TELKOM
NIKA
, Vol. 11, No. 4, April 2013, pp. 2253
~22
6
3
ISSN: 2302-4
046
2253
Re
cei
v
ed
De
cem
ber 2
3
, 2012; Re
vi
sed
March 2, 201
3; Acce
pted
March 10, 20
13
Experiment System o
f
Motorcycle Impact Injury
Using Electric Motor Traction
Haibin CHE
N
1
, Jianjin HANG
1
, Liy
i
ng
ZHANG
2
, Xin NING
1
, Xiao
y
a
n LI
1
, Zhiy
ong
YIN
1
,
Guangy
u
YANG
1
, *Zheng
guo WANG
1
1
State Ke
y
La
b
o
rator
y
of T
r
auma, Burns, and
Combi
ned Inj
u
ries
Institute of Surger
y
Res
earch,
Dapi
ng Hos
p
it
al, T
h
ird Military Med
i
ca
l Univ
ersit
y
Cho
ngq
in
g 40
0
042, Ch
in
a, Ph./F
ax: +
86-23-6
871
80
64
2
Bioen
gin
eer
in
g Center
W
a
y
n
e State U
n
iversit
y
, Detro
i
t, Michiga
n
48
202, USA, Ph./F
ax: +
1
-31
3
-20
5
-30
6
7
*Corres
p
o
ndi
n
g
authors, e-m
a
il:
w
a
ngzh
g
@
c
ae.cn
A
b
st
r
a
ct
Althou
gh
moto
rcycle cras
h is
one
of the
mo
st
common c
a
uses of
de
ath
and
in
jury, ther
e has
n
’
t
bee
n a stan
dar
d exp
e
ri
me
nt system to si
mul
a
te the g
ener
ation of the r
e
sul
t
ing
motorcycl
e
impact in
juri
es
.
A uniq
ue
mot
o
r drive
unit (
M
DU) an
d mo
torcycle crash
simulati
on u
n
i
t (MCSU) w
e
re deve
l
o
ped
to
establish
a short-track and
high-a
ccur
a
cy exper
iment
sy
stem
of
moto
r
cycle impact injury. The control
hardw
are of the MDU co
nsi
s
ts of a “tw
o
DC motors
”
s
ystem a
nd a “
t
w
o
drums, cl
osed-
loo
p
, frictio
n
transmissio
n
”
system, an
d the co
ntrol soft
w
a
re of
the MDU has
a nov
el “carri
age
ac
celer
a
tion
profi
l
e
control
progr
a
m
” w
h
ich w
a
s
speci
a
lly s
e
t u
p
to prev
ent
th
e cusp-
like
pul
se an
d osci
ll
ati
on p
h
e
n
o
m
e
n
o
n
i
n
the acce
ler
a
tio
n
stage
clos
e
to the u
n
ifor
m veloc
i
ty. T
he
uni
que
motorc
ycle sl
ed a
nd
ener
gy a
b
sorb
er
constitute a n
o
v
el MCSU. T
h
ir
teen ve
hicl
e frontal i
m
p
a
ct
tests (50, 64, 80k
m/h) w
e
re carri
ed out to va
lid
a
t
e
the motor traction pr
operties
of this
experiment system
of m
o
torcyc
le im
pact injury, while 18
m
o
torcyc
list
ejecti
on i
n
jury
simulati
ons (3
0
,
40, 50k
m/h) a
nd 3
moto
rcyc
l
e
-pe
destria
n i
m
p
a
ct inj
u
ry si
mu
lati
ons (5
0km/h)
we
re
ca
rrie
d
ou
t to
e
x
am
in
e i
t
s simu
l
a
tio
n
ca
pa
b
i
l
i
t
y. Rese
a
r
ch re
sul
t
s sh
o
w
tha
t: (1)U
si
n
g
a un
i
que
gen
eratio
n a
l
g
o
rith
m of th
e
carriag
e acc
e
l
e
ratio
n
-
an
d
ve
l
o
ci
ty-tim
e curve
a
n
d
un
i
que
m
a
nu
fa
ctu
r
ing
techni
qu
es of hardw
are co
mpon
ents,
the a
ppar
atus pres
e
n
ted in th
is pa
per has
a pote
n
tial to b
e
co
me th
e
first short-track experi
m
e
n
t system of motorc
ycle i
m
pact
in
j
u
ry. (2)Due to a hig
h
w
e
ight capac
ity w
i
th the
ability to pr
opel whole v
ehic
l
es,
the M
DU
can be
used in the full
mo
torcycle/full v
ehicle cras
h tests
or
vehicl
e co
mp
o
nent sle
d
i
m
p
a
c
t tests.
Ke
y
w
ords
: electric m
o
tor trac
tion, mo
torcycle crashes, im
pact injury
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Motorcycle
crash
e
s a
r
e an
incre
a
si
ng p
ublic he
alth p
r
oble
m
in the present wo
rl
d [1-5].
