TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5847 ~ 5853
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.610
5
5847
Re
cei
v
ed Fe
brua
ry 3, 201
4; Revi
se
d April 13, 201
4; Acce
pted Ma
y 7, 2014
Case Study of line loss Reduction in TNEB Power Grid
S.Sambath*
1
, P.Palani
v
e
l
2
, C.Subramani
3
, S.P.K.Babu
4
, J.Arpu
thav
ija
y
aselv
i
5
1,4
Peri
y
a
r Ma
ni
ammai Un
ivers
i
t
y
, Vall
am, Indi
a
2
MAMC
E, T
r
i
c
hy
,
In
di
a
3
SRM Universit
y
, Ch
enn
ai, Ind
i
a
5
Kings Co
lle
ge
of Engin
eer
ing,
Pudukkottai, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
y
e
s
e
s.eng
@
g
mail.c
o
m
A
b
st
r
a
ct
Unb
und
lin
g of
Electricity Boar
ds in Ind
i
a i
n
to
sm
a
ll u
n
its (cor
porati
ons) h
a
v
e
create
d
op
po
rtunities
for involv
ement of independe
nt power gener
ation
companies. Remarkable ac
hiev
em
ents and
improve
m
ents are
ex
pected i
n
pow
er
q
ual
ity espec
ial
l
y in
the south
e
rn
part of the co
untry w
here
mor
e
pow
er sh
ortag
e
, pow
er q
u
a
lit
y low
an
d ser
i
ous p
o
w
e
r l
o
ss
es al
on
g the
trans
missi
on
an
d distri
buti
on
li
nes
of the pow
er system. The p
o
w
e
r syst
em u
t
ilities are i
n
cr
easi
ng every
day, to enha
n
c
e the distribu
tion
pow
er qu
al
ity and
maint
a
in t
he vo
ltag
e sta
b
ility is
a c
hal
l
eng
ing
task in
the co
mp
lex
di
stributio
n. This
can
be
achi
eve
d
throu
gh th
e D
i
s
tributed
Gene
ration (
D
G)
. D
G
s are the
fin
a
l l
i
nk
betw
e
e
n
the
hi
gh v
o
lt
ag
e
transmissio
n
a
nd th
e co
nsu
m
ers. T
h
is w
ill
ef
fectivel
y i
m
pro
v
e the
active
p
o
w
e
r loss r
e
d
u
c
tion. T
h
is
pa
p
e
r
repres
ents the
techni
qu
e to enha
nce t
he p
o
w
er qualiti
e
s a
nd min
i
mi
z
e
p
o
w
er losses in a
distributi
on fee
der
by opti
m
i
z
i
n
g
DG mod
e
l in te
rms of si
z
e
, loc
a
tion a
nd o
per
ating p
o
int of DG. T
he propo
sed techn
i
q
ue ha
s
bee
n d
e
vel
o
p
ed w
i
th co
nsi
deri
ng l
o
a
d
c
haracter
i
st
ics
and r
epr
esenti
ng co
nst
ant c
u
rrent
mo
de
l. T
h
e
effectiveness
of the pro
pos
e
d
techn
i
q
ue is
tested
a
nd v
e
rifie
d
usi
ng
MAT
L
AB software o
n
lo
ng r
a
di
a
l
distrib
u
tion sys
tem in T
a
mi
l N
adu (Ind
ia).
Ke
y
w
ords
:
dis
t
ributed g
e
n
e
ra
tion, opti
m
i
z
at
i
on, DG
place
m
ent, voltag
e pr
ofile, pow
er los
s
es
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Distri
buted g
eneration (DG) is define
d
as in
stallatio
n
and ope
rat
i
on of small modula
r
power
gen
erating te
chn
o
l
ogie
s
that
ca
n be
combi
n
ed
with e
n
e
r
gy man
agem
ent an
d
storage
system
s. It is used to im
prove the ope
rations of
the
electri
c
ity deli
v
ery system
s at or nea
r th
e
end
user [1].
The
s
e
syste
m
s m
a
y or
may not b
e
con
n
e
c
ted to
the el
ectri
c
grid.
Dist
ribut
ed
gene
ration
system can e
m
ploy a ran
ge of te
chn
o
logi
cal o
p
tions f
r
om
re
newable to
non-
rene
wa
ble an
d can o
perate either in a conne
cted g
r
id
or off-grid m
ode. The si
ze
of a distribut
ed
gene
ration
system typically
range
s from l
e
ss than a kil
o
watt to a few mega
watts.
