TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 76
8
1
~ 768
9
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.66
77
7681
Re
cei
v
ed Au
gust 19, 20
14
; Revi
sed Se
ptem
ber 21, 2014; Accept
ed Octo
ber 2,
2014
A New Approa
ch towards Ideal Location Selection for
PV Power Plant in India
Suprav
a Chakrabor
t
y
*,
Pradip Kumar
Sadhu, Nitai
Pal
Dep
a
rtment of Electrical E
ngi
neer
ing, Ind
i
an
School of Min
e
s,
Dha
nba
d, Jhar
khan
d, India-
8
260
04, T
e
l
.:+
9
1
-32
6
-22
3
-5
47
8; fax: +
91-32
6
-
229-
656
3
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: suprava
1
0
0
8
@
gmai
l
A
b
st
r
a
ct
India
is the s
e
venth l
a
rgest c
ountry
i
n
the w
o
rld, b
l
esse
d w
i
th ad
eq
uate s
o
lar r
adi
at
io
n, therefor
e
to setting u
p
a
Photovo
l
taic
p
o
w
e
r pla
n
t is a
lucrativ
e
opti
o
n. In actual fi
el
d con
d
itio
ns th
e perfor
m
ance
of
the PV
mo
dul
es vary si
gnifi
cantly fro
m
its
Standar
d T
e
st Cond
ition
(
S
T
C
) due to
larg
e cha
n
g
e
in
envir
on
me
ntal
cond
itions. It is very imp
o
rta
n
t to st
udy the exact meteor
olo
g
ica
l
para
m
eters for different
locati
ons in I
ndi
a before i
n
stall
a
tion of
a Photov
o
l
taic
pow
er plant.
In this pape
r, the long-ter
m
mete
oro
l
og
ical
para
m
eters fo
r the seve
nty consi
dere
d
l
o
c
a
tions
in In
dia
from N
a
tio
nal
Aeron
autics
a
n
d
Space A
d
min
i
stration (NAS
A) renew
abl
e
energy r
e
so
urce w
ebsite
(Surface Mete
orol
ogy a
nd
Solar
Energy)
are co
llecte
d
an
d a
n
a
ly
z
e
d
in
order
to select
a
n
id
eal l
o
cati
on for
install
a
tio
n
of
PV pow
er pl
an
t.
T
h
is pa
per h
e
l
p
s the inv
e
stor
s, Mi
nistry of New
and R
enew
abl
e Ener
gy
(
M
NRE), Electri
c
ity Authority a
n
d
Plan
nin
g
Co
mmiss
i
on to se
le
ct proper loc
a
ti
ons for instal
lat
i
on of PV pow
e
r
plant.
Ke
y
w
ords
: me
teorol
ogic
a
l p
a
r
ameter, photo
v
olta
ic p
o
w
e
r, ST
C, solar radi
ation
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The Te
chn
o
l
ogical depe
n
den
cy of the modern wo
rl
d on fossil f
uels an
d the
ways in
whi
c
h the
s
e f
uels
have g
r
adually d
egra
ded the
ea
rth
’
s envi
r
onm
e
n
t is p
r
etty alarmin
g
[1, 2]. In
this
p
r
e
s
ent gene
ration, cl
imate
is re
cei
v
ing
ex
trao
rdi
nary a
w
a
r
en
ess be
ca
use, huma
n
a
c
tivity
on ea
rth for the last h
und
red y
ears is
consi
derably d
i
verse
whi
c
h
resulted rapid
chan
ge
s in the
environ
menta
l
conditio
n
s [3
].
Energy dem
a
nd of India is increa
sing da
y by
day to supplem
ent its ambitious e
c
onomi
c
gro
w
th. Affordable
and
su
staina
ble e
n
e
rgy i
s
o
ne
of the p
r
ima
r
y requi
rem
e
n
t
s for
econo
mic
gro
w
th, improving the qu
ality of life
and in
cr
e
a
si
ng the oppo
rtunities of d
e
velopme
n
t [4].
Curre
n
tly, In
dia suffers from a majo
r shorta
ge of
electri
c
al p
o
we
r gen
era
t
ion [5]. Indian
electri
c
ity se
ctor ha
d an installe
d cap
a
c
ity of
245.39 GW up to end of April, 2014, [6, 7] i.e.
worl
d’s 4
th
largest [8]. India
gene
rated 8
55 TWh of
el
ectri
c
ity durin
g 2011
-12, e
x
pected d
e
m
and
by 2016
-1
7 will be 1
392
T
W
h
and
by 2
021-22 it
will
be 19
15 T
W
h
[9]. Tech
nolo
g
y is a
key fa
ctor
of future
en
e
r
gy p
o
licy fo
r the
co
untry.
Suitable te
ch
nologi
cal
cho
i
ce
s a
r
e
vital for
both
sup
p
ly
and dem
and
side
s.