The m
o
torcyclist
eje
c
tion
injury a
nd m
o
torcy
c
le
-pe
d
e
stria
n
imp
a
ct injury a
r
e t
w
o
of the m
o
st
comm
on inju
ry severitirs of the resultin
g motorc
ycle i
m
pact inju
ry [6]. Because they are capa
ble
of high spe
e
d
s but offer
minimal occu
pant prot
e
c
ti
on, motorcycles are the most ha
za
rd
ous
high
way vehi
cle
s
: they ha
ve the highe
st cr
ash co
st
s pe
r pe
rson
-mile (NHTS
A
, 2002)[7]. Per
vehicle mile
traveled, mot
o
rcy
c
le ri
ders have a 34
-fold highe
r ri
sk of de
ath in a cra
s
h th
an
peopl
e d
r
ivin
g othe
r type
s of moto
r ve
hicle
s
, a
nd
t
hey al
so
are
eight time
s
more
likely to be
injure
d
(NHT
SA, 2007
) [8]
.
The
high
er risks
of
inju
ry and death
for
motorcycl
e
ri
ders have be
en
repo
rted to
b
e
asso
ciate
d
with a you
n
g
e
r a
ge, la
ck
of prote
c
tion,
and p
o
o
r
visibility of the ri
der
and vehi
cle t
o
other
ro
ad
use
r
s [9
-1
2]. A number
of studie
s
sh
ow that the
most imp
o
rta
n
t
variable
affecting mo
rtality in moto
rcy
c
le
crashe
s i
s
h
ead i
n
jury. Th
ora
c
ic an
d a
b
dominal
trau
ma
as well a
s
pe
lvic ring fra
c
ture
s asso
ciat
ed wi
th long
bone inju
rie
s
appe
ars to be the second
ary
factors contri
buting to re
d
u
c
ed
survival [1], [13-16].
To date, the
r
e ha
s bee
n very little inform
ation pu
blished on th
e g
eneration me
cha
n
ism
of motorcycle
impact inj
u
ry
. Acco
rdin
g to the
comput
er-ba
s
ed
onli
ne search to
identify English
article
s
abo
ut “Moto
r
cycle
injury” pu
blished fr
om
Ja
n
uary 1
994
to
De
cem
b
e
r
2
012 i
n
Pub
M
ed
databa
se, fo
r insta
n
ce, 18
96 a
r
ticle
s
were
availabl
e. Ho
weve
r, m
o
st a
r
ticle
s
a
r
e
related
to
the
epidemi
o
logi
cal and
clini
c
a
l
research
es
of motorcyc
le
impact inj
u
ry
. Only four (4
) arti
cle
s
we
re
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2253 – 2
263
2254
about the ge
neratio
n mechani
sm of motorcy
c
le imp
a
ct injuri
es [6
], [17-19]. One of the reasons
is that
:
there
hasn’t been a
standa
rd exp
e
rime
nt sy
ste
m
of motorcy
c
le impa
ct inj
u
ry.
The pu
rpo
s
e
of this study is to establi
s
h
a sho
r
t-tra
c
k, high-accu
ra
cy experiment
system
of motorc
y
c
le impac
t injury us
ing elec
tric motor trac
tion.
2. Rese
arch
Metho
d
2.1. Design
Appro
ach
(a) L
-
shap
ed
stru
ctural layout. The experime
n
t
sy
st
e
m
of
mot
o
rcy
c
le impa
ct
inj
u
ry
wa
s
desi
gne
d
to h
a
ve
a L-sha
p
ed stru
ct
ural l
a
yout (Fi
gure
1). It h
a
s the
followi
ng
ope
ration
pri
n
ci
pl
e
:
sho
w
n in Fi
g
u
re
s 1-2, two
DC moto
rs resp
ectively d
r
ive two d
r
u
m
s to mobili
ze the dra
g
st
eel
rope
by frictio
n
; the drag
st
eel ro
pe then
pulls the
m
o
torcy
c
le
sled t
o
move alon
g
the “test tra
c
k”
from the
“test
pre
paration
room” to th
e
crash h
a
ll.
At a pre-d
e
fined
positio
n, the
motorcycle
sl
ed
is me
cha
n
ical
ly sepa
rated f
r
om the d
r
ag
rope
and
the
n
a motorcycl
e
crash take
s place o
n
ly b
y
mean
s of the inertia of mot
o
rcy
c
le sl
ed.
(b) Te
ch
nical
requi
reme
nt. Two main
co
mpone
nt
s of this experi
m
e
n
t system are
:
motor
drive u
n
it (MDU)
and
motorcycle
crash
simu
lati
on unit
(M
CSU). Th
e M
D
U is fo
r d
r
iving
motorc
yc
le
s
l
ed, while the
MCSU is
for
s
i
mulating motorc
y
c
le cras
hes
.
The followi
ng
MDU
kinem
a
t
ics criteri
a
, base
d
on ECE
R94 an
d ISO1323
2, were
use
d
to
assure the ini
t
ial test state of test items:
1.
the maximum
drag
accele
ration of
moto
rcy
c
le
sled
b
e
0.5
Gs (G:
accele
ration
of gravity) or
less;
2.
the averag
e d
r
ag a
c
cele
rati
on of motorcycle sl
ed be 0.
3 Gs o
r
less;
3.
the dra
g
velo
city accuracy
be ±2% or le
ss
whe
n
the i
m
pact velo
cit
y
of motorcycle sled i
s
40
mph or le
ss than;
Beside
s,
thi
s
MCSU wa
s required
to si
mulate
the
ge
neratio
n of th
e motorcycli
st
ejectio
n
injury and m
o
torcy
c
le-ped
e
s
trian im
pa
ct injury.