There are various m
e
thod
s used fo
r loss redu
ct
ion in
power
syste
m
netwo
rk li
ke feede
r
reconfigu
r
atio
n, cap
a
cito
r
placement, hi
gh volt
age
di
stributio
n
system, con
d
u
c
tor g
r
adi
ng, a
nd
DG
unit pl
acement. All th
ese
metho
d
s are
involv
e
d
with
pa
ssi
v
e eleme
n
t
except
DG
u
n
it
placement. B
o
th ca
pa
citors an
d DG unit
s
re
du
ce
p
o
wer lo
ss
and i
m
prove volta
ge re
gulatio
n, but
with the DG
s
loss red
u
ctio
n almost
doubles
that of Capac
i
tors
[2].
The i
s
sue of
DG
pla
c
em
ent and
si
zin
g
is
of great
importa
nce i
n
the p
r
e
s
en
t days of
energy gen
eration crisi
s
,
as its
i
n
stall
a
tion at non
o
p
timal locatio
n
tend
s to in
cre
a
se sy
stem
losse
s
. The increa
se in th
ese lo
sses m
ean
s in
crea
se in cost
s an
d hence ha
s a negative effect
on the pla
n
n
e
r’s
de
sire
d
obje
c
tive [3]. For this
rea
s
on it is n
e
cessary to em
ploy optimiza
t
ion
techni
que
s th
at can fin
d
th
e be
st locatio
n
for
DG in
st
allation. Rese
arch outp
u
ts
have sho
w
n t
h
a
t
impro
per
allo
cation a
nd si
zing
can
re
sult in high po
wer l
o
sse
s
a
nd ca
n jeop
a
r
dize the sy
stem
perfo
rman
ce
or results in i
n
stability [4]. Many re
se
arch and i
n
vesti
gation h
a
ve b
een d
one i
n
the
area
of optim
al DG u
n
it pla
c
eme
n
t for lo
ss mi
nimi
zation in di
strib
u
tion sy
stem. In [5] the auth
o
rs
have shown the
potential of
DG with
power elect
r
onic i
n
terface
to prov
ide ancillary
services
su
ch a
s
rea
c
tive po
wer,
voltage sa
g
comp
en
sati
on and
ha
rmonic filte
r
in
g. The work has
demonstrated the ability of DG to
com
p
ensate vo
ltage sag that can occu
r duri
ng fault i
n
the
power syste
m
.
Ho
wever, the
wo
rk
coul
d not qu
antify the amo
unt
of power l
o
ss red
u
ctio
n du
e to
DG in
stallati
on in the
ne
twork. Also t
he auth
o
rs i
n
[6] have u
s
ed
co
nvoluti
on techniq
u
e
to
evaluate th
e
prob
ability of
quantifying th
e be
nefit
of v
o
ltage
profile
improvement
involving
win
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 584
7 –
5853
5848
turbine
ge
ne
ration. Acco
rdi
ng to [7]
non
-iterative an
al
ytical ap
pro
a
che
s
ca
n b
e
use
d
to
optim
ally
place DG in
both ra
dial a
nd me
she
d
system
s
for t
he minimi
zati
on of po
we
r
losse
s
. All the
approa
che
s
a
bove are m
a
thematical in nature a
nd
a
r
e found to be
compl
e
x. A similar work in [8]
has p
r
opo
se
d
an
app
ro
ach
for th
e
com
p
utation of
ann
ual e
nergy lo
sses for different pe
netratio
n
levels of
DG i
n
a di
strib
u
tio
n
network. Th
e aut
ho
rs hav
e found th
at
whe
n
DG unit
s
a
r
e di
sp
ersed
along th
e net
work fe
ede
rs
the high
lo
sses a
r
e
re
du
ced up
to a
ce
rtain valu
e of
the DG
capa
city
and
beyon
d
whi
c
h th
e lo
ss ten
d
to
increase. Thi
s
i
d
ea
wa
s u
s
e
d
to optimi
z
e
DG
ca
pa
city for
minimum power loss.
