu
rn o
f
the wris
t ro
tation. Shoul
der a
nd elb
o
w
co
nsi
s
t of the
redu
ce
r an
d turntabl
e. Motor is d
r
iven t
o
achi
ev
e vertical and h
o
ri
zontal m
o
ve
ment of the arm
dire
ction by
redu
cer rotati
ng turntable.
The ri
gidi
ty o
f
the flexible
arm
can
be
a
c
hieve
d
smo
o
th
conve
r
si
on to adapt the
robot acro
ss the tu
rn, the position
and attitude of the jumper
requi
rem
ents by controllin
g the
bra
k
in
g
device of
th
e moto
r. Th
e
inspe
c
tion
robot ma
nipul
ator
motion p
a
ra
meters a
r
e
set as follo
ws: The len
g
th
of big a
r
m,
Wri
st an
d a
r
m re
spe
c
tivel
y
is
250mm,
72m
m and
40
0m
m. the lon
g
end
of the a
c
tuator is 34
4mm, an
d e
a
ch
joint
rota
tion
rang
e are:
Joint 1: ± 90 °
joint 2: ± 90 ° Joint 3: ± 90 ° joint 4: ± 90 °
2.2. Driv
ing
Mecha
n
ism Design
The wheel
walkin
g mecha
n
ism
con
s
ist
s
of
the drivi
ng wh
eel
s, the han
ging a
r
ms, the
main
driving
motor, the main trans
m
iss
i
on
s
ha
ft, the trans
m
is
s
i
on
chains
, and
s
o
me
c
r
ew gears
.
The m
a
in
d
r
iving m
o
tor drive
s
th
e
main tran
smi
ssi
on
sh
aft
to rotate
by
the first l
e
ve
l
transmissio
n
chai
n,
an
d three gea
rs are
i
n
sta
lle
d
on the
mai
n
tran
smi
ssi
on shaft fixedly,
mean
while th
e three ge
ars severally me
sh with
three
screw g
ears which are at
the end of the
hangi
ng-arm,
therefore
the
screw ge
ars
can
be
d
r
iven
to rotate, the
n
ste
ady
wal
k
ing of
the
rob
o
t
is reali
z
e
d
. In orde
r to reali
z
e the robot
spe
ed
re
gulat
ing, dire
ct cu
rrent moto
r is
adopte
d
as t
h
e
main d
r
iving
motor to
facil
i
tate the PWM sp
eed
re
g
u
lating. Mo
re
over, the
we
dge type
pro
f
ile
whe
e
ls have been ado
pte
d
a
s
d
r
iving whe
e
ls,
al
so
each wheel
i
s
ma
de
by the hig
h
p
o
lymer
nylon
rubb
er
material
to i
n
cre
a
se th
e
coeffi
cient of adhe
sio
n
b
e
twee
n wal
k
in
g
wheel
an
d the
line. The
who
l
e drivin
g me
cha
n
ism
can
steadily
run
a
l
ong the
hig
h
-voltage tra
n
smissi
on li
ne t
hat
the slop
e ang
le doe
s not surpa
s
s 30°.
Drive me
an
s to drive the
robot rea
c
h
e
s the
spe
c
if
ic po
sition of
each j
o
int. Curre
n
tly
there a
r
e th
ree main
driv
ers
used: pn
eumatic,
hyd
r
auli
c
an
d m
o
tor d
r
ive. Compa
r
ing
ste
pper
driver an
d DC se
rvo driv
ing, steppe
r motor dr
ive
control
syst
em is simpl
e
and low-cost
advantag
es,
but the open
-loop ste
ppe
r motor control
with a low controllin
g accura
cy, DC se
rvo
motor usin
g clo
s
ed
-loo
p control co
uld acq
u
ire
hi
g
h
positio
n p
r
e
c
i
s
ion. T
r
avel
agen
cie
s
u
s
i
n
g
whe
e
led
mob
ile
robot
s rea
lize
th
e rob
o
t
wal
k
in
g. Wh
en
the
slope
is small,
th
e friction
wheel
s
allow the rob
o
t moving, the robot u
s
e
s
whe
e
l dr
ive
mech
ani
sm. Whe
n
the line steep, difficult to
achi
eve fricti
on drive
wh
e
e
ls
whe
n
wal
k
ing
rob
o
t, the rob
o
t grab t
h
ree
brake li
nes, a
nd
with
th
e
scre
w spi
r
al v
i
ce compo
s
iti
on crawli
ng
mech
ani
sm mean
s
ca
rry
cra
w
lin
g
driv
e
.