(c) De
sign p
r
incipl
e. The kinem
atics eq
uation of this experim
ent
system of motorcy
c
le
impact inju
ry can b
e
simplif
ied as
dt
dn
GD
k
M
M
L
2
(1)
Incorpo
r
ating
the followin
g
formul
as:
)
(
2
2
2
2
2
2
lS
lS
lV
lV
r
r
l
l
r
r
D
G
D
G
D
G
D
G
D
G
GD
(2)
LV
LT
L
L
M
M
M
M
0
(3)
It can be also
expresse
d a
s
:
dt
dn
D
G
D
G
D
G
k
M
M
M
M
lS
lS
lV
lV
r
r
LV
LT
L
)
(
)
(
2
2
2
0
(4)
Whe
r
e:
M, n
= Eletro-m
agn
etic torque an
d rotating sp
eed
of DC motors, re
spe
c
tively
M
L
, GD
2
= Lo
ad torqu
e
, flywhe
el mome
nt of whole sy
stem, re
spe
c
t
i
vely
k
= Transmi
ssion
coefficient of whole sy
stem
0
L
M
= Resi
sta
n
ce torque
when moto
rs d
o
no-lo
ad run
n
ing
LT
M
= Resi
sta
n
ce torque
re
sulting fro
m
mech
ani
cal transmi
ssion
s
LV
M
= Resi
sta
n
ce torque
re
sulting fro
m
the linea
r moti
on of motorcycle sl
ed
2
r
r
D
G
= Flywheel
moment of ro
tating parts,
consi
s
ting of the rotation
al inertia of
mech
ani
cal transmi
ssion p
a
rts an
d moto
r rotato
rs
2
l
l
D
G
= Equivalent flywheel moment of line
a
r motion p
a
rts (i.e. the motorcy
c
le sle
d
and drag ste
e
l
rope
) ba
sed
on the Prin
cip
l
e of Moment
um Con
s
e
r
va
tion
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ent System
of Motorcycle Im
pac
t Injury
us
ing Elec
tric
(Haibin CHEN)
2255
2
lV
lV
D
G
= Equivalent flywheel mom
ent that the mass of the mo
torcy
c
le sle
d
unde
r linea
r
motion is con
v
erted to
2
lR
lR
D
G
= Equivalent flywheel mom
ent that the
mass of the dra
g
steel ro
pe u
nder lin
ea
r
motion is con
v
erted to
Figure 1. L-shape
d Struct
ural Layo
u
t of this Experim
ent System
Figure 2. Sch
e
me of Ope
r
a
t
ion Prin
ci
ple
of this Experi
ment System
Tension wheel
Tensi
o
n w
h
eel
B
e
hi
n
d
dr
u
m
Front dru
m
Tachom
et
e
r
Guide wheel-
4
Guide wheel-5
Crash wall
Gui
d
e wheel
-3
Gui
d
e wheel
-2
Gui
d
e wheel
-1
M
echani
cal
t
e
ns
i
o
n
So
lid
lin
e:
ro
pe pr
essing
up
per
rop
e
race
of
drum
; Dotted line: rope
p
ressi
n
g
lower
ro
p
e race of
dru
m
R
ope
p
r
essi
n
g
l
o
we
r r
o
pe
Ro
p
e
bet
w
een two wheels
Photo
g
ra
p
h
y
p
i
t
Dra
g
ro
p
e
Pre
p
aration room
Transitional trac
k
Crash barrier w
a
ll
Motorc
y
c
le
sled
Dri
v
e dr
um
Hyd
r
au
lic ten
s
i
o
n
Dra
g
ro
pe
Tachom
eter
DC m
o
tor
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2253 – 2
263
2256
From th
e a
b
o
ve ki
nemati
c
s eq
uation
s
,
the de
si
g
n
prin
ciple
s
of the
MDU
[2
0
]
are as
follows
:
1.
A uniqu
e
“Mo
t
or
Control St
rategy” was
desi
gne
d to
assure th
at: the el
ect
r
oma
gnetic torque
(
M
)
of two
DC moto
rs is
stable an
d reli
able
while th
e re
si
stan
ce t
o
rqu
e
when
motors do
no-
load ru
nnin
g
(
0
L
M
) is
approximate to a c
o
ns
tant.
2
.
A u
n
i
q
u
e
“
C
lo
s
e
d
-
loo
p
F
r
ic
tio
n
D
r
ive Str
a
te
g
y
” a
n
d
“d
r
a
g s
l
e
d
”
a
n
d
“
m
in
i-r
a
il” we
r
e
d
e
s
i
g
ned
to assu
re tha
t: the re
sista
n
ce to
rq
ue
re
sulting f
r
om
mech
ani
cal transmi
ssion
s
(
LT
M
) and
(
2
r
r
D
G
) and (
2
lR
lR
D
G
) are a
pproxim
ate to a con
s
tant, and the (
LV
M
) is mi
nimal.
Beside
s, the desi
gn pri
n
ci
ples of the M
C
SU a
r
e a
s
follows:
The uni
que
“motorcycle
sl
ed” a
nd “ene
rgy ab
so
rbe
r
” we
re d
e
si
g
ned to si
mul
a
te the
gene
ration of
the motorcycl
i
st ejectio
n
inj
u
ry and moto
rcy
c
le-ped
est
r
ian imp
a
ct in
jury.
2.2. The “t
w
o
motors
” s
y
stem
(a) Ge
ne
ral d
e
scriptio
n of the MDU: This MD
U c
o
ns
is
ts
of a “two
motors
” s
y
s
t
em, two
drive drum co
mplexes, a d
r
ag rop
e
co
mp
lex,
and a hydrauli
c
contro
l complex (Fi
gure
s
1
-
3).