2. Problem
Formation
The
compl
e
xity of the distri
bution
syste
m
and th
e po
wer quality m
a
intaining
is
achi
eved
by allocatin
g
the DG
s in t
he dist
ributio
n f
eede
r. Th
e pro
p
o
s
ed t
e
ch
niqu
e is
based on
opt
ima
l
placement of
DG units, which is
con
c
e
n
trate with
specifi
c
ation
s
like ba
sed o
n
their size and
location. The stability of the distribution
system is depends on the following factors.
a) Voltage
stabil
i
ty
b)
Real a
nd Rea
c
tive power
c
)
Pow
e
r
loss
3. Planning
for De
cen
tra
lized Gene
ra
tion
The
conve
n
tional
wisdom
has
i
ndi
cated
that
large g
e
neratio
n
stations offer
sign
ificantly
better econo
mies of scale.
However, su
ch calcul
ation
s
must be
re
calibrate
d wh
e
n
faced
with the
state of the powe
r
grid in
many
emergi
ng economi
e
s in the state
s
in
India, viz., large distri
b
u
ted
(ru
ral
)
load, h
i
gh T&D l
o
sses (i
ncl
udin
g
theft), lim
ited cap
a
city avail
abilit
y, and dramatically p
o
o
r
sup
p
ly co
nditi
ons. In
su
ch
ca
se
s, a tho
r
ough
analy
s
is sho
u
ld b
e
m
ade fo
r the p
o
licie
s, techni
cal
spe
c
ification
s
, and eco
nom
ic analy
s
is b
e
h
ind u
s
e of DG [9].
3.1. Curren
t
Sy
stem
The utilities i
n
terconnect
wi
th the renewabl
e DG generators
at hi
gh
voltages (>
110kV,
> 33
kV
or,
> 11
kV, depe
nding
on the
state lo
we
st
“transmissio
n” voltage level
)
. This give
s the
utility the
flexibility to
divert the power in t
he grid.
However, the lo
cal area
does not benefi
t
signifi
cantly from decentralized g
ene
ratio
n
and mo
r
eov
er, there i
s
no
discerni
ble i
m
provem
ent in
the powe
r
qu
ality and loss redu
ction or in ut
ility’s revenue
s even
though the utility purcha
s
e
s
expen
sive po
wer from the
DG unit
s
[10, 11].
3.2. Propose
d
Sy
stem
The utilities’
policy for
DG
units ap
pea
rs to be on
e-side
d and
overloo
k
s the p
o
ssible
benefits of de
centralized p
o
we
r gen
eration in rem
o
te
rural feede
rs.
In this paper
we examin
e the
oppo
rtunitie
s
with
de
cent
ralize
d
p
o
wer gen
eratio
n i
n
rural
a
r
ea
s and
attempt
a m
o
re
ratio
nal
basi
s
for framing utilities’
polici
e
s towards the
DG
units. In parti
c
ular, we
address the following
issues:
a)
Impact of DG
on the voltage profile
s,
rea
c
tive power and po
we
r factor.
b)
Tech
nical dist
ribution lo
sse
s
4. Simulation
and
Analysis
4.1. Metho
dolog
y
The
app
roa
c
h
of
th
i
s
stud
y
is to cond
u
c
t a
three
-
ph
ase
AC l
o
ad
flow
a
naly
s
i
s
[12]
of
a
rural dist
ributi
on
feed
ers in
110/11KV Ul
likkottai sub
s
t
a
tion (TA
N
G
E
DCO
) in Ti
ruvaru
r dist
rict
of
Tamil Nadu i
n
(Fig
ure
1
)
. Th
is
is re
p
r
ese
n
tative
o
f
a typ
i
cal
d
i
strib
u
t
ion
fee
ders in rural
sub
station and
the resu
lts
will th
eref
o
r
e
h
a
ve a wider a
p
plicab
ility.
There a
r
e fiv
e
feed
ers in
the sub
s
tatio
n
s
fe
ed
s vari
ous village
s
mostly(>70%
) to the
agri
c
ultu
ral.
Each fe
ede
r has a
step
-down tr
a
n
sfo
r
mer for
415
V/240V and
the tran
sfo
r
mer
ratings
are 25KVA, 63KVA, or 100KVA. The dis
t
an
c
e
between t
he sub-s
t
at
ion and the tail end
feeder is ab
o
u
t 14
km a
n
d
the p
e
a
k
d
e
m
and i
s
18M
W
(Tabl
e 1
)
.
