TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6119 ~ 6126
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.557
1
6119
Re
cei
v
ed
Jan
uary 3, 2014;
Re
vised Ap
ril
2, 2014; Accepted April 2
0
, 2014
Application of Virtual Instrument LabVIEW in Variable
Frequency and
Speed Motor System
Haizhen Guo
*
, Junxiao Wu
Hen
an Mech
an
ical a
nd Electri
c
al Eng
i
ne
eri
n
g Coll
eg
e, Hen
an
Xin
x
ian
g
, 4
530
03, Ch
ina
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: guoh
aiz
hen
e
du@
163.com
A
b
st
r
a
ct
The working pr
ocess of the vir
t
ual
instrum
e
nt system
: first the sign
al input s
i
gnal system
acquir
ed
by a sensor co
nditi
oni
ng circu
i
t, the signal co
nditi
oni
ng ci
rcu
i
t for ampl
ifyin
g
,
filtering, and t
hen thro
ug
h th
e
data
acq
u
isiti
o
n car
d
i
n
to th
e
me
mory, th
en
carries
o
n
the
data
an
alysis
and
proc
essi
n
g
of th
e co
llect
ed
data. T
h
is
pa
per us
es virtu
a
l i
n
stru
ment
envir
on
me
nt L
abVIEW
to
th
e trans
miss
ion
,
processi
ng
a
n
d
grap
hic sig
n
a
l
data acq
u
isiti
on syste
m
for motor ex
peri
m
e
n
t. The me
thod pro
pos
ed
in this pa
per
ca
n
ana
lysis el
ectri
c
al par
a
m
eters
in different circ
umst
a
n
ces of v
a
ria
b
le freq
ue
n
cy motor p
e
rfor
ma
nce.
Ke
y
w
ords
:
virtual i
n
stru
ment,
LabVIEW
,
variabl
e frequ
ency
,
motor
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Virtual Instru
ment (VI) d
e
velopme
n
t is t
he
characte
ri
stics of auto
m
ation in
stru
mentation
field. Virtual instru
ment i
s
mainly used i
n
the
co
nst
r
u
c
tion of comp
uter test a
nd
analysi
s
sy
stem
and
automati
c
cont
rol
syst
em. It softwa
r
e to
re
pla
c
e
the tradition
al ele
c
tro
n
ic i
n
stru
ment, gi
ve
full play to
the new ge
nera
t
ion of compu
t
er of
large capa
city, high spe
ed CAT, CAE potential
,
is
an imp
o
rtant
sign
al a
c
qui
sition a
nd
an
alysis
metho
d
s [1]. Virtua
l instrument i
s
the
ele
c
tro
n
i
c
circuit in a sp
ecific softwa
r
e supp
ort to repla
c
e the co
rre
sp
ondi
ng functio
n
, make full use of the
softwa
r
e
and
hard
w
a
r
e
re
sou
r
ces of co
mputer, a
nd
compl
e
te the
traditional
in
strum
ent pa
rt
or
all of their fu
nction
with th
e com
pute
r
, in ord
e
r to h
a
v
e soft instru
ment co
ntrol,
pro
c
e
ssi
ng a
nd
analysi
s
software as the
core.
LabVIEW u
s
e
s
a grap
hical p
r
o
g
ra
mming lan
g
uage, in bl
ock diag
ra
m form
prog
ram
m
ing
,
most scienti
s
ts, u
s
ing
ch
arts a
nd i
c
on
equipm
ent e
ngine
ers u
s
e
d
are
ba
sical
l
y
the sam
e
, which m
a
kes t
he prog
ram
m
ing p
r
o
c
ess an
d thinki
n
g
pro
c
e
s
se
s
are ve
ry simi
lar.
Provide
s
a lot
of function
s
and
sub
r
outin
es to s
upp
ort
use
r
tasks L
abVIEW, also
provide
s
so
me
spe
c
ial p
r
o
c
e
dure
s
su
ch a
s
GPIB cont
rol, VXI
bus control, serial
port control, and data
anal
ysis,
displ
a
y and
storage. L
abVI
E
W provide
s
spe
c
ially
u
s
e
d
for p
r
og
ra
m develop
me
nt tool, allowi
ng
the use
r
to set a bre
a
kp
oint, dynamic pro
g
ra
m e
x
ecution to observe the
pro
c
e
ss of d
a
ta
transmission, in order
to facilitate debugging.
The devel
op
ment of moto
r ex
peri
m
ent
system b
a
se
d on virtual i
n
stru
ment, u
s
ing the
most p
opul
ar
virtual in
stru
ment softwa
r
e devel
o
p
me
nt enviro
n
me
nt LabVIEW,
the tran
smi
ssion,
pro
c
e
ssi
ng a
nd g
r
aphi
c
si
gnal d
a
ta a
c
q
u
isition
syste
m
of motor e
x
perime
n
t, the ultimate g
o
a
l is
to make the
data acqui
sition card an
d the
softwa
r
e of indep
e
ndent develo
p
ment of the
combi
nation,
reali
z
ation
o
f
spe
c
trum
a
nalyze
r
digita
l storage
oscilloscop
e, fun
c
tion, u
s
ed f
o
r
electri
c
al pa
rameters,
an
a
l
ysis
in
different scen
ario
s of variable
frequ
en
cy mo
tor pe
rform
a
n
c
e
etc. Also a continuo
us po
wer
si
gn
als t
o
the acqui
sit
i
on of motor for further p
r
oce
s
sing in time
domain a
nd freque
ncy dom
ain.
In this p
ape
r,
it is b
a
sed
on an
alysi
s
o
f
curve
of va
riable
freq
ue
ncy
spe
ed
re
gulation
motor
startin
g
. The
co
mp
uter ai
ded
de
sign
of la
rge
amount
s of
d
a
ta an
d different types of l
oad
starting
an
alysis
of the
cha
r
acte
ri
stics of
this
kind
of
motor
startin
g
must m
eet th
e re
quireme
n
t
s,
and a
c
cordi
n
g to different types of load,
the requi
re
d desi
gn pri
n
ci
ples.