(b) DC
moto
rs.
Two DC m
o
tors
with
th
e
ra
ted
po
we
r
of 225
kW (M
odel: Z4
-28
0
-42 DC
motors
)
were s
e
rved as
the power s
o
urce
of this moto
rcy
c
le expe
ri
ment system.
(c) Digital DC spe
ed reg
u
lating ca
bin
e
ts.
Usin
g
a
force
b
a
lan
c
e co
ntrol m
ode,
two
spe
ed regula
t
ing cabi
nets (Model: Sie
m
ens
6RA2
4
87-6
D
V6
2-0
Digital DC S
peed
Reg
u
lat
i
ng
Cabi
nets) provide the ide
n
tical loadi
ng
for the related two motors. The ca
bin
e
t subje
c
t to the
front motor was defin
ed as the master cabinet
and th
e other subje
c
t to the behind motor a
s
th
e
slave cabin
e
t. The maste
r
cabinet contro
l
s
the slave o
ne throu
gh co
mmuni
cation.
(d) M
o
tor
control program
.
To
ensure the reli
ability of t
he motor
drive unit
(M
DU), a
control comp
uter (CtrC)
and PL
C (i.
e
. Prog
ramm
able L
ogi
c
Controlle
r)
were
com
b
ine
d
to
c
o
ns
titute a 2-s
t
age motor
c
ontrol
s
t
rategy: Fi
rst, the
CtrC send
s v
a
riou
s
cont
rol
comm
and
s t
o
the PLC; The
n
, the PLC d
e
fines the
op
eration
par
a
m
eters of two
motors. Th
e
CtrC i
s
conn
e
c
ted
with the PLC
by serial
port
s
. During a drag moti
on the CtrC runs t
he
specilly-developed “Motor
Control P
r
og
ram”.
Figu
re
4
sho
w
s th
e flow ch
a
r
t of moto
r
control
progra
m
. The
“vel
ocity
feedba
ck” si
g
nal is from th
e tachom
eter
to m
easu
r
e th
e linear velo
ci
ty of drag ste
e
l rope.
2.3. Driv
e dr
um complex
(a)
Drive dru
m
. The drive drum
s are used to de
liver the forward o
r
reverse drag
force to
the dra
g
stee
l rope. In ord
e
r to ma
ke suffici
ent fricti
on force bet
ween the d
r
ive
drum
s an
d d
r
ag
rope, two d
r
u
m
s we
re de
signed to hav
e a differ
ent quantity of rope ra
ce
s wh
ose ge
ometri
cal
sizes were
speci
a
lly man
u
factured
(Fi
gure
3
)
. In
fa
ct, the fro
n
t a
nd b
ehind
drum in
clud
es
7 an
d
6 rope
ra
ce
s, respe
c
tively.
The
rota
ry p
a
rt of
ea
ch
d
r
um,
con
s
i
s
ting of
a
sh
aft and
a
hu
b a
nd two
sid
e
plates a
s
well as a rim,
is su
ppo
rted by
two bea
rin
g
ho
use.
Two
end
s
of ea
ch
dru
m
shaft a
r
e
re
spe
c
tivel
y
con
n
e
c
ted to the cou
p
ling
and the brake
dic.
(b) Expan
sio
n
sleeve. Th
e expansi
on
sleeve
is fo
r mech
ani
cally
conne
cting t
he drum
shaft to the hub or brake di
sc. To mai
n
tain the
hub in contact with the drum shaft, this apparatus
allow the hig
h
-st
r
en
gth bo
lts to be tightened an
d th
e
r
eby produ
ce
sufficient pre
s
sure o
r
fricti
on
force b
e
twe
e
n
the adja
c
en
t interface
surface
s
.
(c) Cou
p
ling.
A VULKAN FLEXOMAX-G flexible couplin
g wa
s applied to make a
transmissio
n
con
n
e
c
tion b
e
twee
n the
DC moto
r a
nd
drive d
r
um. T
he flexible
be
havior
of ru
b
ber
cou
p
ling
co
mpone
nts n
o
t only prev
ents the l
o
ca
l dru
m
-m
otor tra
n
smissi
on sy
stem f
r
om
endu
ring i
m
p
u
lse l
oadin
g
,
but also re
du
ce
s the n
o
ise
prod
uced by
the dire
ct int
e
rface bet
we
en
two metal co
mpone
nts (i.e
. motor shaft and drum sha
ft).
(d) B
r
a
k
e di
sc. The
bra
k
e
discs
are for
bra
k
ing th
e in
ertia rotation
drum
sh
afts
after the
DC m
o
tors are instructe
d
to stop. The
control hy
d
r
au
lic pressu
re t
o
bra
k
e di
scs is su
pplied
b
y
the spe
c
ially
-develop
ed hy
drauli
c
pu
mp
station. T
he b
r
ake di
sc of e
a
ch d
r
ive d
r
u
m
is co
nne
ct
ed
with the exp
o
se
d cantile
ver of drum
shaft
an
d i
s
fixed on t
he be
arin
g
hou
se throu
gh a
transitio
nal pl
ate.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ent System
of Motorcycle Im
pac
t Injury usin
g Electri
c
(Ha
i
bin CHEN)
2257
Figure 3. The
“two moto
rs” System and
Drive Dr
u
n
Complex (See
Online Ve
rsi
o
n For Colou
r
s)
Figure 4. Flow Ch
art of Motor Co
ntrol
Program
2.4. Drag rop
e
complex
(a)
Dra
g
ro
pe
loop: sho
w
n
as Figu
re 1.