The
feede
r’
s load
is mo
stly
agri
c
ultu
re p
u
mps and
m
o
tors that are indu
ctive
a
nd often o
p
e
r
ate at p
o
wer factor
as l
o
w a
s
0.75.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ca
se Study o
f
line loss
Re
ductio
n
in TNEB Power G
r
i
d
(S.Sam
bath)
5849
Table 1. Deta
ils of the Ullikkottai 110/1
1
KV Sub-Station
Subst
a
tion Trans
form
e
r
110/11 Kv,20
M
VA
Total num
be
r
of f
eeders
5
Peak
Load
18 MW
T
r
ansform
er
s in the feeder
25 KVA, 63
KVA, 100 KVA
Figure
1.
Sin
g
le Line
Diag
ram of 110/1
1
KV Sub-Stat
ion
Ulli
kkottai
in Th
iru
v
ar
ur
distri
ct,
Tamil
N
a
du
(
P
e
a
k
de
m
a
n
d
18
MW)
There a
r
e fo
ur mai
n
cate
gorie
s of
co
n
s
ume
r
s: Do
mestic,
com
m
ercial, ind
u
s
trial
and
agri
c
ultu
ral
(irrigation
pu
mp
s).
The
kWh
con
s
um
ed
by
the first th
re
e catego
rie
s
are
mete
red
and
they
are
cha
r
ged on a
p
e
r
kWh ba
sis, while
ag
ri
cultural
co
nsume
r
s are n
o
t m
e
tered
an
d th
ey
pay on a flat rate basi
s
(Rs
1750/ /HP/Annum
).
Since A
g
ri
cu
lture p
u
mp
s are
not
m
e
tered,
there
is no
da
ta availabl
e
on
their
ann
ual
po
we
r
consumption
and
it
is e
s
timated
by sa
mple
metering.
4.2. Propose
d
Sy
stem
This p
r
opo
se
d method pla
c
e
s
the DG
based on DG curre
n
t usage maximization and
redu
ction
of
current
sou
r
ce
d from
gri
d
fo
r po
we
r
l
o
ss i
m
provem
ent. The
intention
is to
intro
d
u
c
e
an a
pproximation meth
od
that will
ide
n
tify the
si
ze
of DGs an
d
the optimal
l
o
catio
n
b
a
se
d on
maximizatio
n
of what is
called po
we
r l
o
ss re
du
ction
(PLR) value.
Gene
rally lo
sses a
s
so
ciat
e
d
with a
c
tive
current in
si
ng
le-sou
rce rad
i
al net
works
can
not b
e
mi
nimize
d a
s
th
e sou
r
ce h
a
s to
sup
p
ly all the active power. Ho
wever,
if DGs
are
placed in the
network, the active bra
n
ch
curre
n
t so
urced from th
e
singl
e so
urce
is re
du
ced
d
ue to the a
c
ti
ve curre
n
t fro
m
the DG th
a
t
balan
ce
s the
deman
d. Th
e
co
nseque
nces
are
lo
ss
redu
ction d
u
e
to current
re
ductio
n
sou
r
ced
from the sin
g
l
e
sou
r
ce (mai
n feeder) imp
r
oved
po
we
r factor a
nd voltage profile. The po
wer lo
ss
redu
ction
is therefo
r
e
the
differen
c
e
bet
wee
n
lo
ss
ass
o
c
i
a
t
e
d
w
i
th a
c
tive
c
u
r
r
ent w
h
en
w
i
th ou
t
DG a
nd
whe
n
with
DG i
s
con
n
e
c
ted. T
hus th
e valu
e of the p
o
wer lo
sse
s
an
d the
DG
cu
rrent
that gives ma
ximum loss redu
ction are as
in Equatio
n (1) a
nd (2
) resp
ectively
∑|
|
(1)
∑
∑
(2)
Ho
wever, sig
n
ificant
l
o
ss redu
ction will occu
r at th
e f
eede
rs with
DG
co
nne
ctio
n. Thu
s
,
the ne
w total
power l
o
ss in
the net
wo
rk
with the
DG
conne
ction i
s
as
expre
s
sed
in the foll
owi
n
g
equatio
ns.
∑|
|
(3)
∑
(4)
∑
(5)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 584
7 –
5853
5850
Whe
r
e
J=1
is for fe
ede
r
wi
th DG,
othe
rwise
J=0.
Th
erefo
r
e, the
PLR valu
e
wi
th DG
conn
e
c
tion
at bus ‘
i
’ is:
∑
2
(
6
)
(7)
Equation (7
) is
the Obje
cti
v
e
function
that
maximize
s po
we
r lo
sses
red
u
ctio
n
value in
the net
wo
rk.