The sensor signal, it will be m
e
asured pa
ram
e
ters
can be converted into the
corre
s
p
ondin
g
output
sign
al. The o
u
tpu
t
signal f
r
om
the se
nsor i
s
usu
a
lly we
a
k
si
gnal
or n
o
n
voltage si
gna
l contai
ning
n
o
ise,
so afte
r sign
al c
ondit
i
oning. Th
e o
u
tput sig
nal t
h
rou
gh the
d
a
ta
acq
u
isitio
n ca
rd, co
nverte
d
to digital sig
nals i
n
to the
PC co
mpute
r
, data pro
c
e
s
sing i
s
d
one
by
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
9 –
6126
6120
Labvie
w. Motor control is
completed
by frequ
en
cy
co
n
v
ersio
n
po
we
r su
pply, sp
e
ed en
co
der
a
nd
Labvie
w. This pap
er re
alizes in the Lab
VIEW
data acqui
sition on
the indepe
nd
ent developm
en
t
of the contro
l card, to tra
n
smit the da
ta
collecte
d
and sto
r
ed i
n
the compu
t
er: through t
he
developm
ent of software p
anel, reali
z
e
d
the virtual
digital
stora
ge oscillo
scope with
functio
n
of
spe
c
tru
m
ana
lyzers, can b
e
carrie
d out on the sig
nal
pro
c
e
ssi
ng a
nd display.
2. Design Platform of Virt
ual Instrum
e
nt (LABVIEW)
In LabVIEW,
a virtu
a
l in
strument
(VI)
prog
ram
con
s
ist
s
of t
w
o
parts:
the fro
n
t pan
el
(Front Panel
) and the flow chart (Bl
o
ck Di
a
g
ra
m
)
. The front
panel co
ntrol panel to the
corre
s
p
ondin
g
traditional
electroni
c in
strum
ent,
graphi
cal u
s
er interface, u
s
ers can set up
throug
h the
front pa
nel in
st
rume
nt. On t
he fro
n
t pa
ne
l, the u
s
er inp
u
t throu
gh th
e inp
u
t co
ntro
l is
kno
w
n
as the
impleme
n
tation of
Control, the re
su
lt
of runni
ng th
e p
r
og
ram
outpu
t is re
alized b
y
the Indicto
r
o
u
tput. Virtual
instrument
o
u
tput is
ve
ry rich, ca
n o
u
tput data, an
d ca
n o
u
tput
a
variety of gra
phics, ca
n also save the te
xt or binary file.
LabVIEW is
a gene
ral p
u
rpose
progra
mming sy
ste
m
can b
e
extende
d functio
n
libra
ry
and
sub
r
outi
ne library. It provide
s
fo
r the GPIB dev
i
c
e
control, VXI bus contro
l, and se
rial
port
control, an
d
data a
nalysi
s
, displ
a
y an
d
sto
r
age
ap
p
lication
mod
u
l
e. LabVIEW ca
n b
e
e
a
si
ly
dynamic li
nk library fun
c
t
i
ons
call
s th
e Wind
ow
s
dynamic li
nk library a
nd
use
r
defin
ed
in;
LabVIEW al
so provide
s
CIN (C Interfa
c
e Node
)
no
des
so that a use
r
ca
n use the C or
C++
langu
age,
su
ch a
s
ANSI
C compile
d
prog
ram
m
odule, L
abVIEW ha
s be
come
an o
p
en
developm
ent
platform. L
abVIEW al
so direct
ly suppo
rts
dyn
a
mic
data e
x
chan
ge
(DDE),
stru
ctured qu
ery langu
age
(SQL
), TCP a
nd UDP network p
r
oto
c
ol.
Virtual instru
ment usin
g p
o
we
rful pe
rso
nal
com
pute
r
graphi
cs en
vironme
n
t an
d online
help fun
c
tion,
establi
s
h
co
mplete virtual
instru
m
ent p
anel, inst
rum
ent co
ntrol, d
a
ta analysi
s
and
displ
a
y, instead of the traditional instrum
ent, chang
e the tradition
al instru
ment
s use, improve t
h
e
instru
ment fu
nction
and th
e use efficien
cy, greatly
re
duced p
r
ice o
f
the instrum
e
nt, the use
r
can
according to t
heir o
w
n fun
c
tions ne
ed to
be define
d
in
strum
ent. Virtual inst
rume
n
t
is widely u
s
ed
in sig
nal
pro
c
e
ssi
ng, ele
c
tronic mea
s
u
r
eme
n
t, power e
ngin
eeri
n
g, mine
dete
c
tion, me
dical,
vibration
anal
ysis, a
c
o
u
sti
c
analy
s
is, fau
l
t diagno
si
s a
nd tea
c
hi
ng
and
scientific re
sea
r
ch et
c..
Among them,
it is the most widely used to repl
a
c
e the
conve
n
tional
ben
ch top in
strument
s.
In the LabVIEW user inte
rface,
spe
c
ial
att
ention sh
ould be p
a
id
to providing
operation
template, in
cl
uding t
ool
(T
ools), control
(Controls) te
mplate tem
p
l
a
te an
d fun
c
tion (Fun
ction
s
)
template. Thes
e templates
reflec
t the fu
n
c
tion
and
ch
a
r
a
c
ter
i
stic
of the software [2]. The
template pro
v
ides vari
ou
s used to
cre
a
te, modify and de
bug V
I
program to
ol, as sho
w
n
in
Figure 1. If the template
do
es n
o
t app
ea
r, ca
n be i
n
the Wi
ndo
ws
menu a
nd
sel
e
ct Sho
w
To
ols
Palette com
m
and to di
sp
lay the template. When th
e template
s cho
o
se any kind of tool,
the
mouse arro
w will be
come t
he sh
ape of the co
rrespon
ding tool
s.
Figure 1. Lab
VIEW Tools,
Functio
n
s a
n
d
Control Te
mplate
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Virtual Instru
m
ent LabVIEW in
Varia
b
le
Frequ
en
cy a
nd Speed
… (Hai
zhe
n
Guo
)
6121
The outp
u
t o
f
the template used to gi
ve the front
panel
set various
req
u
ire
d
displ
a
y
obje
c
ts an
d i
nput control
o
b
ject. Each icon re
pre
s
e
n
ts a
class tem
p
late. If the control tem
p
lat
e
s
are not sho
w
n, you can op
en it in Windo
ws Sho
w
Con
t
rols Palette menu fun
c
tio
n
, also ca
n b
e
in
the blan
k fro
n
t panel, a
n
d
click the
rig
h
t mou
s
e
b
u
tton, the pop
-up control te
mplate. Cont
rol
template as
shown in Figu
re 1.