(b)
Ten
s
ion
device
s
. Th
e
hydra
u
lic te
nsio
n devi
c
e
wa
s de
sig
n
e
d
to ma
ke a
pre
c
isi
on
alignme
n
t of
tensio
n fo
rce
of d
r
ag
rop
e
, whil
e the
mech
ani
cal t
ensi
on
device to
do
a
ro
ugh
alignme
n
t. This hydrauli
c
tension d
e
vice was pl
aced behi
nd th
e behin
d
dru
m
(Figu
r
e
s
1
-
3).
Duri
ng a ten
s
ion ope
ratio
n
, the drag
rop
e
wa
s firmly
pre
s
sed into t
he ro
pe race
s of drive d
r
u
m
s
so that the torque of DC motors
can b
e
tran
smitted to the drag
rop
e
.
(c) Mea
s
u
r
e
m
ent of linea
r velocity of d
r
ag r
ope. Sh
own a
s
Fig
u
re 1, the dra
g
rope
wa
s
tensio
ned
an
d firmly pressed into the
ro
pe ra
ce
s
of
the tach
omete
r
whe
e
l. Du
ring
a drag motio
n
,
the drag rop
e
allows the tachom
eter
whe
e
l to
rota
te and there
b
y the opto-electri
c
al e
n
coder
whi
c
h is co-a
xial with the tachom
eter
wheel
output
s the pulse
sig
nals
represe
n
ting the rota
ry
velocity of th
e tachomete
r
wh
eel. Of
course, th
ese
pulse
sign
als ca
n b
e
u
s
e
d
to calculate
the
linear velo
city and linea
r accele
ration of the dra
g
ro
pe.
2.5. H
y
draulic contr
o
l complex
The ap
paratus (Figu
r
e
s
1-3
)
provide
s
a st
able, a
d
justa
b
le co
ntrol pressu
re for the
hydro
-
cylin
de
r of the
hydra
u
lic ten
s
io
n d
e
vice o
r
the
b
r
ake di
sc. Its
hydrauli
c
pu
mp statio
n ha
s a
compl
e
te hyd
r
auli
c
co
ntrol
system to ma
intain
in co
ntact with the g
eneral co
ntrol
system.
Frontal motor and drum
Behind motor and drum
H
y
draulic t
e
nsion
H
y
draulic
p
um
p
station
Dra
g
ro
p
e
DC
Spee
d
R
egulating
Velocit
y
PLC
C
ont
r
o
l
c
o
m
p
ut
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2253 – 2
263
2258
Figure 5. Cro
s
s-sectio
n View of the Min
i
-R
ail
(Geom
e
tric Di
mensi
oning unit is mm)
Figure 6. Set-up of Motorcycle Cra
s
h Si
mula
tion Unit (se
e
onlin
e versi
o
n for
col
ours)
(a)
Dra
g
Ca
rri
age an
d Energy Absorber
Compl
e
x; (b)
Motorcycle
Crash Hall
Ener
gy
absorber
Mini-rail
Dra
g
carria
g
e
Im
p
act
PU tube &
steel
sleeve
Absorber
Dra
g
sled
(
a
)
Mini-ra
il
Instrumentation base
Ener
gy
absorber com
p
lex
Dra
g
sle
d
(
b
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ent System
of Motorcycle Im
pac
t Injury usin
g Electri
c
(Ha
i
bin CHEN)
2259
2.6. Drag sle
d
and mini-rail
The d
r
ag
sled
is mou
n
ted o
n
a 75
-m lon
g
mini-rail (Fi
gure
5), which wa
s ma
de
up of the
cu
stom-fo
r
ge
d cha
nnel
ste
e
l se
ction
s
of 25c type.
The technical
requi
reme
nts of this mini-rail are a
s
follows:
1. The u
ppe
r
surfa
c
e
s
of this mini
-rail
sh
ould b
e
ho
rizontal an
d the
elevation diff
eren
ce
betwe
en
be ±2m
m
or l
e
ss;
2. The gaug
e of two upp
er su
rfa
c
e ed
ged shoul
d b
e
1
0
150
, and both the overall lo
ngitudin
a
l
and vertical linearity of two
edge
s sh
oul
d be ±2 mm o
r
less.
This d
r
ag
sle
d
is a key
co
mpone
nt of t
he MDU. Th
e novel structure was d
e
si
gned to
con
n
e
c
t the drag ste
e
l rop
e
with the motorcy
c
le sl
ed so that they can be
firmly conne
cted du
rin
g
drag
motion
and a
u
tomati
cally sepa
rat
e
from e
a
ch
other
at
a pre-defin
ed se
paratio
n
po
si
tion
(
F
ig
ur
e
6)
.
2.7. Motorcy
c
le crash si
mulation unit
(a) Motorc
yc
le
s
l
ed.
The motorc
yc
le s
l
ed
co
ns
is
t
s
of a tes
t
motorc
y
c
le, mot
o
rc
y
c
le
carria
ge (Fi
g
ure 6
)
, and locking fixture
.