To meet this huge en
ergy
demand a
n
d
to provide a
clean e
n
viro
nment for th
e future
gene
ration re
newable en
e
r
gy sho
u
ld b
e
given pref
eren
ce in In
dia [10]. Among the vari
ous
rene
wa
ble e
n
e
rgy resources, India i
s
e
n
riched
with
ample p
o
tenti
a
l of sol
a
r e
n
ergy ge
ne
rati
on
due to its g
e
ogra
phi
cal lo
cation n
e
a
r
Tropi
c of Ca
nce
r
[11]. In India nea
rly 58% are
a
s
are
receiving
ann
ual ave
r
ag
e
Global
insolat
i
on mo
re th
a
n
5
kWh/m
2
/day [12]. Co
nsiderin
g the
lo
ng
run effe
ct of pollutants f
r
om fossil fue
l
s on
h
u
ma
n
health an
d
environ
ment
[13], electri
c
ity
gene
ration from PV modul
e is an altern
ative cost effective sol
u
tio
n
[11].
A lot of work has be
en do
ne on analy
s
i
s
of t
he environmental fa
ctors that influe
nce the
perfo
rman
ce
of PV module [14-18]. The
perfo
rman
ce
of PV module is mainly influen
ced by so
lar
insol
a
tion an
d ambient te
mperature [1
9, 20]. On
the other h
and,
the performa
n
ce of PV mo
dule
is indi
re
ctly influen
ced by
other
seve
ral paramet
e
r
s such a
s
solar
radiatio
n
incid
ent an
gle,
sun
s
hi
ne du
ration, humidit
y, dust [21] etc. It is
important to study all
afore
s
aid meteorologi
cal
para
m
eters to kno
w
the a
c
tual pe
rform
ance of PV module
s
in field
conditio
n
[22
].
In SWERA project, Martin
s et al. prepared sola
r en
ergy reso
urce
map of Brazil
utilising
satellite irradi
ation model
and NREL irradiatio
n dat
a [23]. The potential of harn
e
ssin
g solar
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
81 – 768
9
7682
radiatio
n in different regio
n
s
of Iran wa
s studie
d
by
Besarati et al. a
nd sola
r ra
dia
t
ion maps we
re
also g
ene
rat
ed [24]. Yeo and Yee u
s
ed e
nergy
geog
rap
h
ical
information
system (E
-G
IS)
databa
se
(DB) an
d a
n
a
r
t
i
ficial n
eural
netwo
rk
(A
NN) to determine loc
a
ti
on potential model for
urba
n en
ergy sup
p
ly plant
s [22]. Polo e
t
al. es
timate
d daily glo
bal
hori
z
o
n
tal a
nd di
re
ct normal
irra
diation fo
r six locatio
n
s in India covering th
e ye
ars f
r
om 2
0
0
0
till 2007 [2
5]. For viabili
ty
analysi
s
of PV powe
r
plan
ts in Egypt long-te
rm
met
eorol
ogi
cal p
a
ram
e
ters for 29 con
s
id
ered
sites
we
re
a
nalyze
d
by S
h
imy [26]. Four mete
orol
o
g
ical parame
t
ers are anal
yzed
in
via
b
il
ity
study of Sol
a
r PV plant
s in
Egypt but in
solatio
n
cl
ea
rness in
dex a
nd sola
r in
sol
a
tion in
equ
ator
pointed
su
rfa
c
e that i
s
tilte
d
at
latitude
a
ngle
were n
o
t con
s
id
ered i
n
this
pape
r [
26]. Sharm
a
and
Tiwa
ri evalu
a
t
ed the te
ch
nical
pe
rform
ance of
2.32
kW
p
sta
n
d
-
alone
PV array system
s f
o
r
climatic co
nd
ition
of
Ne
w Delhi co
nsi
d
ering
i
n
solati
on, tempe
r
at
ure a
nd
sun
s
hine h
ours [2
47
Other mete
orologi
cal pa
ra
meters exce
p
t
solar ra
diati
on we
re not analyzed in [22, 23, 24, 26]
and
only
six l
o
catio
n
s of In
dia
were
con
s
ide
r
ed
in [
2
5
]. Preci
s
e i
n
formatio
n o
n
t
he p
e
rfo
r
man
c
e
of different P
hotovoltaic te
chn
o
logie
s
i
n
actual
fiel
d
con
d
ition
s
is essential fo
r right p
r
od
uct
sele
ction a
n
d
accurate e
s
ti
mation of
their elect
r
icity produ
ction [28, 29].
2. Rese
arch
Metho
d
NASA Surface Meteorology and Solar
Energy dat
abase [30] is the ke
y source of solar
energy and
meteorologi
cal data u
s
e
d
in this p
ape
r.
The gl
obal
availability of these
data
on a
1°×1° g
r
id
with the
sa
me tempo
r
al
, spatial resolution an
d
same
defi
n
ition a
c
ro
ss all
geog
rap
h
ical regio
n
s m
a
ke
s this m
e
tho
d
globally a
p
p
lica
b
le. The
data is g
ene
rated u
s
in
g the
NASA Goddard Earth Observing System - Vers
ion 4 (GEOS-4). The sol
a
r energy data
is
gene
rated
u
s
ing th
e Pi
nke
r
/La
szl
o
sho
r
twave
al
gorithm.
Clo
ud data
is
taken f
r
om
the
International Satellite Cloud Climatolog
y Project DX dataset (ISCCP) [30].
Figure 1. Map of India Locating the Sele
cted Sites
The mainl
a
n
d
of India extends b
e
twe
e
n
8°4' to 37°
6' (N) No
rth
Latitude an
d 68°7' to
97°2
5'
(E) Ea
st Lo
ngitud
e
s. India i
s
divi
ded i
n
to
6
zo
nes i.e. North
e
rn, Ea
stern, No
rth-Ea
ste
r
n,
Southern, Western an
d
Middle
zon
e
. Total 70
lo
cation
s a
r
e
sele
cted fro
m
these
zo
nes.