Functio
n
tem
p
late i
s
to
create the
prog
ram flo
w
cha
r
t tool, as
sh
o
w
n i
n
Fig
u
re
1. Each
top-level
icon
on
the te
m
p
late
rep
r
e
s
e
n
ts a
s
u
b template. If the func
tion template
does
not
appe
ar, you can ope
n it with the Show F
uncti
o
n
s Pale
tte under the
Wind
ows me
nu functio
n
.
Develo
ped b
y
LabVIEW virtual in
strum
ent pro
g
ram
step. 1
)
To d
e
termin
e the
overal
l
desi
gn
sche
me in
the
preparation
pro
c
ed
ure
of vi
rtual in
strum
e
nt program
b
e
fore, m
u
st f
i
rst
carry out the
overall d
e
si
g
n
analysi
s
o
n
the pro
g
ra
m: one is to
det
ermin
e
the p
r
ogra
m
to re
al
ize
the function,
graphi
c ima
ge to display
,
to out
put r
eport; two is to determin
e
the hiera
r
chy
pro
c
e
ss,
su
ch as the rela
tionshi
p between the
mai
n
prog
ram a
n
d
the sub
r
o
u
tine, prog
ram
of
virtual inst
ru
ment and
hardwa
r
e
con
n
e
c
tion et
c. 2)
Determine th
e virtual in
strument fro
n
t panel
in
the com
p
le
ted
the overa
ll
de
sign prog
ram of
vi
rtual
instrume
nt, can b
e
a
rra
ng
ed o
n
the f
r
o
n
t
panel
di
splay
the requi
re
d
obje
c
t fun
c
ti
on, the
s
e
ob
jects in
clud
e
switch
knob
co
ntrol, d
a
ta
displ
a
y, head
er, wavefo
rm
display, pha
ros di
ag
ram,
graph di
spl
a
y, the front
panel a
r
rang
ed
these o
b
je
cts, engin
e
e
r
in
g and te
chni
cal pe
rsonn
e
l
throug
h the
keyboa
rd
can ope
rate li
ke
traditional in
strument
s to operate the virt
ual instrume
n
t
.
Grap
hical L
a
b
VIEW p
r
og
ram d
e
sig
n
i
s
mode
rn
software
with
obje
c
t o
r
iented
te
chn
o
logy
and the data
strea
m
tech
n
o
logy whi
c
h i
s
devel
op
ed
based on. Da
ta flow prog
ra
mming say
s
only
whe
n
all in
pu
ts are availa
ble; an
obje
c
t to perfo
rm,
simila
rly, only whe
n
the
ob
ject fun
c
tion i
s
compl
e
ted, th
e output i
s
on
ly valid obje
c
t. In this
way,
each othe
r in
the obje
c
t da
ta flow contro
l
the exe
c
ution
ord
e
r, the
order
of
exe
c
ut
ion is not lim
ited to line
a
r
orde
r from th
e text type of
prog
ram
de
si
gn, it can n
o
t rest
ricte
d
. The user
can t
h
rou
gh the
ra
pid appli
c
atio
n develop
me
nt
own
conn
ect
i
on mo
dule,
even
ca
n
use
multiple
data
ch
ann
els, to
achie
v
e syn
c
h
r
on
ou
s
operation.
The mo
dula
r
desig
n of th
e LabVlE
W virtual in
strum
ent, so any v
i
rtual in
strum
ent ca
n
run i
nde
pen
d
ently, but al
so can b
e
u
s
ed a
s
a
pa
rt
of othe
r virt
ual in
stru
me
nt. You can
even
cre
a
te virtu
a
l
inst
rume
nt i
c
on,
and
it i
s
to
de
sign
multi-layer
system
comp
ose
d
of
virtu
a
l
instru
ment, a
nd
can
chan
ge it, exchan
ge
with ot
h
e
r virtual in
stru
ment an
d
co
nne
cted to
m
eet
the need of changi
ng appli
c
ation. Th
e g
r
aph e
d
itor:
o
n
many occa
sion
s,
the proce
s
s sp
eed
is
the key. Lab
VIEW softwa
r
e is the only
with t
he editor'
s gra
phi
cal
prog
rammin
g
environm
e
n
t,
can p
r
o
d
u
c
e
optimize
d
co
de, the sp
ee
d of oper
atio
n and
compil
e the C
spee
d is. The d
r
a
w
ing
device b
u
ilt-in
can eve
n
on
and time p
a
rt
of the co
d
e
i
s
cru
c
ial for
a
nalysi
s
and
o
p
timization. S
o
,
it is n
o
t b
e
ca
use the
gra
phi
cal
prog
ram
m
ing
red
u
ces ef
ficien
cy. Graphi
cal
pro
g
r
am
program
m
ing is simple and intuitive,
the
developm
ent of high efficie
n
cy.
In the comp
u
t
er testing
system for the
cent
e
r
, the a
nalog
sign
al x(t) before en
tering the
comp
uter through a data
acq
u
isitio
n ca
rd (DAQ) in
the sam
p
ler, the co
ntinuou
s time sign
al int
o
a discrete tim
e
sig
nal, a
signal after th
e
A/D conve
r
te
r in the a
m
plit
ude q
uanti
z
at
ion for di
screte
digital sig
nal.
Periodi
c fun
c
t
i
on satisfie
s that co
ndition
in finite interv
al, the x(t) ca
n be exp
and
ed into
Fu Liye se
rie
s
. There are t
w
o ki
nd
s of expressio
n
s of
Fu Liye seri
es, Fu Liye serie
s
expan
si
on
of trigonom
etric fun
c
tion a
s
in Equation
(1) [3].
x(
t)
=
0
n
b
n
sinn
t+
0
n
a
n
co
sn
t
=
2
0
a
+
1
n
(
b
n
sinn
t+
a
n
co
s
n
t)
=
2
0
a
+
1
n
A
n
sin
(
n
t+
n
)
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
9 –
6126
6122
W
h
er
e
a
0
=
T
2
dt
t
X
T
)
(
is t
he
DC
comp
onent,
A
n
=
b
a
n
n
2
2
is th
e am
plitude
of
each frequ
en
cy com
pone
n
t, the angular frequen
cy of
n
is as the
absci
ssa axis, amplitude
A
n
or pha
se a
ngl
e
n
as the ho
rizontal mappi
n
g
, resp
ecti
vel
y
get the amplitude spe
c
trum and
pha
se spe
c
trum, they are one-sid
ed sp
ectru
m
, n
0
→
∞
.