During a
te
st, the motorcycle
sled i
s
prop
elled by
the
MDU a
nd
sl
ides alo
ng t
he mi
ni-rail. Wh
en thi
s
sled
a
rrive
s
at a p
r
e
-
defi
ned
po
sition
a
motorc
yc
le
c
r
as
h tes
t
is
c
a
rried out.
The lo
cking
fixture ha
s
a
novel
stru
cture to
a
s
sure t
hat the m
o
to
rcy
c
le
sled
a
nd d
r
ag
sled
ca
n be fi
rmly co
nne
ct
ed du
ring
a d
r
ag m
o
tion
a
nd auto
m
atically sep
a
rate
from ea
ch
other
at a pre-defin
ed se
paration
position.
(b) E
nergy a
b
so
rbe
r
. Th
e
requi
re
d sl
ed
decel
e
r
ation
pulse is a
c
hi
eved by me
a
n
s of
an
energy absorber. Thi
s
en
ergy ab
so
rbe
r
con
s
i
s
ts
of two or mo
re
re-usable pol
yurethan
e tube
device
s
pl
aced in p
a
rall
el
insid
e
ste
e
l
pipe
s,
whi
c
h
are
rigidly att
a
ch
ed to the
fixed base pl
ate
(Figu
r
e 6). Decel
e
ratio
n
o
c
curre
s
whe
n
two or
mo
re steel sh
afts
o
n
the ene
rgy absorb
e
r, whi
c
h
are fitted with
olive-sh
ape
d
ends, a
r
e im
pacte
d
by the motorcycle
sled a
nd ram
m
ed in
side th
e
polyureth
ane
tubes, ab
so
rb
ing the impa
ct energy.
2.8. Validation tes
t
s
To validate
the moto
r
dra
g
prope
rtie
s
of this
experi
m
ent
system
of moto
rcy
c
l
e
impa
ct
injury,
six 50
-kph
sl
ed f
r
on
tal impa
ct te
sts a
n
d
six
6
4
-kph
and
on
e 80
-kph
full
vehicle
fronta
l
impact te
sts
were ca
rri
ed
out according
to ECE R94 and ISO132
3
2
.
In per sl
ed t
e
sts a
stand
ard
sle
d
wa
s d
r
ag
ged t
o
impa
ct the
energy ab
so
rber
of
polyureth
ane
-tube type attach
ed to a solid cra
s
h ba
rrier
wall at a
50-kph
sp
eed
(Figu
r
e 7
)
[21],
while in
pe
r vehicl
e test
s a
full-scale ve
hicl
e (weighi
ng
ap
proxim
ately
680 kg or
12
00 kg
)
wa
s
prop
elled to i
m
pact the
sol
i
d cra
s
h b
a
rri
e
r wall at a 6
4
- or 8
0
-kph
spe
ed.
Figure 7. Du
mmy Frontal Impact Sled T
e
st (see onli
n
e versio
n for
colo
urs)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2253 – 2
263
2260
2.9. Animal (pig) expe
r
iments
To exami
ne t
he
simulation capability of
this
experim
ent sy
stem of motorcycle
impact
injury, 18 mo
torcy
c
list eje
c
tion injury si
mulation
s (Fi
gure 8; the ej
ection velo
citi
es
≈
30, 40,
50
kph
)
[6] and
3 motorcycle
-pede
stria
n
im
pact inju
ry
si
mulation
s (Fi
gure
8; the impact velo
citi
es
≈
50 kph)
we
re
carrie
d out.
Digital hig
h
-speed
col
o
r vi
deo
s are u
s
e
d
to photo
g
raphi
cally re
cord
each event.
Figure 8. Animal Experime
n
t Models
(se
e
online versi
on for colou
r
s)
Left: Motorc
y
c
lis
t Ejec
tion Injury; Righ
t: Motorc
yc
le-P
edes
t
rian Impac
t
Injury.
Figure 9. Dra
g
Accel
e
ratio
n
Profiles In
Vali
dation Te
sts (se
e
onlin
e versio
n for
colo
urs)
Upper: 5
0
km/h;
Middle: 64 km/h; Lo
w
e
r: 8
0
km/h.
Gr
ee
n Line Rep
r
esents The Pre
-
Defined Values, And Red Line
Represents Th
e
Actual Measurement Values
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Expe
rim
ent System
of Motorcycle Im
pac
t Injury usin
g Electri
c
(Ha
i
bin CHEN)
2261
3. Results a
nd Analy
s
is
3.1. Validation tes
t
results
Table 1 an
d Figure 9 sho
w
that this experime
n
t
sy
st
em of
mot
o
rcy
c
le
impact
injury is
sufficie
n
t to manag
e the
deman
ds fo
r high velo
city
motorcycle
cra
s
h
e
s. In f
a
ct, the maxi
ma
l
cra
s
h
velo
city of thi
s
exp
e
riment
system
is up
to
120
km/h
whil
e th
e moto
rcy
c
le
sled
a
s
sembl
y
weig
h 1500
kg.
In Tabl
e 1,
imp
V
and
drag
A
max
and
drag
avg
A
are
re
spe
c
tively the im
pact vel
o
city
an
d
maximum
drag a
c
cele
rati
on a
nd
average
dra
g
acceleratio
n
of
test
sled
s
pri
o
r to
the i
m
p
a
ct,
while
imp
A
max
is its l
ongitudi
nal m
a
ximum d
e
ce
leration
du
rin
g
the i
m
pa
ct.
a
L
is the
accel
e
ration
distan
ce of m
o
torcy
c
le sl
ed
.