The
optimization m
e
thod
that u
s
e
s
PS
O is d
e
velop
ed b
a
sed
on
a comp
utatio
nal
techni
que a
s
extensively di
scusse
d in [1
3, 14
]. The re
al po
wer l
o
sses
wa
s ra
ndo
mly gene
ratin
g
in an initial p
opulatio
n of particl
es
with
rand
om po
si
tions an
d vel
o
citie
s
in the
solution
sp
a
c
e.
Each of the
Particle
s i
s
subje
c
ted to
constraint
s sp
ecified while
runni
ng
the p
o
we
r
flow
i
n
orde
r
to calculate the po
wer lo
sse
s
.
4.3. AC Loa
d
Flo
w
Stud
y
The
a
pproa
ch is to cond
u
c
t a thre
e-ph
ase A
C
load f
l
ow
an
alysi
s
for
this
fee
der
using
th
e
Gau
s
s-Seid
el
algo
rithm . It wa
s first
ca
rrie
d
out
a
base
ca
se
scen
ario
(with
out DG) to ob
tain
the voltage profiles , di
stri
bution l
o
sse
s
and then co
nsid
ere
d
the im
pact of a DG installed in
the
feeder.
For si
mplicity, the following
assumptio
n
s
are ma
de:
a)
On-lin
e
loa
d
:
This
i
s
defined
a
s
the
f
r
a
c
tion
of
sa
ncti
oned
l
oad
th
at
is
conn
e
c
t
e
d
a
t
a
n
y
i
n
st
a
n
t
.
T
h
i
s
is varied b
e
twee
n 0.40
and 0.8, para
m
e
t
rically
.
b)
Powe
r
Facto
r
: The
loa
d
power fa
cto
r
is
not
kno
w
n
and
we
vari
ed
it
param
e
t
rically
betwe
en
0.7 and
0.90. Thi
s
app
ear
s
reasona
ble given the
m
a
jority of
the load
are irrigatio
n pum
p set
s
.
c)
Theft is defin
ed
as the fra
c
tio
n
of
on-line
co
nsum
ptio
n
that is unauth
o
r
ize
d
. We
have fixed this at 14%
of the on-lin
e load
.
d)
Tran
sfo
r
m
e
r
Losse
s: We
have ign
o
red t
he
lo
sse
s
in
e
a
ch of
the tran
sform
e
rs
because of non-avai
l
ability of data.
e)
DG unit is
ca
pable of supp
lying power
a
t
both leading
and laggi
ng
power facto
r
s.
Table
2. A
ssu
m
ptions
for
th
e Three-pha
se
AC Load
F
low
A
nalysis
Var
i
able
Value
o
r
Ra
n
g
e
On-Line
Lo
ad
40%
-
80%
of
the
s
anctioned load
Theft
14%
of
o
n
-line
l
oad
Powe
r
Fac
t
o
r
0.70
–
0.90
la
gg
in
g
5. Results
5.1. Voltage
and Dis
t
ribu
tion Loss
e
s
5.1.1. Curren
t
Sy
stem
Figure 2. Shows the Voltag
e Profiles (pe
r
unit basi
s
, o
r
pu
) of the Common Bu
s unde
r He
avy
Load
Con
d
itions (75%)
with the Powe
r Facto
r
Varyin
g betwe
en 0.
75 and 0.9
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ca
se Study o
f
line loss
Re
ductio
n
in TNEB Power G
r
i
d
(S.Sam
bath)
5851
Figure 2
sh
o
w
s th
e
curre
n
t
system th
e
decent
rali
ze
d
power
gen
eration sou
r
ce
placed in
the be
ginni
ng
of the
feed
e
r
ie
at
sub
-
station th
e
calculated
distri
b
u
tion lo
sse
s
as
a fun
c
tion
of
the power factor unde
r m
oderate loadi
ng condition
of 60%
with
14% theft. Depending on
the
power fa
ctor,
the techni
cal distrib
u
tion
loss
es a
r
e
betwe
en 8.5
%
and 12.5
%
. In most rural
feeders, the
power fa
ctor
is 0.75–
0.8 a
nd therefore
distrib
u
tion lo
ss
es a
r
e li
kel
y
to be at least
10% unde
r n
o
rmal loa
d
ing
condition
s. The comm
er
ci
al losses in
cl
uding theft were a
s
sumed
to
be 14% and
hence the total losse
s
(or una
ccou
nted ene
rgy) i
n
the feede
r are 20%. When
addin
g
the techni
cal tran
smissi
on lo
sse
s
, estimate
d
over 9%, it was see that th
e total losse
s
are
una
cceptably
high (3
0%). One contri
bu
tion of this st
udy is theref
ore to qu
antify the technical
distrib
u
tion lo
sses for
rural
feeders fro
m
first
prin
ci
ples, somethi
ng not sho
w
n in publications
before.