Insolatio
n
on
hori
z
ontal
surface, in
sol
a
tio
n
in
ci
dent on an
e
quato
r-p
ointed su
rf
ace that i
s
tilted
at
latitude angle
,
insolation cl
earn
e
ss ind
e
x
, daylight hours, air tem
p
eratu
r
e and relative humid
ity
data are
coll
ected for the
analysis. Th
e long-te
rm value
s
and th
e long-te
rm
monthly averaged
values
of
the
above mentio
ned pa
ramet
e
rs
a
r
e
obtai
ned
usi
ng th
e
long
-term
site ave
r
age
s a
nd
monthly mea
n
values fo
r a
ll the con
s
ide
r
ed
sites.
Insolation on h
o
rizontal
surfa
c
e is the amo
u
n
t
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New App
r
o
a
ch to
wards I
deal Lo
catio
n
Selection for
PV Power…
(Supra
v
a
Cha
k
ra
bo
rty)
7683
of elect
r
oma
g
netic e
nergy (sola
r
radiatio
n) in
cide
nt on
the su
rfa
c
e o
f
the earth
an
d expre
s
sed i
n
kW
h/
m
2
/day. Insolatio
n
cle
a
rne
s
s ind
e
x is a dime
nsi
o
nless pa
ram
e
ter and i
s
defi
ned a
s
fra
c
tio
n
of insolatio
n
at the top of the atmo
sph
e
r
e which
re
aches the
su
rfa
c
e of the e
a
rt
h. Insolation
on
tilted surfa
c
e
s
is cal
c
ul
ate
d
from the monthl
y avera
ge insol
a
tion
on a horizo
n
tal surfa
c
e
and
expre
s
sed in
kWh/m
2
/day. In this pape
r the tilt angle of t
he surface is equ
al to the latitude angl
e
of the con
s
id
ered l
o
cation
. Relative hu
midity is
the
ratio of a
c
tual pa
rtial pressure of wa
ter
vapour to th
e partial p
r
e
s
sure at satu
ration, ex
pre
s
sed in p
e
rce
n
t. Day light hour i
s
the time
betwe
en sunrise an
d su
nset.
The T
r
opi
c o
f
Can
c
e
r
23
°
30'
N divide
s India alm
o
st
into two
hal
ves na
med
a
s
Uppe
r
and L
o
wer
India. For g
r
aphi
cal
re
prese
n
tati
on o
f
the above
mention
e
d
meteorologi
cal
para
m
eters,
35 location
s in each pa
rt of India are co
nsid
ere
d
. Mo
st of the sele
cted site
s in I
ndia
are
sh
own i
n
Figu
re
1.
Analys
is of
meteorologi
cal pa
ram
e
ters to
sel
e
ct
suitabl
e
site
for
installatio
n
of PV power pl
a
n
t in India are
presented in
con
s
e
que
nt part of this pap
er.
3. Results a
nd Analy
s
is
In The lon
g
-t
erm ave
r
ag
e
d
insolation i
n
cid
ent on a
hori
z
ontal
surface (M
Wh
/m
2
/y
ear)
and in
solatio
n
incid
ent on
an equ
ator-p
ointed surfa
c
e that is tilted at latitude
angle fo
r ea
ch of
the 35 locations in
Upp
e
r
India and
35 location
s in lower In
dia are
sho
w
n in Figu
re
2-5,
r
e
spec
tively.
Figure 2. The
Long-te
rm A
v
erage
d Insol
a
tion Incid
ent
on a Hori
zo
n
t
al Surface ov
er Vario
u
s
Sites
in Upper India
Figure 3. The
Long-te
rm A
v
erage
d Insol
a
tion Incid
ent
on a Hori
zo
n
t
al Surface ov
er
Variou
s Sites in Lowe
r
Indi
a
Based
on Fig
u
re 2 a
nd 3, the global
sol
a
r ra
diation i
s
geo
gra
phi
cally depen
de
nt such
that it varies
from a mi
nim
u
m value
of 1.43 M
W
h/m
2
/year at Di
bru
garh
(A
ssam) to a maximu
m
value of 2.16 MWh/m
2
/year at Mumbai (Maha
ra
shtra
)
. It is
clear from Figure 2 & 3, the amount
of sol
a
r
ra
diat
ion i
s
hi
ghe
r i
n
west
and
south p
a
rt
a
n
d
lower i
n
n
o
rt
h –
ea
stern
p
a
rt of In
dia
wi
th
an ave
r
ag
e gl
obal
sol
a
r
ra
d
i
ation of
5.03
kW/m
2
/day
o
v
er the
entire
re
gion
(o
nly
70 lo
catio
n
s
are
con
s
id
ere
d
).