Table 1. Valid
ation Test
Da
ta
Input variables
Output p
a
ramet
e
rs
)
/
(
h
km
V
imp
)
(
max
G
A
drag
)
(
G
A
drag
avg
)
(
max
G
A
imp
)
(
m
L
a
Pre-defined
50
0.48
0.24
---
---
Actual-1
(n = 6)
49.874±0.31
7
0.462±0.012
0.208±0.019
30.557±1.24
7
38.6±1.013
Pre-defined
64
0.49
0.29
---
---
Actual-2
(n = 3)
63.867±0.20
9
0.478±0.010
0.231±0.047
No
data
52.9±1.307
Pre-defined
80
0.64
0.40
---
---
Actual-3
(n = 1)
79.75
0.585
0.357
No
data
63.1
3.2. Animal experiment r
e
sults
(a) Moto
rcy
c
li
st eje
c
tion
inj
u
ry. From
hig
h
-spee
d vide
os, the
g
ene
ration of
moto
rcy
c
list
ejectio
n
injury
was divid
ed i
n
to three ph
a
s
e
s
:
1.
Impact
pha
se: The
moto
rcy
c
le
sle
d
wa
s d
r
a
gged
up
to a
p
r
e
-
define
d
velo
city and
the
n
impacte
d the energy absorber
of polyu
re
thane tube type.
2.
Ejection ph
a
s
e: The mot
o
rcy
c
list surrogate (a
nima
l) placed fre
e
ly on the motorcy
c
le in
a
riding p
o
stu
r
e
was ej
ecte
d forward, acco
mpany
ing
with the rotation
motion in the air.
3.
Land p
h
a
s
e: The he
ad an
d sho
u
lde
r
an
d thorax
of ej
ected a
n
imal
impacte
d in turn the h
a
rdy
grou
nd.
Beside
s, vary
ing deg
ree of
injurie
s
focu
sing on the li
ver, heart, lung and splee
n
were
found. T
here
existed
a
si
g
n
ificant
po
sitive co
rr
elation
between
ISS (Inju
r
y Sev
e
rity Sco
r
e
)
and
the eje
c
ted
velocity of th
e
motorcycle
drivers
(ISS = 1
6
.7±2.9 f
o
r
3
0
km/h,
25.0
±
0.0 for
40
km
/h,
37.3±1.0 fo
r 50 km/h
).
The above ex
perim
ent re
su
lts are
similar to
the actual motorcycli
st ejection eve
n
ts.
(b) Motorcy
c
le-Ped
estri
a
n
impa
ct inju
ry. From hi
gh
-sp
eed
video
s, the g
ene
ration of
motorcycle
-p
ede
strian im
p
a
ct injury in
cl
uded three p
hases:
1.
Impact pha
se: The test motorcycle m
ount
ed on th
e motorcycle
sled wa
s dragge
d up to a
pre
-
defin
ed velocity and it
s front wheel
then impa
cted the rig
h
t tibia of the ere
c
t pede
stri
an
model, in wh
ich the he
ad
-ne
ck m
odel
was
repla
c
e
d
by the head-n
e
ck com
p
lex of living
animal
(pi
g
) a
nd oth
e
r com
pone
nts
we
re
sim
u
lated
by
a
cu
stom
-ma
de p
h
ysi
c
al
m
odel
simila
r
to the Hybrid
III 50% dummy.
2.
Ejection ph
ase: The wh
ole pede
stria
n
m
odel
revolve
d
round the m
o
torcy
c
le fro
n
t wheel, and
wa
s then eje
c
ted forwa
r
d, a
c
compa
n
ying
with the rotat
i
on motion in
the air.
3.
Land
pha
se:
Within a
ce
rtain d
s
itance from the i
n
itial impact p
o
int, the head
-sh
oulde
rof test
animal impa
cted the hardy
backgroun
g or the
feet and head a
nd sho
u
lde
r
imp
a
cted in turn
the hardy ba
ckgroun
d.
The ab
ove experim
ent re
su
lts are
also si
milar
to the a
c
tual moto
rcycle-ped
est
r
ia
n crash
events.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2253 – 2
263
2262
3.3. Contribu
tions of this study
(
a) T
he first
short-t
r
a
ck ex
perim
ent syst
em of
motorcycle impa
ct injury. The ex
perim
ent
system
of m
o
torcy
c
le im
pact inj
u
ry h
a
s a
75
-met
er te
st tra
c
k and
high
-a
ccuracy
ca
rri
a
ge
velocitie
s
an
d accel
e
ratio
n
s. Thi
s
system ha
s al
so a u
n
ique
motorcycle
sled an
d en
e
r
gy
absorber
and thereby has a capability
of simulate
t
he generation of t
he mot
o
rcy
c
list ej
ection
injury and m
o
torcy
c
le-pedestrian impact injury
. It is
notable th
at to date th
ere
hasn’t bee
n
a
stand
ard
exp
e
rime
nt syste
m
of motorcy
c
le im
pac
t i
n
j
u
ry. Only a f
e
w
whol
e m
o
torcy
c
le
cra
s
h
t
e
st
sy
st
em
wer
e
re
po
rt
e
d
in t
he previous lite
r
ature
s
. The p
o
ssib
le
sho
r
t
e
st
t
r
ac
k of
mot
o
r
c
y
c
le
cra
s
h te
st is
122-meter lo
ng in Chi
na [22].