Figure 3 sh
o
w
s the d
a
ily MVAR and M
W
of the syst
em taken fo
r the study.
Figure 3. Dail
y MVAR and MW of 110/1
1
KV Ullikkottai Sub-Statio
n
5.1.2. Proposed Sy
stem
No
w
we
con
s
ide
r
the
imp
a
ct of
a d
e
ce
ntralized
gen
erato
r
lo
cate
d in th
e mid
d
l
e of the
feeder 1.
Figure 4. Impact of a De
ce
ntralized Ge
n
e
rato
r Place
d
in Variou
s Feede
rs. Th
e gene
rato
r is
varied from 1
MW to 3MW.
(On
-
Lin
e
load
is 60%, power facto
r
0.8).
Figure 4
sho
w
s th
e impa
ct of a decent
raliz
ed p
o
wer gene
ration
source pl
aced
in the
feeder at Bus # 60. Th
e ch
oice
of the bu
s was
ma
d
e
on the b
a
si
s
of it being
ce
ntrally locate
d in
the feede
r, a
nd almo
st eq
uidista
n
t from
all the
bran
ches. T
he ge
n
e
rato
r po
we
r
varied from 0
to
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 584
7 –
5853
5852
4MW with a
powe
r
facto
r
of unity. As expe
cted, the voltage profile
s improve con
s
ide
r
ably
throug
hout th
e feede
r. Fo
r
most of th
e b
u
se
s, even
with ju
st a
1MW
plant,
the voltage
s
fall
within a
c
cept
able n
o
rm
s.
The
sam
e
effect i
s
al
so
se
en when
a b
ank of capa
ci
tors i
s
i
n
stall
ed,
whi
c
h
su
pplie
s
only
re
active po
we
r.
Rea
c
tive p
o
wer i
s
th
erefo
r
e very im
po
rtant for voltag
e
sup
port
in th
e context of
rural f
eede
rs t
hat have
lo
w
power fa
cto
r
s. This b
e
co
mes relevant
in
the following
sectio
ns a
s
the gene
rato
rs co
uld al
so a
c
t as sou
r
ces of reactive p
o
we
r.
The voltage o
f
the system
unde
r stu
d
y will in
cre
a
se
d
and re
active
comp
one
nts redu
ced
when the DG is connected in th
e feeder 1 ie 11 KV
Ullikkottai f
eeder .Hence the feeder load is
5.6 M
W
. Wh
en
we
co
nne
ct 3 M
W
DG
in the
feed
er is
optimum
to maintai
n
th
e feed
er volt
age
and re
du
ce th
e rea
c
tan
c
e
within the a
c
cepted level.
Figure
5.
Techni
cal Di
stri
bution
L
o
sse
s
(I
2
R)
in
the
Feede
r
u
nder
M
o
d
e
ra
te
Loading
of
60% without
DG an
d with
DG as
a
Fu
n
c
tion
of
the
O
v
erall
Po
we
r
F
a
cto
r
Therefore, a
ppro
p
ri
ate si
zing
and lo
cating
a de
ce
ntralized g
e
n
e
rato
r imp
r
o
v
es the
quality of po
wer supplie
d
to the feed
er a
nd al
so
red
u
ces th
e dist
ribution
losse
s
. Usi
n
g
photovoltai
c
gene
ration a
nd wind p
o
wer, other re
searche
r
s have repo
rted
si
milar re
sult
s that
redu
ce
di
strib
u
tion lo
sse
s
[
15, 16]. T
he
above
disc
u
s
sion
sugg
est
s
that
dist
rib
u
ted g
ene
rati
on
clo
s
e to the
rural l
oad
centers ben
efits
both the l
o
cal
con
s
u
m
ers
(imp
roved
powe
r
qu
ality)
as
well
as th
e
utility (lowe
r
l
o
sse
s
)a
nd
he
lps to
red
u
ce
pea
k de
man
d
s
. It open
s th
e po
ssi
bility of
cre
a
ting
ru
ral
micro
-
g
r
id
s,
or region
s of
stabl
e and
g
ood quality
p
o
we
r su
pply within
th
e
utili
ty’s
netwo
rk.