India ca
n be
con
s
ide
r
ed
as on
e
of the best regio
n
s for
sola
r energy relate
d
proje
c
ts. In
Mumbai,
Ja
mmu an
d Ha
ridwar
avera
ge daily gl
ob
al insolation
varies
re
sp
ectively
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
81 – 768
9
7684
from 5.09
-7.3
7kWh/m
2
/day
, 3.15-7.4
7
kWh/m
2
/day a
nd 3.64
-7.59
k
Wh/m
2
/day. Among the
s
e
70
locatio
n
s ma
ximum an
d
minimum
ann
ual ave
r
ag
e i
n
sol
a
tion o
n
hori
z
ontal
surface i
s
fo
und
in
Mumbai
an
d
Itanaga
r a
s
5.93
kWh/m
2
/day and
3.9
2
kWh/m
2
/day
re
spe
c
tively. The
se
ason
al
pattern of the
solar
radi
atio
ns mat
c
he
s with
the electri
c
al loa
d
patte
rn in India.
Figure 4. Monthly Average
d Insolatio
n
In
cid
ent on an
Equator-P
oin
t
ed Latitude
Angle
Tilted Surface over Vario
u
s
Sites in Up
per India
Figure 5. Monthly Average
d Insolatio
n
In
cid
ent on an
Equator-P
oin
t
ed Latitude
Angle
Tilted Surface over Vario
u
s
Sites in Lo
wer Indi
a
The lo
ng-te
rm daily ave
r
age in
sol
a
tio
n
in
ci
dent
on
an e
quato
r
-pointed
su
rfa
c
e th
at is
tilted at latitude angl
e (kWh/m
2
/day)
over the con
s
ide
r
ed
35 si
te
s in Uppe
r India, 35 sit
e
s in
lowe
r India
are
sho
w
n
in Figu
re 4
and 5. M
a
ximum an
nual
averag
ed ti
tled insolatio
n
i
s
6.27kWh/m
2
/
day in Mu
mb
ai, whe
r
e
as
minimum i
s
4
.
21kWh/m
2
/d
ay in Itanag
ar. Maximum v
a
lue
of insolatio
n
incide
nt on
equato
r
facing su
rfa
c
e
that is tilted at latitude angle i
s
fou
nd
7.46kWh/m
2
/
day in the m
onth of Ma
rch
at Mumb
ai
and mini
mum
3.34kWh/m
2
/
day in the m
onth
of August at Navi Mumb
ai.
Figure 6. Monthly Average
d Insolatio
n
Clearn
e
ss
Inde
x (0 to 1.0) over Vario
u
s Sit
e
s in
U
p
pe
r
In
d
i
a
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New App
r
o
a
ch to
wards I
deal Lo
catio
n
Selection for
PV Power…
(Supra
v
a
Cha
k
ra
bo
rty)
7685
Figure 7.Mon
t
hly Averaged
Insolation
Cl
earn
e
ss Inde
x (0 to 1.0) over Vario
u
s Sit
e
s in
Lower India
Insolatio
n
cle
a
rne
s
s index
is defined a
s
the
fractio
n
of insolatio
n
at the top of th
e
atmosp
he
re
whi
c
h re
ache
s the su
rfa
c
e
of the ear
th. It is a dimensionle
ss p
a
ra
meter. The lo
ng-
term daily averag
e insolati
on cle
a
rn
ess
index in
sel
e
cted sites of u
pper Indi
a an
d lowe
r India
are
sho
w
n in Fi
g
u
re 6 a
nd 7
respe
c
tively. High
er
clea
rn
ess index ind
i
cate
s goo
d
amount of so
lar
radiatio
n
rea
c
hes to the
at
mosp
he
re
of
the ea
rt
h. An
nual
avera
g
e
insolation
cl
earn
e
ss i
nde
x is
maximum 0.
62 at M
u
mb
ai, Jam
m
u
and
Cha
ndig
a
rh
and
min
i
mum 0.45
at Itanaga
r
and
Dibruga
rh
of
Assa
m. Con
s
iderin
g m
onth
l
y insol
a
tion
clearn
e
ss i
nde
x for 7
0
lo
cati
ons maximu
m
0.73 is fou
n
d
in the month
of Novembe
r
at Shimla an
d minimum
(0.32) i
s
in Sh
ilong du
ring t
h
e
month of
July
. It indicate
s
durin
g the
m
onth of
No
ve
mber
at Shim
la mo
st of th
e ra
diation f
r
o
m
the outer atm
o
sp
here re
aches to the ea
rth.
Figure 8. Monthly Average
d Daylight ho
urs
(h
o
u
rs) o
v
er Variou
s S
i
tes in Up
per
India
Figure 9. Monthly Average
d Daylight Ho
urs
(h
o
u
rs) o
v
er Variou
s S
i
tes in lower India
Time betwee
n
sun
r
ise and
sun
s
et is co
nsid
er
e
d
as d
a
ylight hours.
Daylight hou
rs ove
r
the con
s
id
ere
d
35 site
s in each half of India are sh
o
w
n in Figu
re
8 and 9 re
sp
e
c
tively.
It is
clea
r fro
m
Figu
re
8
a
nd 9
that th
e
daylight
hou
rs are i
n
si
gni
ficantly de
pe
ndent
on
the geog
ra
ph
ical lo
cation
s
and at lea
s
t 1
0
hrs of
dayli
ght hou
rs
exist over Indi
a. From
sea
s
o
n
a
l
point of view
sho
w
n in
Fig
u
re 1
3
, the d
a
ylight
hou
rs
is long
er in
summer
mont
hs (maximum
in
Jun
e
)
and
shorte
r in
win
t
er mo
nths (minimum
i
n
De
cemb
er) f
o
r all
the
co
nsid
ere
d
site
s.