For non
pe
ri
odic
si
gnal, T
can be reg
a
rde
d
a
s
a p
e
riodi
c cycl
e of
T sign
al
of
infinity.
Whe
n
the
cycle ten
d
s to
infinity, t
he base
sp
ectral
line and li
ne
interval
=
T
2
reaching
infinitesimal
s
,
thus the discrete sp
ect
r
u
m
becom
es
continuo
us, so
the spect
r
u
m
of non peri
odic
sign
al is conti
nuou
s.
As the cycl
e T is non p
e
rio
d
ic si
gnal infi
nite, when th
e cycle T
→
∞
, s
p
ec
tral line interval
→
d
,
T
→
2
d
, discrete va
riabl
e
s
as
co
ntinuo
us vari
able
s
, m
→
summati
on ope
ratio
n
become
s
qua
dratu
r
e op
era
t
ion. Then get
the formula 2
.
x(
t)
=
1
li
m
jm
t
m
T
m
T
T
Ce
=
li
m
d
2
d
()
jt
X
e
=
1
()
2
Xd
(2)
Based
on
dat
a collecte
d
in
this
way virt
ual in
strum
e
n
t
data a
c
qui
si
tion sy
stem
with the
help of in
se
rt in the comp
uter card an
d
spe
c
ial
soft
ware such a
s
LabVIEW
(o
r Lab
Win
d
o
w
s /
CVI) com
b
in
ed with
A/D
co
nverte
r, analo
g
,
digi
t
a
l si
gnal
a
c
quisitio
n
to t
he
comp
uter for
analysi
s
, pro
c
e
ssi
ng, displ
a
y, and thro
u
gh the D/A
conversion
of feedb
ack c
ont
rol. Accordin
g to
the need, it can join the si
gnal conditio
n
ing an
d real
-time DSP hardwa
r
e mo
dul
e.
GPIB system
is a general
purpo
se inte
rfac
e te
st system. It is composed of a
PC, a
GPIB interface ca
rd a
nd a
plurality of G
P
IB in
st
rume
nt
sub
s
y
s
t
e
m
.
E
a
ch in
st
ru
ment
su
bsy
s
t
e
m
is a GPIB interface with
a single in
strum
en
t. Even thoug
h different manu
facture
r
s of the
product
s
are compatible wi
th in
terchangeability, assemb
ly system i
s
very convenient, separat
e
d
the instrume
nt system ca
n also b
e
used as
a
singl
e instrument
use
d
inde
pe
ndently. A GPIB
interface card
can ta
ke u
p
to 14 inst
rum
ents. Usin
g G
P
IB technolo
g
y, realize th
e ope
ration
a
n
d
control of the
instrument
can be
u
s
ed i
n
co
mpute
r
, to re
pla
c
e the
tradition
al m
anual
mod
e
of
operation, te
st and m
easurem
ent er
ro
rs
cau
s
e
d
by human fa
cto
r
s
of ex
clu
s
ion. At the sa
me
time, easy
upgrade, e
a
s
y mainten
a
n
ce, in
stru
m
ent pan
el functio
n
s
an
d cu
stom, t
h
e
developm
ent
and
use
of
easy. It ca
n
be a
c
hieve
d
effectively test and
mea
s
urem
ent task of
var
i
ous
sc
ales
.
Sampling the
continuo
us ti
me sign
als is into discrete time serie
s
p
r
oce
s
s. This p
r
ocess
is equivalent
to the cont
inuous time
si
gnal
s "from"
many di
scret
e
time it (i
=0, 1, 2......) is
the
sign
al of inst
antane
ou
s value. Whe
r
e T
is the sampli
ng interval, th
e
s
=2
/T is the
sampli
ng
freque
ncy, their valu
e is a very imp
o
rtant
qu
esti
on. The
rela
tionshi
p bet
wee
n
sampli
ng
freque
ncy, m
u
st meet the followin
g
form
ula [4].
s
≥
2
m
(3)
Whe
r
e
m
is the highe
st fre
quen
cy com
pone
nt signa
l. When
m
≤
T
also is the
sampli
ng fre
quen
cy
s
=2
/T
≥
2
m
, we can a
dd an ideal
low-pa
ss filte
r
to extract the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Virtual Instru
m
ent LabVIEW in
Varia
b
le
Frequ
en
cy a
nd Speed
… (Hai
zhe
n
Guo
)
6123
prin
cipal
com
pone
nt, remo
ve all m
≥
1
high-f
r
eq
uen
cy compon
ent, which con
s
i
s
ts of X (x) to
resto
r
e the o
r
iginal si
gnal
X(
) without error in theory.
Measurement
ch
annel
is
the num
ber
of sign
als, t
he whole
sy
stem i
s
n
e
e
ded to
measure the prod
uct
s
of different cha
n
nel numb
e
r,
can b
e
mea
s
ured in diffe
rent. Need to
pay
attention to i
n
the
sel
e
ctio
n of p
r
od
uct
s
: whet
h
e
r the
mea
s
u
r
ed
chann
el n
u
mb
er a
nd
meet
the
deman
d of the system; wh
en the differe
ntial i
nput wh
en mea
s
uri
n
g, the board
without num
b
e
r
cha
nnel
differential in
put a
nd diffe
rential
input;
in
the
measurement
ch
ann
el n
u
m
ber,
we
shoul
d
pay attention to produ
ct ca
n be extende
d and
can be
expande
d the numbe
r of. Measuremen
t
s
are requi
red t
o
analog
sign
al by the A/D is conve
r
ted
into digital si
gnal and bi
na
ry, resol
u
tion
is
the full rang
e sign
al by the A/D co
nversi
on
Na
i to
two numb
e
rs. The hig
h
e
r
the re
sol
u
tion,
mean
s that the voltage chang
es
can
be dete
c
t
ed
more
small, i
t
and the me
asu
r
em
ent ra
nge
(the hig
h
e
s
t level can
be
measured)
a
nd gain
(am
p
lification bo
ard) that
togeth
e
r dete
r
min
e
the
minimum voltage chan
ge o
f
the board
ca
n be mea
s
u
r
e
d
.