The ha
ngin
g
-arm in
spe
c
tio
n
rob
o
t for hi
gh-voltag
e transmi
ssion li
ne wal
k
s alo
ng high
-
voltage tra
n
smissi
on li
ne,
and
the typ
e
s
of ob
sta
c
l
e
s
on
high
-voltage tran
smissi
on li
ne
are
varied, mo
re
over the relat
i
ve position o
f
the high-vol
t
age tran
smi
s
sion lin
e and
the obsta
cle
s
,
the
robot po
sture
a
r
e
not
extremely fixed, so t
he robot has ma
ny unce
r
tain factors in act
ual
works.
Reg
a
rding th
ose
sp
ecial
working
co
nditi
on
s, t
he
rob
o
t ha
s
been
reque
st
ed to
have
two
workin
gs th
at indep
end
ent
movement
co
ntrol an
d re
m
o
te co
ntrol, a
nd the
robot
has th
e ability
of
reliabl
e wo
rk i
n
the adverse
circum
stan
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cra
c
k Dete
cti
on of Powe
r Line Based o
n
Metal Magn
etic Mem
o
ry… (Niu F
engli
a
n)
7767
3. Dete
ction
Sy
stems Setting Up
The
dete
c
tion sy
stem i
s
employed
to
measur
e the
faults
of the
po
wer line,
whi
c
h
i
s
installe
d in the front of the
robot. The
magneti
c
effe
ct prin
ciple i
s
used to a
n
al
yze the defe
ct o
f
power line, which i
s
differe
nt with the vision dete
c
tion
method.
3.1. Dete
ctio
n Principle
Whe
n
po
we
r
line with
ferro
m
agneti
c
p
r
o
perty wo
rk in
the condition
s of alte
rn
atin
g load,
irreve
rsi
b
le reorie
ntation
of the magne
tic domai
n te
xtures for ma
gneto-stri
ctio
n will take pl
ace
unde
r the
act
i
on of workin
g load, a
s
we
ll as
strai
n
co
nce
n
tration
zone
s is fo
rm
ed. The
relati
on
betwe
en lea
k
ag
e magn
etic
p
H
and stress chan
ge of ferrom
agn
etic con
s
tru
c
tion
can b
e
expre
s
sed,
0
H
p
H
u
(1)
Her
e
H
is the irreversi
b
le co
mpone
nt of magneti
c
-ela
stic effect which i
s
de
cid
ed by
stre
ss, outer
magneti
c
attit
ude an
d ambi
ent temperature,
0
u
is the vacuum perm
eability.
The ma
gneti
c
field
(x
)
p
H
,
(x
)
p
H
re
sp
e
c
tively has its maximum va
lue and
ze
ro
value
in the tang
ent
comp
one
nt a
nd no
rmal
co
mpone
nt. Th
i
s
mag
netic fi
eld conditio
n
will be
ke
pt after
the workin
g load is remov
ed, so the st
ress co
ncentration po
sition
can be d
edu
ced by mea
s
uring
the norm
a
l compon
ent of the leakage
magneti
c
fiel
d. The criteri
a
is to find m
a
ximum gradi
ent
value an
d
ze
ro valu
e of l
eakage
mag
netic
norma
l
comp
one
nt o
f
ferrom
agn
etic
con
s
tru
c
tio
n
’s
surfa
c
e,
an
d cal
c
ulate
the norm
a
l com
p
onent whi
c
h
sho
u
ld equ
al
the ratio
val
ue
b
e
twe
e
n
t
h
e
differen
c
e an
d minimum
values, the differen
c
e is equal to the maximum value minu
s the
minimum. Th
erefo
r
e the life and safety para
m
et
er
co
uld be e
s
tima
ted by gradie
nt value
K
,
()
H
dP
y
K
d
(2)
The schem
e of magneto-el
astic effe
ct action is sh
o
w
n
in Figure 3. If
a cyclic lo
ad or act
s
in som
e
a
r
ea
of the po
we
r line, the resi
dual in
du
ctio
n and
re
sidu
a
l
magneti
z
ati
on growth
occurs
in the action
of external field.