Maximum
da
ylight hou
rs
of 14.4h
rs o
c
cur at
Jun
e
an
d a
mi
nimum
of 9.
9hrs
occu
rs at
De
cemb
er.
But unexpe
ctedly both th
e maximum
and mini
mu
m daylight h
ours am
ong
70
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
81 – 768
9
7686
locatio
n
s i
s
o
b
se
rved i
n
Srinaga
r du
rin
g
different
m
o
nths of th
e year. Ann
ual a
v
erage
value
of
daylight h
ours i
s
m
a
ximu
m 12.1
5hrs i
n
Srin
aga
r
a
nd mi
nimum
12.07h
rs in
K
o
zhi
k
o
de
(Ca
licut)
of Kerala.
In orde
r to check the env
ironm
ental settlem
ent in India with th
e essential
standard
operating con
d
itions for PV
module
s
a st
udy of
the long-term m
onth
l
y averaged a
i
r temperature
and th
e lo
ng-term m
onthly
averaged
rel
a
tive humid
it
y is
ca
rrie
d
o
u
t with
rel
e
va
nt data
obtai
ned
from NASA renewable energy res
o
urce webs
ite (S
urface Meteorology and Solar Energy)
[30]
.
The lo
ng
-term ann
ual
ave
r
age
d ai
r tem
peratu
r
e
at
1
0
m a
bove th
e surfa
c
e
of the e
a
rth
(°
C)
and
relative humi
d
ity (%) are shown in Figu
re 10-1
3
, re
sp
ectively.
Figure 10. Th
e Long
-term
Monthly Averaged Air Te
m
peratu
r
e at 1
0
m above the Surface of the
Earth (°C) for Sites
in Upper India
Figure 11. Th
e Long
-term
Monthly Averaged Air Te
m
peratu
r
e at 1
0
m above the Surface of the
Earth (°C) for Sites
in lower India
Tempe
r
atu
r
e
is an im
port
ant paramete
r
t
hat affects the output
of PV modul
es. The
averag
e air t
e
mpe
r
ature o
v
er Indi
a increases fro
m
n
o
rth to sout
h.
Average air t
e
mpe
r
ature o
v
e
r
the entire
re
gion
(only
70
location
s a
r
e con
s
ide
r
ed
) is 23.7
7
°
C
whi
c
h i
s
with
in the
ran
ge
of
Standard ope
rating conditi
on of PV module
s
. A maximum air tem
peratu
r
e of 3
4
.4°C o
c
curs in
May at Nagp
ur a
nd a
mini
mum of
-6.74
°
C
occu
rs
in De
cemb
er at Srinag
ar amo
ng
70
lo
catio
n
s.
Annual ave
r
a
ge value of ai
r tempe
r
ature
at 10m
abov
e the su
rface
is maximum
28.2°
C in Surat
and minim
u
m
5.39°C in Sri
naga
r.
Figure 12. Th
e Long
-term
Monthly Averaged
Relative
Humidity (%) for Sites in Upper Indi
a
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New App
r
o
a
ch to
wards I
deal Lo
catio
n
Selection for
PV Power…
(Supra
v
a
Cha
k
ra
bo
rty)
7687
Figure 13. Th
e Long
-term
Monthly Averaged
Relative
Humidity (%) for Sites in Lowe
r
India
Humidity is a
paramet
er th
at cau
s
e
s
de
grad
ation of PV module. It is clear fro
m
Figure
12 an
d 13,
the long
-term humidity for different
sites i
n
Indi
a matche
s
with the Sta
ndard
operating
co
n
d
ition rang
e o
f
PV modul
es. Maximu
m
a
nnual
averag
e rel
a
tive hu
midity amon
g
70
locatio
n
s i
s
7
8
.3% occu
rs i
n
Itanaga
r an
d minimum i
s
43.5% in Bikaner. T
he rel
a
tive humidity is
highe
r in
mo
nso
on
with a
v
erage
value
of 79.9% in
Augu
st than
in
sp
ring
with
a
v
erage
value
of
43.42% in M
a
rch. A m
a
ximum
relative humidity
of
88.1% occurs during
July
in Siliguri
and a
minimum of 2
2
.4% occu
rs
durin
g April i
n
Bhopal a
m
o
ng 70 l
o
catio
n
s. Relative h
u
midity is hig
her
in North
-
e
a
st
ern an
d so
uth
e
rn pa
rt of India than othe
r location
s.
Con
s
id
ere
d
i
deal
ran
ge
of different
meteorologi
cal pa
ram
e
ters fo
r PV p
o
w
er pla
n
t
installatio
n
concl
ude
d fro
m
variou
s literatu
r
e
s
,
i.e. Global Hori
zontal In
solat
i
on (G
HI), Ti
lted
Ins
o
lation (TI
)
, Ins
o
lation
c
l
earness
index (K
t
), Daylight hours (S
), ai
r tempera
t
ure (T
) gre
a
ter
than or equ
a
l
to 1.8 MWh/m
2
/Year, 5k
Wh/m
2
/Day, 0.55, 12h, 25°C respe
c
tively and Rela
tive
Humidity
(RH) is bet
wee
n
44% to
52
%. Sugge
st
e
d
lo
cation
s f
o
r PV p
o
wer plant i
n
stall
a
tion
depe
nding
o
n
consi
d
e
r
ed
ideal
ran
ge
of differ
ent
meteorologi
cal pa
ramete
r are
tabulate
d
in
Table 1.