A/D co
nverte
r is the in
put
analo
g
devi
c
es fo
r
the
dig
i
tal output, bu
t also th
e
core of the
DAQ ha
rd
wa
re. The workin
g prin
cipl
e, there a
r
e
3
kin
d
s of meth
od
s: A/
D co
nversion m
e
thod
of
su
ccessive a
pproxim
ation
A/D, double
integr
al A/
D method a
n
d
parall
e
l com
pari
s
on
meth
od
A/D. Method
s used in DA
Q prod
uct
s
is the me
thod of succe
s
sive approximatio
n A/D. Doubl
e
integral m
e
th
od of A/D is
mainly applie
d to the
sp
ee
d req
u
ire
m
en
t is not high,
but the relia
bi
lity
and high
er a
n
ti-jammin
g
o
c
casi
on
s, such as di
gital m
illimeter etc.. Parallel comp
arison metho
d
of A/D i
s
mai
n
ly used i
n
t
he hi
gh
sp
ee
d samplin
g, such
a
s
di
gital
oscillo
scope,
digital
sam
p
l
e
r
and othe
r ap
plicatio
ns. To
measu
r
e the
perform
an
ce
of A/D converter h
a
s two
main indexe
s
,
one is
sampli
ng re
solutio
n
, i.e. A/D converter di
git, and two is the A
/
D conve
r
si
on
rate.
LabVIEW
su
pport
s
th
ree
formats for fil
e
input
and
output, i.e. text file, binary
file an
d
data file. T
he
spreadsheet f
ile is a
speci
a
l type of text f
ile, the
file i
s
still in AS
CII format to store
the data
for
Microsoft Excel spread
she
e
t software
can di
re
ctly re
ad the
data
fil
e
; data
re
co
rds i
n
a file
contai
ni
ng a
kno
w
n
a
s
wavefo
rm fil
e
form
at, it re
cords the
o
c
curren
ce
of
so
me of th
e
basic
waveform information, such as the initia
l time, waveform s
a
mpling interval time.
LabVIEW
pl
atform i
s
in
the d
e
velo
pment of
a
virtual
sign
al spe
c
trum
analy
s
is
instru
ment. The instrument
should b
e
the typical experime
n
tal sig
nal gene
ratio
n
, FFT transf
o
rm
is p
e
rfo
r
med
on a
typical
experim
ent
si
gnal, a
nalyze
s its fre
que
n
c
y spe
c
trum,
and
di
splay
the
results. To
sum u
p
the
main fun
c
tions i
n
clu
de:
sign
al gen
eration,
sign
al analysi
s
an
d
pro
c
e
ssi
ng, d
a
ta
file stora
ge
a
nd re
adi
ng.
Be
cau
s
e
LabVIEW i
s
a mo
dula
r
p
r
ogra
m
b
a
sed
on
the desig
n id
ea, therefo
r
e in the develo
p
ment pro
c
e
s
s is ba
sically follows the basi
c
idea, in the
overall
sche
me, vario
u
s functio
nal m
o
dule
s
a
r
e
se
t
up a
c
cording
to the diffe
re
nt functio
n
, finally,
integratio
n an
d debu
gging.
3. Res
earc
h
and Basic
Principle of
Variable Fre
quency
and
Speed Mo
tor and T
D
3
000
Conv
erter
Asynch
ro
nou
s m
o
tor
sp
ee
d is dete
r
min
ed by th
e
su
pply freq
uen
cy and
pole
p
a
irs.
So
cha
nge th
e freque
ncy of t
he moto
r can
drive op
er
ation. But the chang
e freq
ue
ncy, imped
an
ce
motor inte
rn
al ch
ange,
will produ
ce
tiny ex
citation cau
s
ed b
y
torque d
o
wn; be
ca
use
the
excitation ca
use
d
by mag
netic saturati
on phen
ome
non, is a mot
o
r facto
r
s, efficien
cy de
cre
a
se
d
signifi
cantly. Therefore, chang
es in th
e freque
ncy
at the same
time, always maintain t
h
e
terminal
volta
ge of th
e m
o
tor
coo
r
di
nate
d
control,
the
ratio
of the
two i
s
a
con
s
t
ant, the p
u
rp
ose
is to
en
sure t
hat the
air
ga
p flux invari
a
n
t, so
th
e V/F
co
ntrol
mod
e
is al
so
call
ed
con
s
tant
ratio
of voltage an
d freque
ncy control meth
od
.
The se
nsor t
o
the physical signal
s is conver
te
d into electri
c
signal
s. For e
x
ample:
thermo
co
uple
s
, thermo
stat
s, integrate
d
circuit,
sen
s
o
r
, the temperature into the
voltage and the
resi
stan
ce. A
nd as the st
rain gaug
es, flow se
ns
ors, pre
s
sure gau
ge, pre
s
sure,
flow rate, the
pre
s
sure is converted
to el
ectri
c
al
sig
nal
s. Fo
r ea
ch
sensor,
sign
al
is di
re
ctly pro
portion
al to th
e
physi
cal
para
m
eters of th
e
monitor
ed. 6
sen
s
o
r
s a
r
e u
s
ed
in thi
s
d
e
s
ign. Am
ong
them, 3
cu
rre
n
t
sen
s
o
r
s,
3 v
o
ltage
se
nso
r
s,
re
spe
c
tively, the
thre
e-ph
ase volt
age
of a
s
yn
chrono
us mo
tor,
curre
n
t measurem
ent.
Slip freq
uen
cy cont
rol, the
sp
eed
of th
e mo
to
r i
s
d
e
tected, th
e
output frequ
e
n
cy a
n
d
then to
the
motor
sp
eed
and
slip
fre
q
uen
cy an
d a
gi
ven inve
rter. To
slip
freq
uen
cy is di
re
ctly
related to
an
y control and
torque,
cu
rre
n
t. Comp
ar
e
d
with V/F co
n
t
rol and
it is t
he a
c
celeration
and de
cele
ration cha
r
a
c
teristi
c
s
an
d limitations
of cu
rrent
cap
a
city. It also
ha
s a
sp
e
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
9 –
6126
6124
controlle
r, the sp
eed fe
ed
back
spe
ed
close
d
loo
p
co
ntrol, is
suita
b
le for the
a
u
tomatic
cont
rol
sy
st
em.
The timing re
lationship bet
wee
n
data a
c
quisitio
n
syst
em of each p
a
rt is
r
e
lat
i
v
e
l
y
st
rict
,
if not the appropriate timi
ng
will be seriously a
ffect
ed the
accuracy of. The ti
ming
circuit i
s
to
prod
uce a va
riety of timing
sign
als a
c
co
rding to
ea
ch
circuit unit of
work o
r
d
e
r,
and the
cont
rol
unit is
pro
d
u
c
ed in th
e con
t
rol timing
sig
nal cont
rol si
gnal. Fig
u
re
2 sh
ows
a typical
acqui
sition
system sequ
ence
diag
ram
.