Figure 3. Sch
e
me of Magn
eto-ela
s
tic Effect Action
3.2. USB-bas
e
d Har
d
w
a
r
e
and Soft
w
a
r
e
Sy
stem De
sign
The Universa
l Serial Bu
s (USB) is
a sta
ndar
d for
con
n
ectin
g
PCs to peri
phe
ral
device
s
su
ch a
s
pri
n
ters, mo
nitors, mo
dem
s and d
a
ta
acqui
s
ition
device
s. USB offers several
advantag
es o
v
er conve
n
tio
nal se
rial and
parallel
conn
ection
s, inclu
d
ing high
er b
and
width (u
p to
12 Mbits/s) and the ability to pr
ovide power to the peripheral device. USB is ideal for dat
a
acq
u
isitio
n ap
plicatio
ns. Si
nce
U
SB co
n
nectio
n
s
sup
p
ly powe
r
, on
ly one ca
ble i
s
re
quired to l
i
nk
the data acq
u
isition d
e
vice to the PC, whi
c
h mo
st likely ha
s at least on
e US
B port. Figure 4
sho
w
s the pri
n
cip
a
l diag
ra
m of USB-ba
sed metal m
a
gnetic me
mory diagno
sis
system.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 77
64 – 777
1
7768
The wh
ole h
a
rd
wa
re syst
em is com
p
o
s
ed of five parts a
s
sh
own in Figure 5,
EZ-USB
and p
e
rip
h
e
r
al ci
rcuit, FIFO an
d logi
cal
circuit, A
/
D co
nverte
r circuit, Tran
sdu
c
e
r
circui
t as
sho
w
n
in
Fi
gure
6, A
nal
og
sign
al o
u
t
put of mu
lti
-
cha
nnel
sen
s
ors.
Co
nsi
d
ering
fun
c
tio
n
a
l
requi
rem
ents and
po
wer consumption, t
he follo
wing
major device
s
h
a
ve be
en
cho
s
e
n
: EZ-USB
(AN2
131
QC), FIFO (IDT7
202), A 12-bit ADC
(M
AX197), line
a
r hall sen
s
ors
(35
15).
The
perip
he
ral ci
rcuit incl
ude
s
PC interfa
c
e
circuit and
p
o
w
er
circuit an
d its function
is to gua
rant
ee
the
no
rmal
workin
g
of
EZ-USB and
comm
uni
cati
on with
P
C
.
A/D conve
r
t
e
r adapt
s 1
2
-bit
resolution M
AX197. So when tra
n
smitt
i
ng data
to F
I
FO, high 8-bit data wa
s
transmitted a
nd
then low 4
-
bit
.
Tran
sd
ucers
sen
s
e p
h
ysi
c
al phen
omen
a and p
r
ovid
e elect
r
ical si
gnal
s that the DAQ
system
ca
n
measure. In this d
e
tectin
g system, Hall sen
s
o
r
s
conv
er
t mag
netic
sign
al sy
stem
into
an a
nalog
si
gnal
(voltage
) that a
n
A
D
C
can
mea
s
ure. Ot
her ex
ample
s
in
clu
de
strain
ga
u
ges,
flow tran
sdu
c
ers, an
d pre
s
sure tran
sdu
c
ers, wh
i
c
h
measure force, rate of flo
w
, and pressure,
respe
c
tively. In ea
ch
ca
se, the ele
c
tri
c
al
sign
als p
r
odu
ce
d a
r
e
prop
ortio
nal t
o
the p
h
ysi
c
al
para
m
eters they are mo
nitoring.
Figure 4. USB-ba
sed Met
a
l Magneti
c
Memory Di
ag
nosi
s
System
Figure 5. Dat
a
Acqui
sition
Hardware Circuit
Figure 6. Tra
n
sd
ucer Ci
rcuit
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cra
c
k Dete
cti
on of Powe
r Line Based o
n
Metal Magn
etic Mem
o
ry… (Niu F
engli
an)
7769
Software
tran
sform
s
th
e P
C
an
d
DAQ
hard
w
a
r
e i
n
to a
compl
e
te
DAQ, a
naly
s
is,
and
displ
a
y sy
ste
m
. The
majo
rity of DA
Q
appli
c
ation
s
use
d
r
iver so
ftware.