Ru
ral ele
c
tri
c
ity coope
ratives can b
e
formed
at a
dist
rict l
e
vel, wh
erev
er d
e
centralized
gene
ration i
s
possible. In
this co
ntext, bioma
ss
and
natural g
a
s
based di
strib
u
ted gen
erat
ors
can
play a
n
i
m
porta
nt rol
e
. The farmers get pai
d
for the bio
m
a
ss t
hey su
pply to
the po
we
r pl
ant
and in retu
rn,
they pay for the po
wer
con
s
ume
d
.
6. Conclusio
n
In this pap
er
we exami
ned
oppo
rtunitie
s
for
distri
bute
d
power
gen
eration i
n
ru
ral Tamil
Nad
u
Indi
a. T
he results
obt
ained
sho
w
t
hat po
we
r
lo
sse
s
of th
e
system is consi
d
erably
re
du
ce
d
,
the po
we
r q
uality enha
n
c
ed
and
pe
ak lo
ad
red
u
ce
d by fin
d
ing o
p
timu
m location
of a
decentrali
ze
d
power g
ene
rator. The
r
e i
s
a
signi
fi
can
t
improveme
n
t in the voltage p
r
ofile
s
and
reduction of t
e
chnical di
stri
bution l
o
sses.
Thi
s
cr
eates
a possibility of setti
ng up rural
mi
cro-grids
or rural
ele
c
tricity coo
peratives with
Ga
s bas
ed an
d n
on conventio
nal po
we
r ge
nerato
r
s. Fro
m
the experim
ental and
practical imple
m
ented p
r
op
ose
d
sy
stem
, clearly ide
n
tified that the
percenta
ge
redu
ction in li
ne lo
ss, volta
ge imp
r
ov
em
ents a
nd p
e
a
k
cli
ppin
g
s
were a
c
hi
eved.
Our
study i
s
limite
d
to only i
n
T
a
mil Nadu
st
ate in I
ndi
a.
In
future
work our study will be
exp
ande
d to
all state
s
in I
ndia u
s
in
g th
e above
tech
nique
s fo
r de
mand
sid
e
m
anag
ement i
n
wh
ole
co
un
try
and in
cre
a
se the revenu
e o
f
the utilities.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ca
se Study o
f
line loss
Re
ductio
n
in TNEB Power G
r
i
d
(S.Sam
bath)
5853
Referen
ces
[1]
P Chira
dej
a, R Ramak
u
ma
r. An Approa
ch to
Quantif
y the T
e
chni
cal Be
n
e
fits of Distribute
d
Generati
on.
IEEE
T
r
ansactio
n
s on Ener
gy
Conv
ersio
n
. 20
04; 19(4): 7
64–
773.
[2]
W
Caish
eng,
MH Ne
hrir. An
al
y
t
ical
Ap
proa
ches
for Opti
mal Pl
aceme
n
t
of Distrib
ute
d
Gen
e
ratio
n
Sources in Pow
e
r S
y
stems
. IEEE Transactions on Power
System
s
. 20
04
; 19(4): 206
8 – 207
6.
[3]
Momoh J, Yan X
i
a, Bos
w
ell GD.
An appro
a
ch to deter
mi
ne Distrib
uted
Generati
on (D
G) benefits i
n
pow
er netw
o
rks.
Pow
e
r S
y
m
p
osium. 2008. NAPS.
[4]
Akorede MK,
Himaz
H, Ari
I, Abkadir MZA. Effect
ive m
e
thod
for o
p
ti
mal a
lloc
a
tio
n
of distri
bute
d
gen
eratio
n un
i
t
s in meshed
electric p
o
w
e
r
s
y
stems Gen
e
ratio
n
. T
r
ansmiss
ion & Dis
tributio
n IET
.
201
1: 5(2): 6-2
87 F
eb.
[5]
Joos G, Ooi BT, McGillis D,
Galia
na FD. Engi
neer
in
g Soc
i
et
y
S
u
mmer Meetin
g. 200
0; 1762-
176
7.
[6]
L Ramesh, SP Cho
w
dhu
r
y
, S
Cho
w
d
h
u
r
y
, A
A
Natara
jan.