Table 1. Sug
geste
d Lo
cati
ons for PV Powe
r Plant Installation
Dep
endin
g
on Dif
f
erent
Meteorologi
cal Paramete
rs
Location GHI
a
≥
1.8
TI
b
≥
5 K
t
c
≥
0.55 S
d
≥
12
T
e
≤
25
44
≤
RH
f
≥
52
Jammu, Rohta
k
, Amritsar, Bathinda, Lud
hiana,
Chandigarh,
Mat
hura, Jodhpu
r, Ajmer, Jaipur.
√
√
√
√
√
√
Shimla, Dehra
dun, Harid
w
ar,
Agra, Ne
w Delhi,
Muzaffarpur, Bik
aner, Patna,
Malda.
√
√
√
√
√
×
Kota, Udaipu
r,
Ujjain, Bhop
al, Gw
alior,
I
ndore,
Gandhidham,
A
h
medabad, V
a
d
odara, Su
rat,
N
agpur,
Jhansi.
√
√
√
√
×
√
Mumbai, Goa,
Trivandrum,
Kozhikode (Calicut),
Bijapur, Manga
lore, Allahabad
, Varanasi, R
a
ipur,
Kanpur.
√
√
√
√
×
×
Ga
ya, Rou
r
kela, Coimbatore, Ban
galore.
√
√
×
√
√
×
Warangal, H
y
d
e
rabad, Visakhapatnam, Che
nnai,
Puducherr
y
, Navi
Mumbai, Pune,
Bardhaman.
√
√
×
√
×
×
Srinagar, Siliguri.
×
√
√
√
√
×
Ranchi, Bokaro,
Dhanbad, Aiza
w
l
, Gu
w
a
hati.
×
√
×
√
√
×
Krishnanagar, B
e
rhampu
r, Bhub
aneswar.
×
√
×
√
×
×
Itanagar,
Kohima, Imphal,
Agartala, S
h
illong,
Dibrugarh
.
× ×
×
√
√
×
Kolkata. ×
×
×
√
×
×
a
GHI: Averag
ed insolation
on hori
z
o
n
tal surfa
c
e
(M
Wh/m
2
/Year).
b
TI: Annual
averag
ed i
n
solatio
n
o
n
equato
r
p
o
in
ted surfa
c
e
i.e. tilted at latitude
an
gle
(KWh/m
2
/Day).
c
K
t
: Annual average
d insol
a
tion cle
a
rn
e
ss in
dex.
d
S: Annual averag
ed daylig
ht hours(h).
e
T: Annual averag
ed ai
r temperature
(°
C).
f
RH: Annu
al a
v
erage
d rel
a
tive humidity (%)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
81 – 768
9
7688
4. Conclusio
n
In this paper the long-term meteorol
ogic
al param
e
ters from
NASA renewabl
e energy
resou
r
ce web
s
ite (Su
r
face
Meteorology
and Sola
r
En
ergy) fo
r 70
con
s
id
ere
d
lo
cation
s in In
d
i
a
are
analy
z
ed.
The
data
ta
ken
from
NA
SA web
s
ite i
s
a
mo
nthly
averag
e of
previous 22
ye
ars.
Study shows that India is a c
ountry wi
th diverse e
n
v
ironme
n
tal condition
s and
has suffici
e
n
t
amount
of
sol
a
r
radi
ation
a
ll over the ye
ar. Befo
re
set
t
ing up
a
PV
power plant
i
n
a
country li
ke
India o
n
ly a
nalysi
s
of
G
H
I o
r
ai
r te
mperature
of
that locatio
n
are not sufficient but other
meteorologi
cal paramete
r
s are equ
all
y
import
ant to
analyse before sel
e
ct
ing
app
rop
r
i
a
te
locatio
n
. If the othe
r imp
o
rtant paramet
ers a
r
e n
o
t within the id
eal
ran
ge the
n
we
can
say that
area
is not i
deally
suited
for in
stallati
on of
l
a
rg
e
PV power
pl
ant. The
stu
d
y of the
coll
ected
meteorologi
cal parameters
ensures the com
patibilit
y
of India’s meteorologi
cal conditions with
the safety op
erating
con
d
ition ran
ge of the PV-mo
d
u
l
e
s. Thi
s
anal
ysis hel
p tech
nologi
st to sel
e
ct
approp
riate PV technolo
g
y environ
menta
lly best suited
for a particul
a
r location.
This pa
per i
s
an effective one for PV powe
r
plant in
staller al
ong
with different
agen
cie
s
like Mi
nist
ry
of Ne
w
and
Ren
e
wable
Energy, El
e
c
tri
c
ity Authority
and
Planni
n
g
Commi
ssi
o
n
of
India to
sele
ct app
ro
priat
e
location fo
r in
stallation
of PV po
wer pl
ant con
s
ide
r
ing
vari
ous
meteorologi
cal para
m
eters.
Referen
ces
[1]
Steven S. F
o
ssil fuel a
ddict
ion a
nd the i
m
p
licati
ons fo
r climate cha
nge p
o
lic
y. Gl
oba
l Envir
o
n
Cha
nge
201
3; 23: 598
–6
08.