Drive
r
soft
ware i
s
the
layer of
soft
ware that
directly prog
ra
ms th
e
regi
sters
of the
DAQ h
a
rdwa
re, ma
nagi
ng
its
operation
an
d its i
n
teg
r
ati
on
with the
compute
r
re
so
urces,
such
as
processo
r interrupt
s, DMA,
and mem
o
ry.
Drive
r
soft
wa
re hid
e
s th
e low-l
e
vel, com
p
licate
d
detail
s
of ha
rd
ware
prog
rammi
n
g
,
providin
g the use
r
with an
easy-to
-u
nde
rstan
d
interfa
c
e.
The software
system mai
n
ly con
s
ist
s
of PC-ba
s
e
d
data analy
s
i
s
soft
ware, Firmware
desi
gn an
d
USB drive
r
softwa
r
e. Firmwa
re
software
i
s
devel
oped unde
r the
develop
ment
environ
ment
“u-Vi
s
ion
”
a
n
d
firmware code fr
ame of
EZ-USB d
e
v
eloping
pa
cking. Eq
uipm
ent
driver p
r
og
ra
m provide th
e interface b
e
twee
n co
op
eration
syste
m
and ha
rd
ware. EZ-US
B
developin
g
tool ha
s offered a u
n
iversal drive
r
pro
g
ram. Acco
rding requi
re
ment of user the
prog
ram
ca
n
be modified
to be the da
ta acqui
sition
in wind
ows
DDK. Appli
c
a
t
ion softwa
r
e
is
develop
ed i
n
the environm
ent Vis
ual
C++.NET
and
NI Mea
s
ure St
udio
whi
c
h
of
fer ma
ny a
c
tive
tool to do data analysi
s
.
In detecting t
he magn
etic
sign
al, linear ha
ll sen
s
o
r
wa
s ada
pted
beca
u
se of its high
stability to temperature and high sensitivity.
The parameter to be measured
has
converted to
voltage sig
n
a
l, which m
u
st be p
r
o
c
essed to
sa
tisfy the second in
strum
ent sho
w
, save,
transmissio
n
and co
nvert
e
r. So the signal tran
s
d
u
c
er i
s
the in
terface
of the sen
s
o
r
s a
n
d
contin
ual
ana
log
circuit. Its functio
n
i
s
to
amplif
y, process, noi
se
su
ppre
s
so
r a
n
d
ma
ke it
sati
sfy
requi
rem
ent
of the secon
d
inst
rume
nt. MAX197 i
s
fit to accept h
i
gh lever current (4
-20
m
A)or
voltage (0
-±1
0
V). Since th
e sam
p
ling si
gnal is very
wea
k
, so it is important to
amply to se
nd
sign
al to hig
h
re
solutio
n
AD co
nverte
r. T
he followi
ng cali
bration
experime
n
t gets the
relat
i
on
about st
ress
and voltage.
(1) Expe
rime
nt ambient temperature i
s
0
30
C
and surfa
c
e o
f
power lin
e isn’t dispo
s
e
d
;
(2) O
ne
seg
m
ent of po
wer li
ne ha
s been ex
pe
rimented in
seven kin
d
s
of force
according foll
owin
g Table
1.
Experiment
items is th
e used p
o
w
er lin
e which dia
m
et
er and mat
e
rial is
r
e
spec
tively
ф
10.5mm a
nd
Al, the relatio
n
about volta
ge
and
po
sition a
s
Fig 7
shows. From the
Fig7, we
kno
w
the cu
rve
of bi
g load items h
a
s p
a
ssed
ze
ro poi
nt, but front and ba
ck cu
rve of
zero p
o
int is
very flat, we
can rea
s
on th
a
t
the pull
force is ve
ry sm
al
l, so the
stress con
c
ent
rati
on
zon
e
is very
small. From the Figu
re 8,
we c
an
see t
hat the cu
rve
passed
ze
ro
and the fro
n
t and
back curve of
zero p
o
int is
very slope
d relative to abo
ve two items.