The V/F cont
rol of asyn
ch
rono
us m
o
tor me
ch
anical
prop
ertie
s
, when the fre
q
u
ency is
redu
ce
d, curv
e to the longitudinal coo
r
di
nate tran
slati
on, the maximum torqu
e
point dro
p
[5]. As
in the low freque
ncy, torque is
not e
noug
h,
can
be take
n to improve the
torque volta
g
e
comp
en
satio
n
, the compe
n
satio
n
by th
e freq
uen
cy converte
r to
complete, u
s
u
a
lly no mo
re t
han
10%, can al
so be con
s
ide
r
ed from the
motor de
sig
n
. This can ma
ke the maxim
u
m torqu
e
un
de
r
different freq
uen
cy invaria
n
t.
Motor vecto
r
control and
dire
ct curre
n
t machi
ne
with the sa
me torqu
e
g
eneration
mech
ani
sm, namely the
curre
n
t mag
netic field pe
rpen
dicular
with the pro
duct of the
basi
c
prin
ciple
s
of torqu
e
. Usi
ng DC moto
r co
mmentator
a
nd bru
s
h to keep both verti
c
al rel
a
tion
sh
ips
in machi
nery,
and can sup
p
ly. While the asynch
ro
nou
s motor stato
r
cu
rre
nt in electro
m
otor, b
y
electroma
gne
tic inductio
n
in the electri
c
al is
decomp
o
se
d as the
excitation cu
rrent and torq
ue
curre
n
t are vertical, a
r
bitrary cont
rol, a
t
the
same time, both syn
t
hesi
z
ed
a
s
the stator
cu
rrent
s
u
pplied to the motor.
In the followi
ng basic f
r
equen
cy motor
VVVF, requirements
of voltage to the m
o
tor wit
h
the stato
r
fre
quen
cy is proportio
nal to
the mu
st
chang
e, to en
sure that th
e
air
gap flux
i
s
con
s
tant, at any speed,
torque mot
o
r ca
n gene
ra
te stabl
e. Ho
wever, th
e stator voltage
increa
se
s h
a
v
e ce
rtain lim
it, sub
s
eq
uen
t to the ra
ted
voltage, the v
o
ltage
ca
n be
ke
pt con
s
tan
t,
and then im
p
r
ove the spee
d, can only m
a
ke the frequ
enc
y is in
cre
a
se
d, that is to say, the ba
sic
spe
ed, with the increa
se o
f
frequen
cy, the ai
r ga
p flux will decrea
s
e, the torque
decrea
s
e
s
.
You can
clea
rly see that the basi
c
sp
ee
d of
motor, torque
rang
e show that the envelop
e
is con
s
tant, called
th
e con
s
tant
to
rqu
e
operati
on;
wh
en m
o
re
tha
n
ba
sic
spee
d.
Torque
rang
e
sho
w
that th
e envelop
e i
s
de
crea
sed.
This
o
p
e
r
at
ion mod
e
of
variable f
r
e
quen
cy spee
d
regul
ation
ele
c
tri
c
hu
nge
r
and
DC moto
r spee
d regul
ator a
nd
we
a
k
en
the
spe
c
i
a
l speed
is very
simila
r to magnetic field [6
]. Slip is small, to
rque of asynchrono
us
motor for the
Equation (4).
2
1
2
1
()
V
TK
f
f
(4)
Whe
r
e, V
1
is
con
s
tant
stator voltage
an
d roto
r fre
que
ncy, f
2
is torq
ue de
crea
se
s with th
e
increa
se
of power frequ
e
n
cy. If the F
2
incre
a
s
ed l
i
nearly
with i
n
crea
sing
F1
, the torqu
e
is
dire
ctly prop
ortional
to F
1
, the o
u
tpu
t
torque
of
the moto
r ro
tation spee
d
app
roximat
e
ly
reci
procal ch
ange
s; this is
t
he con
s
tant
power op
eration.
TD30
00 con
v
erter is a hi
gh quality, multi-func
tio
n
, low noi
se ve
ctor
control inverter.
Thro
ugh
de
couplin
g
control of the
mo
tor flux
curre
n
t and
torqu
e
current, to
achieve
rap
i
d
respon
se a
n
d
accurate to
rq
ue co
ntrol, sp
eed can be
wide ran
ge in h
i
gh co
ntrol p
r
eci
s
ion.
The T
D
30
00
conve
r
ter
ha
s thre
e control mode
s:
no
PG vector
control, vecto
r
control
and
V/F cont
rol with
PG. Operation an
d
co
ntro
l m
o
de sele
ction
by the functi
on code
F0.
02.
Mo
d
e
0
:
no
PG
ve
c
t
or
c
o
n
t
r
o
l, th
e sp
ee
d
s
e
ns
or
l
e
ss vecto
r
co
n
t
rol, al
so
kn
o
w
n
as the
op
en
loop ve
ctor
control.
Do n
o
t apply to the
insta
llatio
n
di
sc, hi
gh
starti
ng torque
an
d sp
eed
co
ntrol
accuracy, co
nventional V/
F cont
rol
can
not meet
ap
plicatio
ns. M
ode 1: PG v
e
ctor
co
ntrol,
the
spe
ed sen
s
or vector contro
l, also kn
ow
n as the cl
osed
loop vector
control.
Starting from
the function i
n
the inverter shut
do
wn
state, and it is effectively re enteri
n
g
the work st
ate. That is the
first time in power
, insta
n
t
aneou
s po
wer failure is restored, after the
failure is reset when
shut
down norm
a
ll
y, free,
under su
ch ci
rcu
m
stan
ce
s, pu
t into operati
on
again, freq
ue
ncy co
nversi
on will be sta
r
ting mode
se
ttings sele
ction of starting
[7]. When se
t to
0, from the starting frequ
e
n
cy startin
g
conve
r
ter
is
put to use, accordi
ng to the function
code
F2.01 an
d F
2
.02 settings,
from the sta
r
ting fre
quen
cy (F2.0
1
)
starting, an
d run the
set in
the
freque
ncy ti
me (F
2.02):
and the
n
the
accele
ration
time, set pa
ramete
rs su
ch as
accel
e
ration
and
de
cele
rat
i
on mo
de, e
n
t
er the
sp
eed
stag
e n
o
rm
a
l
to set the f
r
eque
ncy, a
cceleratio
n
, a
s
i
s
sho
w
n by Fig
u
re 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Virtual Instru
m
ent LabVIEW in
Varia
b
le
Frequ
en
cy a
nd Speed
… (Hai
zhe
n
Guo
)
6125
Figure 2. Multi Segment Speed Wi
ring
Di
agra
m
Paramete
r i
s
co
rre
ctly
set T
D
3
000
co
nverte
r,
is the
p
r
em
ise to
fully play it
s
performance.