[2]
Hook
M, T
ang X.
De
pleti
o
n
of fossil
fuels
and
a
n
throp
o
g
enic
clim
ate c
h
ang
e-A rev
i
e
w
.
Ener
g P
o
lic
y
201
3; 52: 797
–
809.
[3]
Holtsmark B, Maestad O. Emission tra
d
in
g und
er
the K
y
ot
o Protoco
l
-effects on fossil fuel mark
e
t
s
und
er alter
nati
v
e regim
e
s. Energ Pol
i
c
y
. 2
0
0
2
; 30: 207
–18.
[4]
Bose RK, Shuk
la M. Elasticitie
s
of electricit
y
dema
nd in In
di
a. Energ Pol
i
c
y
1999; 2
7
: 137-
46.
[5]
Bell
armin
e
GT
, Arokias
w
am
y NSS. En
er
g
y
M
a
n
agem
e
n
t techni
qu
es
to meet po
w
e
r short
a
g
e
prob
lems in In
dia. Ener
g Co
n
v
ers Mana
ge 1
996; 37(
3): 319
-28.
[6]
Monthl
y al
l India g
ener
atio
n
capacit
y
r
e
p
o
rt
. Central Electricit
y
A
u
th
orit
y
,
Min
i
str
y
of Po
w
e
r
,
Governme
nt of India. <
http://www
.
c
ea.
nic.in
/install
ed_c
ap
a
c
it
y
.
html>
.
(Accessed Ma
y 2
0
1
4
)
[7]
Exec
utive s
u
m
m
ar
y of mo
nth of F
ebr
uar
y 201
4
. Ce
ntra
l Electric
it
y
A
u
thorit
y, Min
i
str
y
of Po
w
e
r
,
Governme
nt of India. <
h
t
t
p://
w
w
w
.
ce
a.ni
c.in/r
eports/mo
n
thl
y
/e
xec
u
tive
_rep/feb
14.p
d
f>
.(Accesse
d
March 20
14)
[8]
International Energy
Statisti
cs. <http:/
/
w
ww
.
e
ia.
gov/cfapps/ipd
bproject/IEDIndex
3
.cfm?tid=2&pid=
2&ai
d=
7>
. (Accessed F
ebr
ua
r
y
20
14)
[9]
Get enli
ghte
n
e
d
ab
out e
l
ectri
c
it
y
- In
dia (
1
MU
=
1 Mill
ion
Units i
n
Indi
a
=
1 GW
hr),
T
he F
i
n
anci
a
l
Expr
ess. 200
4.
[1
0
]
Mu
kh
op
a
dhy
ay K,
Fo
rsse
l
l
O. An
empirica
l i
n
vestig
atio
n of air poll
u
tio
n
from fossil fuel
combusti
on
and its imp
a
ct on he
alth i
n
India d
u
rin
g
19
7
3–1
97
4 to 199
6–1
99
7. Ecol Econ 20
05; 55:
235 – 5
0
.
[1
1
]
Sh
a
rma N
K
, T
i
w
a
ri
PK, So
od YR
. So
la
r
e
n
e
r
gy
i
n
In
di
a
:
Stra
te
gi
e
s
,
p
o
l
i
c
i
e
s,
p
e
r
sp
e
c
ti
ve
s and
future potential.
Renew
Sust Energ R
e
v.
20
12; 16:9
33– 4
1
.
[12]
Ramac
han
dra
T
V
, Jain R, Kr
i
s
hna
das
G. H
o
tspots of so
lar
potenti
a
l
in In
di
a.
Re
new
Sust
Ener
g R
e
v.
201
1; 15: 317
8
–
86.
[13]
Sing
h SK. F
u
ture mo
bil
i
t
y
in
Indi
a: Imp
lica
t
ions for
en
erg
y
dem
an
d a
nd CO
2
emiss
i
on. T
r
anspo
r
t
Polic
y. 20
06; 1
3
: 398–
41
2.
[14]
Kerr MJ, Cuev
as A. General
i
z
ed an
al
ys
is o
f
t
he illumi
nati
on inte
nsit
y vs
. open-circ
uit v
o
ltag
e of PV
modu
les.
Sol E
nerg.
20
03; 76:
263–
7.
[15]
Radzi
e
mska E,
Klugm
an
n E.
T
hermall
y
-
affe
cted par
ameter
s of the curr
en
t–voltag
e ch
ar
acteristics of
silico
n
ph
otoce
ll.
Energ C
onv
ers Mana
ge.
2
002; 43: 1
889
–
900.
[16] Van Dy
k EE,
Mey
e
r EL, Leit
ch AWR, Scott BJ.
T
e
mperature-d
epe
nd
ent
of
performa
nc
e of cr
ystall
in
e
silico
n
ph
otovo
l
taic mod
u
les
.
S Afr J Sci.
2000; 96:1
98–
20
0.
[17]
Nishi
oka K,
H
a
ta
yama T
,
Uraoka Y,
F
u
yuki
T
,
Hagih
a
ra
R,
W
a
tanabe
M. F
i
eld-test
ana
l
y
s
i
s of PV-
s
y
stem-o
utput character
i
stics focu
sin
g
o
n
m
odu
le tem
per
ature.
Sol Energ Mat Sol C
.
2
0
0
3
;
75
: 66
5–
71.