The ab
ove-d
e
scrib
ed dat
a acq
u
isitio
n system
(i
nterf
a
ce b
oard an
d softwa
r
e p
r
ogra
m
)
has
been i
m
plemente
d
a
nd inst
alled i
n
a mod
e
rn
PC. The
syst
em ha
s be
en
initially tested to
perfo
rm to d
e
tect the
stre
ss
co
ncentration zone
s. T
he obtai
ned
result is
co
n
s
iste
nt with t
hat
previous
ly reported for s
i
milar diffrac
t to meters
.
Table 1. Seven Ten
s
ile Fo
rce of Po
wer
Line
Figure 7. Item 5, 6 Sampling Signal
Item N.O
1
2
3
4
5
6
7
Pulling force (KN)
5.80
13.04
16.25
20.77
25.27
33.88
34.92
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 77
64 – 777
1
7770
4. Experiment Re
sult an
d Analy
s
is
Figure 8. Sample of Powe
r Line
Figure 9. Sampling Signal
of Power Lin
e
In the experi
m
ent, we ma
ke u
s
e of ei
g
h
t cha
nnel
s li
near
hall effe
ct se
nsors to
detect the
same item
s, the sam
p
le of item as Figu
re 8 sho
w
s, three dete
ction
positio
ns of item are a
s
three
different b
e
n
c
hma
r
ks.
On
e is center p
o
int, the
oth
e
r two a
r
e
p
o
sition
ed
at the two
side
s of
cente
r
point and the dista
n
ce bet
wee
n
the two det
ecting point is 20mm. As Figure 9 sh
ows,
in
the cente
r
of
item, the sig
nals p
a
ss th
e ze
ro poi
nt. Acco
rdin
g th
e theory of d
i
stributio
n
of the
magneti
c
lea
k
ag
e field of
stre
ss con
c
entration
zon
e
, magn
etic
memory
effect on th
e st
ress
con
c
e
n
tration
zone of the
ferrom
agneti
c
materi
al wi
ll result in m
a
ximum hori
z
ontal and
ze
ro
vertical comp
onent of mag
netic lea
k
ag
e
field. T
hus, we ca
n accu
rately predi
ct the defect zon
e
s
by measu
r
in
g vertical m
agneti
c
leakage. Figur
e 10 and Figu
re 11 re
sp
ectively shows the
cha
nge of ma
gnetic
sign
al near the d
e
fe
ct zon
e
s.
Above dete
c
ting data a
r
e a
c
qui
red
by measurin
g on t
he surfa
c
e of
ferrom
agn
etic item.
In pra
c
tice, t
he dete
c
ting
prob
e is
nea
r the su
rfac
e
of ferrom
agn
etic item be
cause of the
work-
piece may be covered with such laye
rs of insulati
ng materi
al as pai
n
t, so
that it may be
impossibl
e that dete
c
ting
prob
e is
cl
ose to
th
e surfa
c
e
of metal su
rfa
c
e. The follo
wing
experim
ent
would te
stify the effect
of “Lift-Off” E
ffect. In the exp
e
ri
ment, the di
st
ance of
“Lift-off”
is 15mm. From the acq
u
i
red data, a
m
plitude va
lu
e of signal d
e
crea
sed by
more than
10%
relative to o
n
the surfa
c
e. This
phen
omeno
n ca
n
be explai
ne
d in this
pri
n
cip
a
l: wh
en
the
detectin
g
pro
be lifts off th
e surfa
c
e, di
stribut
io
n of magneti
c
line
s
of force d
e
c
re
ase and t
h
e
magneti
c
sig
nal dete
c
ted
woul
d turn
weak. So
a
co
nclu
sio
n
can
be gotten th
a
t
a ce
rtain lift-off
distan
ce h
a
s
no obviou
s
ef
fect on stress con
c
entratio
n
zon
e
s.