The operating process
is
as follows, press the shift
key will swit
ch
parameters (i
.e.
cha
nge th
e fl
ashi
ng p
o
sitio
n
), the
key
s
with uni
dire
cti
onal cycli
c
sh
ift
function.
P
a
ram
e
ter setti
ng
is completed
continuous pr
ess the m
e
nu button two
times; it
will
exit the program state. Once
again into t
he program
state,
autom
atically enter the first op
eration fu
ncti
on co
de (wit
h
memory
).
4. Using Virtual Instrume
nt LabVIE
W
to Design o
f
Variable Fr
equen
c
y
an
d Speed M
o
tor
Sy
stem
Deb
uggin
g
is establi
s
he
d on the La
bVIEW pla
tform,
if from the LabVIEW it wil
l
not be
able to run. T
hat is to say, use
r
s in the u
s
e
of the virtual instru
ment
front, LabVIEW must be p
r
e
installe
d on
your
comp
uter [8]. De
bu
gging
purpo
ses i
s
to
che
c
k the p
r
o
g
ra
m ca
n be
ru
n in
accordan
ce
with the
u
s
er inte
nde
d
way, a
c
hiev
e the
req
u
irement of
de
sign
procedu
re.
Deb
uggin
g
proce
s
s in gen
eral is to find
syntax
errors
and logi
cal e
r
rors an
d co
rrect them.
The d
a
ta a
c
q
u
isition
modu
le is the
core
so
ftwa
r
e of
virtual
digital oscillo
scope, contro
l
mainly co
mpl
e
te data
colle
ction, in
cludi
n
g
the trig
ger control,
a
c
ce
ss co
ntrol,
ti
ming control etc..
Trigg
e
r
co
ntrol in
cludin
g
t
r
igge
r m
ode,
trigge
r
slop
e an
d trig
ger level control
.
The
cha
n
n
e
l
control main
control sin
g
le
or dual chan
nel mea
s
u
r
e
m
ent.
The moto
r sp
eed, usually an impo
rtant factor to
con
s
ider, that the
flux per pole
motors
for ratin
g
s, a
nd re
main
un
cha
nge
d. If the flux is too
wea
k
, did
n
o
t make full
use
of the m
o
tor
core, is a
kin
d
of wa
ste: if t
he exce
ssive
increa
se of fl
ux, and ma
ke
the co
re
satu
ration, resulting
in exce
ssive
excitation current is l
a
rg
e, seri
ou
s wh
e
n
can
motor
damag
e du
e
to overhe
ating
windi
ng.
LabVIEW all
o
ws a p
r
og
ram ru
nnin
g
in sin
g
le
ste
p
mode, al
so su
ppo
rts
run-time
highlighte
d
. Step three con
t
rol buttons, resp
ective
ly is: step into sai
d
one step in
to the prog
ra
m
flow an
d stop
ped at the n
e
x
t node data;
step ove
r
sai
d
one
step int
o
the progra
m
flow an
d st
op
in the implem
entation of ne
xt node data;
step out said
the step sto
p
mode.
The mo
st co
mmon a
c
qui
sition card ha
s a pl
urality
of analog inp
u
t chan
nels,
but not
every
cha
nne
l co
nfigu
r
atio
n of
a A/D,
b
u
t they
sha
r
e
a
set
of A/D,
befo
r
e A/
D h
ad a
multipl
e
xer
(MUX
), an
d t
he am
plifier (AMP), a
sam
p
ling
hol
de
r
(S/H) et
c. By
scanni
ng th
e
switchi
ng th
e
swit
ch, multi cha
nnel
sam
p
ling [9]. There are three
kind
s of multi-ch
ann
el sam
p
ling metho
d
s
:
cycle
sam
p
ling, synchron
ous
sam
p
lin
g and samp
l
i
ng interval.
In a sca
nnin
g
(sca
n), da
ta
acq
u
isitio
n card
will cond
uct a
sampli
ng of all
the
cha
nnel
s; the
scan rate (scan
rate
) is t
he
numbe
r of times pe
r se
co
n
d
scan data a
c
qui
sition
card.
Display si
gn
al time is
d
o
main
(samp
ling poi
nt a
m
plitude
) by
the di
screte
Fu Liye
transfo
rm (DFT) metho
d
are tra
n
sfo
r
m
ed into t
he freque
ncy di
sp
lay. For fast comp
utation
of
DFT, often
u
s
ing
a
fast F
u
Liye transfo
rm (FFT
) method. Whe
n
the sampli
ng si
gnal is a po
wer
of 2, you
ca
n u
s
e thi
s
m
e
thod. T
he
o
u
tput of F
F
T
is
bilate
ral; i
t
also
sho
w
s the p
o
sitive
and
negative freq
uen
cy inform
ation. By using only
half of the FFT output sam
p
lin
g point into th
e
unilateral FF
T. Freq
uen
cy
spa
c
in
g bet
wee
n
sampli
ng poi
nt of FFT is f
s
/N,
whe
r
e FS i
s
the
sampli
ng fre
q
uen
cy.
In order to m
a
ke
the volta
ge ve
ctor of i
n
ve
rter outp
u
t
nea
rly ci
rcul
ar, a
nd finally
get the
rotary flux circula
r
, must u
s
e the inve
rte
r
output
volta
ge time co
mb
ination, form
polygon volta
ge
vector l
o
cus,
whi
c
h i
s
m
o
re
clo
s
e to
round [1
0]. T
h
is i
s
the
ba
sic
sta
r
ting p
o
int of si
ne
PWM
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 611
9 –
6126
6126
prin
ciple. F
o
r example: wh
en the rotatin
g
flux
I zone,
with the volt
age ve
ctor
synthesi
s
of two
adja
c
ent to, and in a
c
cordan
ce with th
e volt seco
nd
balan
ce pri
n
ciple, to the followin
g
form
ula
(5).