Di
stri
butio
n F
e
e
d
e
r Restructur
in
g for Better
Voltag
e Re
gul
ation a
nd L
i
ne
Loss Re
ductio
n
.
IEEE Power
c
on.
200
8.
[7]
W
ang Ca
ishe
n
g
, Hashem M. Anal
ytic
al Appr
oach
e
s for Optimal Plac
eme
n
t
of Distributed
Generatio
n
Sources in Pow
e
r S
y
stem.
IE
EE T
r
ansactio
n
on Pow
e
r System.
19(
4): 20
68-2
076
200
4
[8]
Quezad
a, Victor H Mend
ez Juan R
i
ver Ab
bad,
T
o
ma‘s Gomez San R
o
man. Assessm
ent of Energ
y
Distributi
o
n
Lo
sses for Incr
ea
sing, P
enetr
a
ti
on of
Distri
but
ed gen
erati
on.
IEEE Transaction
on P
o
wer
System
. 20
06; 21(2): 53
3-5
4
0
.
[9]
Impact
of D
i
str
i
b
u
te
d g
e
ner
ati
on
ov
er p
o
w
e
r
los
s
es
o
n
D
i
s
t
rib
u
ti
on s
yste
m
b
y
fr
acis
co M
Gonz
le
z-
Lo
ng
art.
[10]
Datas col
l
ecte
d from various
sources i
n
T
N
EB trainin
g
inst
itutes and
LD c
entre Ch
en
nai.
[11]
N Mithu
l
a
nant
han, T
han
Oo
, Le V
a
n
Phu.
Distrib
uted
Gener
ator Pl
ace
m
e
n
t i
n
Pow
e
r Distrib
utio
n
System Usi
ng
Genetic Alg
o
rit
h
m to R
educ
e Losses
. T
hammasat Int. J. Sc.
T
e
ch., 2004; 9: 55-62.
[12]
A Laks
h
mi
D
e
vi, B S
ubr
a
m
an
yam.
A
New
Hybr
id
Method
for
L
o
ss R
educti
on
an
d V
o
ltag
e
Improv
e
m
e
n
t In Rad
i
al
Dist
r
ibuti
on Syste
m
- A C
a
se
Study
.
i-man
a
ger
’
s
j
our
nal
on El
ectrica
l
Engi
neer
in
g
. 2008; 1(3): 6
4
- 68.
[13]
Rafiei M, Zadeh MS.
Opti
mi
zation
of a
typic
a
l b
i
o
m
ass fue
l
ed
pow
er p
l
a
n
t usin
g Ge
netic
alg
o
rith
m
an
d
bin
a
ry partic
l
e
sw
arm opti
m
i
z
at
io
n
. 17
th
Confer
ence
o
n
Electric
al P
o
w
e
r D
i
strib
u
ti
on N
e
t
w
ork
s
(EPDC). 201
2; 1-10 2
nd.
[14]
F
an HY, Shi
Y.
Study of V
m
ax
of the P
a
rticle
Sw
arm
Optimi
z
a
t
i
o
n
A
l
gorit
hm.
Pr
oc
eed
ings
of the
W
o
rkshop
on
Particle
S
w
a
rm Optimizati
on. Ind
i
an
ap
ol
is. Purd
ue S
c
hoo
l of E
ngi
neer
ing
a
n
d
T
e
chnolog
y, IU
PUI (in press). 200
1.
[15]
Musa H, Ada
m
u SS.
PSO
Based DG Si
zing for Improv
ement
of Volt
age Stab
ility Index i
n
Rad
i
a
l
Distributi
on Sy
stems
. Proc
ee
din
g
s of 2
nd
IAST
ED Int. Conferenc
e on
Po
w
e
r an
d En
erg
y
S
y
stems
a
n
d
Appl
icatio
n (PESA 2012). 2
0
12; 175-
18
0.
[16]
H Musa, SS Adamn.
Volta
g
e
impr
ove
m
ent and Pow
e
r l
o
s
s
reductio
n
for a T
y
pical sub
-
transmissio
n
regi
on usi
ng
opti
m
a
lly pl
ac
ed an
d si
z
e
d
DG
, Internationa
l jo
urna
l o
f
Electrical, El
ectronics a
n
d
Comp
uter s
y
st
ems. 2013.
Evaluation Warning : The document was created with Spire.PDF for Python.