Figure 10. De
tecting Signal
of Defect Zo
ne
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cra
c
k Dete
cti
on of Powe
r Line Based o
n
Metal Magn
etic Mem
o
ry… (Niu F
engli
an)
7771
Figure 11. Sampling Signal
on the Left Side of
SC
Figure 12. Sampling Signal
on the Right
Side
of SC
7. Conclusi
on
This p
ape
r p
r
ese
n
ts a n
o
vel method
using
metal ma
gnetic m
e
mo
ry to detect
crack of
power lin
e ba
sed
on pip
e
li
ne ro
bot. Du
ri
ng the
expe
ri
ment on item
s an
d used p
o
we
r line a
b
o
u
t
tensile p
r
o
c
e
ss, we can
concl
ude that the inher
ent magneti
c
pro
perty of power line items is
cha
ngin
g
wit
h
the
differe
nt tensi
on fo
rce
an
d
USB-ba
sed
multi-cha
nnel diag
nosi
s
system
i
s
feasibl
e
to acqui
re ma
gn
etic sig
nal in
ability of diagno
si
s soft
ware sy
stem
and apply t
h
e
detectin
g
syst
em to flaw estimation of power lin
e in the help of rob
o
t
.
Ackn
o
w
l
e
dg
ements
This research is po
nsored by Natura
l Scie
n
c
e Fou
ndati
on of Ning
bo City
(201
3A61
004
8)
Referen
ces
[1]
Shen
g
y
u
an J, Yanj
uan H Y
a
o W
,
el at.
An
Emb
e
d
d
e
d
Visi
on Syste
m
for a Pow
e
r T
r
ansmiss
ion
Lin
e
Inspection Robot.
Intellige
n
t R
obotics a
nd Ap
plicati
ons, 2
0
0
9
; 5928: 8
02-8
11.
[2]
Sa
w
a
da J,
Ku
sumoto K, M
u
nakata
T
.
A Mobil
e
Rob
o
t f
o
r Insp
ectio
n
o
f
Pow
e
r T
r
ans
miss
ion
L
i
nes
.
IEEE
T
r
ansactions on Po
w
e
r
Deliv
er
y
,
199
1; 6(1): 309-3
15.
[3]
F
eng
yu Z
,
Yibi
n L, Aiguo W
,
et al.
Desig
n
a
nd Imp
l
e
m
enta
t
ion of Inspecti
on Ro
bots for High V
o
ltag
e
Pow
e
r T
r
ansmi
ssion L
i
nes
. M
e
cha
n
ica
l
Scie
nce an
d T
e
chnolo
g
y
, 2
0
0
6
, 25(5): 623
–6
26.
[4]
Dud
a
RO, Ha
rt PE.
Use of the Hou
gh T
r
ansfor
m
ati
on
to De
tect Li
ne
s and C
u
rves
in Pictures.
Commun
i
cati
o
n
s of the ACM, 1972; 1
5
(1): 1
1
-15.
[5]
Junfei
W
,
Shu
ang
W
,
Shen
g
y
u
a
n
J, et a
l
.
Desig
n
of Co
n
t
rol Syste
m
for
Inspecti
on
Ro
bot Bas
ed
o
n
PC104
. Contro
l& Automatio
n
, 200
7; 23(1-
2): 82–
84.
[6]
Ming
bo Y, Z
i
z
e
L, En
L,
el
at.
Desig
n
of Curr
ent T
r
ansfor
m
e
r
for Pow
e
r T
r
a
n
smissio
n
Lin
e
s
Inspecti
o
n
Rob
o
t.
Electrical Po
w
e
r S
y
ste
m
s and Com
p
u
t
ers, 2011; 99:
729-
736.
[7]
Cap
o
Sanc
hez
J, Perez Benit
e
z
J.
Character
i
z
a
t
i
o
n
of the
el
astic-r
egi
on
in
AISI/SAE 1070
steel by th
e
ma
gn
etic Bark
haus
en n
o
ise
.
NDT
& E Internation
a
l, 20
08; 41: 656
–6
59.
[8]
Blachnio J.
T
he effect of ch
ang
ing l
o
a
d
s affecting t
he
marte
n
site ste
e
l on its structure and t
h
e
Barkha
use
n
no
ise lev
e
l.
NDT
& E Internation
a
l, 200
8; 41: 2
73–
27
9.
[9]
Qixi
n
W
,
Z
hen
g
X, Che
n
J. Rese
arch on
the
re
lati
on b
e
t
w
e
e
n
m
agn
etic
b
a
rkh
aus
en nois
e
an
d
ferromagnetic materials
w
i
t
h
different he
at
treatments.
Jo
ur
nal
of T
e
sting
and Eva
l
u
a
tion
.
200
8; 3
6
(6)
:
528
–5
33.
Evaluation Warning : The document was created with Spire.PDF for Python.