[18]
Sharma C., Jain A, Simuli
nk
Based Multi
V
a
ria
b
le So
lar P
ane
l Mode
lin
g,
T
E
LKOMNIKA Indones
ia
n
Journal of Electrical Engi
neering , Vol.
12, No. 8,
August 2014, pp. 5784
~ 5792 ,DOI:
10.11
59
1/telko
m
nika.v1
2
i8.6
0
71.
[19]
Hassa
ne Ben
Sliman
e,
B
en Moussa
De
nn
a
i
,
an
d He
lm
ao
u
i
Ab
derrac
h
i
d
,
T
heoretical
Stu
d
y
of M
u
lti
p
le
Solar Ce
lls S
ystem as a
F
unction of T
e
mperatur
e.
T
E
LKOMNIKA Indones
ian Jo
urn
a
l of Electrical
Engi
neer
in
g
. 2014; 12(
7): 4928-4933 ,DOI: 10.115
91/telk
omnika.v12i7.5363.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A New App
r
o
a
ch to
wards I
deal Lo
catio
n
Selection for
PV Power…
(Supra
v
a
Cha
k
ra
bo
rty)
7689
[20]
Ehsan
Hoss
ei
ni, Mo
del
ing
and
Simu
lati
o
n
of S
ilic
on
Sol
a
r C
e
ll
i
n
MAT
L
AB/SIMULINK fo
r
Optimization.
T
E
LKOMNIKA Indo
nesi
an Jo
u
r
nal
of Electric
al Eng
i
ne
eri
n
g
.
2014; 1
2
(8): 6
047 ~
605
4,
DOI: 10.11591/telkomnika.v12i8.5294.
[21]
Yerli B, Ka
ym
ak MK
, Izgi E, Oztopal A,
Ş
a
h
in AD. Effect of derati
ng fac
t
ors on p
hotov
oltaics u
n
d
e
r
climatic co
nditi
ons of Istanbu
l.
W
o
rld Acad S
c
i Eng T
e
chn
o
l
. 2010; 44:1
4
0
0
-4.
[22]
Yeo IA, Yee JJ
. A proposa
l
fo
r a site locati
on
pl
an
ni
ng mo
d
e
l of env
ironm
ental
l
y
fri
e
n
d
l
y
urba
n en
erg
y
supp
l
y
pl
ants usin
g
an envir
onme
n
t
and e
nerg
y
geo
gra
p
h
ical
inform
ati
on s
y
stem (E-
GIS) database
(DB) and a
n
ar
tificial n
eura
l
n
e
t
w
o
r
k (ANN).
Appl En
erg.
20
14; 119: 9
9–1
1
7
.
[23]
Martins FR, Pereira EB, Abr
eu SL. Satellit
e-
deriv
ed s
o
lar
resource m
a
p
s
for Brazil un
der SW
ER
A
proj
ect.
Sol Energ
. 200
7; 81(4
)
: 517–2
8.
[24]
Besarati
SM, Padi
lla
RV, Go
s
w
a
m
i Y
D
, Ste
f
anakos
E. T
he pot
entia
l of
harn
e
ssin
g
so
l
a
r rad
i
ati
on i
n
Iran: Generati
n
g solar ma
ps a
nd vi
a
b
il
it
y
stu
d
y
of PV po
w
e
r
plants.
Ren
e
w
Energ.
20
13; 53:19
3-9
9
.
[25]
Polo J, Z
a
rzal
ejo LF
, Con
y
M, Navarro A
A
, Marchante
R, Mart
ı
n L, Romero M. S
o
lar radiation
estimatio
n
s ov
er India us
in
g Meteosat satel
l
i
te imag
es
. Sol Energ
. 20
11; 85: 239
5–
40
6.
[26]
Shim
y
ME
L. Vi
abil
i
t
y
ana
l
y
sis
of PV po
w
e
r pl
ants in Eg
ypt.
Ren
e
w
Energ
. 200
9; 34: 218
7
–96.
[27]
Sharma
R, T
i
w
a
ri GN. T
e
chni
cal p
e
rforma
nc
e eva
l
u
a
tion
of
stand-
alo
ne
p
hotovo
l
taic
arr
a
y for o
u
tdo
o
r
field co
nditi
ons
of Ne
w
D
e
l
h
i.
Appl En
erg
. 20
12; 92: 64
4–5
2
.
[28]
Durisch W
,
T
i
l
l
e D, W
o
rz A, W
a
ltraud P.
Char
acterisati
o
n
of photov
olt
a
ic ge
nerat
ors.
Appl Ener
g.
200
0; 65:27
3–
84.
[29]
Sasithar
an
u
w
a
t
A, W
a
ttanap
ong
R, Nip
on
K,
Such
art
Y. Performanc
e e
v
alu
a
tion
of a 10
kW
p
PV
po
w
e
r s
y
stem
protot
ype for is
olate
d
bu
ild
ing
in T
hailan
d
.
Re
new
Energ
. 20
07; 32:1
288
–3
00.
[30]
Surface meteorology
and
solar ener
gy
. NASA r
ene
w
able energy
resourc
e
w
ebs
ite. <
http://eos
w
e
b.l
a
rc.nasa.g
o
v/sse/>
. (Accessed Janu
ar
y
20
1
4
).
Evaluation Warning : The document was created with Spire.PDF for Python.