T
6
U
6
+T
4
U
4
+T
0
U
0
=T
s
U
out
(5)
Whe
r
e, T
n
is
the voltage vector fo
r Un time co
rrespo
nding, T
s
is t
he sa
mpling
perio
d;
Uout is fo
r the synthe
sized
voltage vector.
Commi
ssioni
ng a
nd
ope
ra
tion of th
e d
e
s
ign
is ba
se
d
on
the
deb
u
gging
an
d o
p
erating
on b
a
si
c. Bui
l
d a
goo
d h
a
r
dware pl
atform a
nd
so
ftware
platform, tested motor para
m
eters, by
the
se
nsor si
gnal
into sign
al
refe
ren
c
e data
tran
smitt
ed to the d
a
ta acqui
sition
system th
rou
g
h
variou
s chan
nels, a
nd the
n
tran
smitted
to the LabVI
E
W software
platform for t
he in
spe
c
tion
to
view and p
r
in
t the result
s.
The
de
sign
o
f
the virtual
e
x
perime
n
t in
strum
ent i
s
ref
e
r to
the
dua
l ch
ann
el b
e
nchto
p
digital storag
e oscillo
scop
e gene
ral fun
c
tion
s,
and e
x
pande
d in instru
ment an
alysis. The m
a
in
function
of in
strum
ent con
s
ist
s
of d
oubl
e ch
ann
el
si
gnal in
put, tri
gger c
ontrol, acce
ss co
ntrol,
timing cont
rol
,
waveform di
splay, sp
ectrum analysi
s
, waveform sto
r
age a
nd rea
d
.
5. Conclusio
n
The fun
c
tion
of virtual inst
rume
nt is def
ined by the
softwa
r
e; the
softwa
r
e i
s
the key
techn
o
logy
of virtual i
n
st
ru
ment. Virtual
i
n
stru
m
ent
sof
t
ware
system
sh
ould
in
clud
e the
op
eratio
n
panel
de
sign
, data acqui
sition, waveform di
spl
a
y, sign
al anal
ysis a
nd p
r
o
c
e
ssi
ng a
n
d
I/O
equipm
ent manag
ement e
t
c. It is compose
d
of two parts, na
mely
the applicati
on pro
g
ra
m and
the I/O interface drive
r
. Virtual instrumen
t
app
lication
s
will be optional hardwa
r
e
(su
c
h a
s
GPIB,
VXI, RS-232, DAQ boa
rd)
and re
peate
d
together with
the library fu
nction
softwa
r
e, reali
z
e
d
the
function of communi
catio
n
module, timing and trig
gerin
g. The o
r
iginal
code li
bra
r
y functio
n
for
use
r
s to
con
s
tru
c
t their o
w
n virtual in
strument
(VI)
system p
r
ovi
des a
softwa
r
e mod
u
le ba
sic.
Becau
s
e
of VI's modul
ar,
open
ne
ss a
nd flexibility,
and the
soft
ware is th
e key feature
s
, whe
n
the u
s
er test
requi
rem
ents ch
ange
can
be
conveni
en
tly software
module
s
or
h
a
rd, by th
e u
s
e
r
s
themselve
s
, or re
co
nfigure existing sy
stem
s to meet the new te
sting req
u
ireme
n
ts.
Referen
ces
[1] J
Kodosk
y
.
Objects and Mes
s
ages i
n
the L
abVIEW
Graph
ical Pro
g
ra
mmi
ng Syste
m
. Procee
din
g
s of
SEAM 93. 1993.
[2] Qian
S
ong,
Li
Liu.
Deco
di
n
g
of PDF
4
17
barco
de
in
Id
entit
y
Auth
enti
c
ation Base
d on
L
abVIEW
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2013; 1
1
(6): 3
005-
301
1.
[3]
Z
hang
ju
n, F
eng l
i
hu
i, Li
u
yo
ngq
ing. T
he st
ud
y o
n
a
p
p
lica
t
ion of th
e met
hod f
o
r rea
lizi
n
g W
eb virt
ua
l
instrume
nt bas
ed on th
e tech
nol
og
y of d
y
n
a
m
ic data e
x
ch
a
nge a
nd Jav
a
Appl
et.
RNIS.
200
9; 4: 8~
9.
[4]
Natio
nal Instru
ments Corp
ora
t
ion. LabVIEW
7 Express.
US
A: Nationa
l Instruments
. 200
4.
[5] Ding
Jianjun,
Sun Cha
o
,
W
ang Ju
n. A
Rap
i
d
Detec
t
ion S
y
stem
Based
on
La
bVIEW
and
Microcomp
u
ter
.
T
E
LKOMNIKA Indones
ia
n Journ
a
l
of Electr
ical En
gin
eeri
n
g
. 2013; 1
1
(6): 306
6-30
71.
[6]
Z
hou Sh
iho
ng,
Guan Yo
ng, W
u
Lifen
g
, Pa
n W
e
i,
W
ang
Guohu
i, Du Yi
n
y
u. De
si
gn
an
d real
izati
on of
DC-DC co
nvert
e
r life pre
d
ictio
n
s
y
stem b
a
se
d on La
bVi
e
w
.
JCIT
. 2011; 6(11): 300~
3
08.
[7]
Z
henme
i
Li, Ji
n She
n
, W
e
i Li
u, YaJin
g
W
a
n
g
. Voltag
e F
lic
ker Monit
o
rin
g
Based
on Virtu
a
l Instrume
nt
and W
a
ve
let Packet T
r
ansform.
IJACT
. 201
2; 4(23): 46
6~
4
74.
[8]
Yaoh
ui W
u
, Xi
aome
i
Li
u, Xi
u
f
eng Me
ng. T
e
mper
at
ure F
i
eld of Ind
u
ctio
n Motor F
ed
w
i
t
h
Vari
abl
e
F
r
eque
nc
y
P
o
w
e
r.
JDCTA
. 2013; 7(6): 1
276
~
1283.
[9] Jian
g
Ch
ao,
Xu W
u
-
b
in, L
i
Bing. Des
i
gn
of Instrumen
t
Control S
y
st
em Based
on
LabVIEW
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2013; 1
1
(6): 3
423-
343
8.
[10] Shens
he
n Gu,
Zhijia
n C
h
e
n
, FeiW
ang. T
he
Desig
n
a
nd Im
plem
entatio
n o
f
a Nov
e
l Proc
ess Viscos
i
t
y
Contro
l Platfor
m
Based on
La
bvie
w
.
AISS
. 2011; 3(9): 1~
8.
Evaluation Warning : The document was created with Spire.PDF for Python.