Hen
c
e, thi
s
d
e
vice ha
s a
p
o
tential to be
come th
e first
sho
r
t-tra
c
k e
x
perime
n
t sy
stem of
motorc
yc
le impac
t injury.
(b)
Uniq
ue m
o
tor co
ntrol
strategy. The cont
rol ha
rd
ware of the MDU h
a
s a
“two DC
motors” sy
ste
m
and a “two
drum
s, clo
s
e
d
-loo
p, fr
ictio
n
transmissio
n” syste
m
an
d thereby a
s
sure
the reliability of the MDU.
The cont
rol softwa
r
e of
the
M
D
U
co
n
s
ist
s
of a
no
vel “carriag
e
accele
ratio
n
profile
control”
prog
ram. Th
e p
r
ogra
m
inp
u
ts the ta
rget operation pa
ramete
rs of
DC moto
rs
and
desi
g
n
s
a
carriage vel
o
city
- and
accel
e
ration-time
cu
rve. The interesting
co
ntrib
u
tion is th
at: the
gene
ration
al
gorithm
of the ca
rri
age a
c
cele
ration
-
a
nd velo
city-time cu
rve
wa
s spe
c
ially se
t up
to prevent th
e cusp-li
k
e
p
u
lse
an
d o
s
cil
l
ation p
hen
o
m
enon
in
the
accele
ration
stage
cl
ose t
o
the
uniform
velo
city. Noted tha
t
though
such
a
cu
sp
-like p
u
lse
o
r
o
s
cill
ation p
hen
om
enon
ge
nerally
occurre
d
in t
he p
r
eviou
s
automobil
e
traction
sy
ste
m
s, they ha
d a
sufficien
tly long tra
c
tion
distan
ce fo
r speed
reg
u
lation to meet th
e spe
ed
control accu
ra
cy requireme
nts. This g
ene
rati
on
algorith
m
ha
s been p
r
oven
to assure th
at the MDU
has the
high
-accuracy
carriage velo
citie
s
(e.g.
imp
V
= 49.87
4±0.31
7 km/h
) and
accel
e
rations
(e.g.
drag
A
max
= 0.462±0.012
Gs) within
a
sho
r
t
drag di
stan
ce
.
(c) Uni
que m
anufa
c
turin
g
tech
niqu
es.
1.
The
knot
-work of th
e d
r
a
g
ste
e
l rope
wa
s sp
ecial
l
y
made
to
ensure
a si
milar diamet
er
betwe
en th
e
rope
knot a
n
d
othe
r
rop
e
parts
an
d the
r
eby a
smoot
h sli
de
betwe
en d
r
ag
rope
and any ro
pe
races.
2.
The optimal
match bet
we
en the “d
rag
rope
-d
ri
ve drum” interfa
c
e
area an
d the
tension force
of drag rope
wa
s sp
eci
a
lly set up to gen
erate a
st
able
,
reliable d
r
ag
velocity or accele
ration.
3.
The me
cha
n
i
c
al st
ru
cture
of the drag
sl
ed wa
s subtly desig
ned to
assure a nov
el con
n
e
c
tion
betwe
en the
motorcycle
sl
ed and d
r
a
g
rope: they
are
firmly conne
cted du
ring
a
drag motio
n
while they are automatical
ly s
eparate from each othe
r at a pr
e
-
defi
ned sepa
ratio
n
positio
n.
3.4. Limitations of this s
t
ud
y
Cra
s
h
pul
se
s durin
g the m
o
trocy
c
list ej
e
c
tion
simulati
ons
coul
d not
compl
e
tely si
mulate
the typical
o
r
stand
ard
motorcycle
-b
arri
er cra
s
he
s.
Animal
e
x
perime
n
t m
odel
s
coul
d
not
c
o
mpletely s
i
mulate the injury c
h
arac
teri
stics of actual
motorcy
c
le i
m
pact inju
ry.
4. Conclusio
n
(1)
Using
a u
n
ique
gene
ra
tion algo
rithm
of the ca
rri
a
ge velo
city- a
nd a
c
celeration-time
curve
an
d u
n
i
que m
anufa
c
t
u
ring
techniq
ues of
h
a
rd
ware co
mpo
n
e
n
ts,
the app
a
r
atus
p
r
e
s
ent
ed
in this p
ape
r
has
a pote
n
tial to be
com
e
the firs
t
sh
o
r
t-tra
c
k expe
riment sy
stem
of motorcycl
e
impact injury.
(2)
Du
e to a
high
weig
ht capa
city with the
ability to p
r
opel
wh
ole v
ehicl
es, the
DC moto
r
drive unit
can
be used in t
he full motorcycle/full vehi
cle
cra
s
h te
st
s or ve
hicl
ar
comp
one
nt sl
ed
impact te
sts.
Future
re
se
arch
sho
u
ld im
prove th
e mo
torcy
c
le
cra
s
h sim
u
lation
pulse an
d a
n
i
m
al
experim
ent model.
Ackn
o
w
l
e
dg
ements
The wo
rk re
p
o
rted
i
n
thi
s
pape
r wa
s su
pporte
d
in
pa
rt
by
the Nati
onal Natu
ral Scien
c
e
Found
ation of
China (NSF
C) (No. 30
12
2202 a
nd No. 30928
005
).
Evaluation Warning : The document was created with Spire.PDF for Python.