TELKOM
NIKA
, Vol. 11, No. 6, June 20
13, pp. 3236
~ 324
1
e-ISSN: 2087
-278X
3236
Re
cei
v
ed
Jan
uary 17, 201
3
;
Revi
sed Ap
ril 7, 2013; Accepte
d
April 2
2
, 2013
Impact of Distributed Generation on Relay Protections
of Distribution Grid
ZHO
U
Bin*
1,2
, YING Limin
g
1
, ZHU Yon
ggang
1,2
, HU
AN
G Ch
ao
1
1
School of Elec
trical Eng
i
ne
eri
ng, W
uhan U
n
i
v
ersit
y
, W
u
h
a
n
4300
72, Hu
bei
Province, Ch
in
a;
2
Hube
i Electric
al Po
w
e
r Com
pan
y, W
uha
n 4
300
77, Hu
bei
Provinc
e
, Chin
a
、
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: zhoub
@hb.s
g
cc.com.cn
A
b
st
r
a
ct
Distribut
ed Ge
nerati
on (DG)
gen
erat
es
elec
tricity from
ma
ny s
m
al
l d
i
strib
u
ted
ener
gy so
urces
o
r
even c
u
sto
m
e
r
’
s
s
m
all
pow
er pl
ants. It alw
a
ys co
mes
up w
i
th the t
e
rmina
l custo
m
er
pow
er q
u
a
lit
y
m
a
n
a
g
e
m
e
n
t
an
d
the
te
chn
o
lo
g
y
o
f
e
n
e
r
g
y
ca
sca
de
u
t
il
i
z
a
t
i
o
n
.
D
G
ha
s lots o
f
ch
a
r
a
c
te
risti
cs su
ch
a
s
one
singl
e p
o
int of
access, bei
ng
pow
er an
d be
i
ng lo
ad, tw
o operati
ng
mo
de
in a gr
id or as
an isl
a
n
d
, a gr
eat
dea
l of
ap
plic
a
t
ion
of p
o
w
e
r e
l
ectron
ic d
e
vic
e
s, eas
ily
infl
u
ence
d
by
n
a
tur
a
l envir
on
me
nt
al factors
etc.
DG
has i
m
p
a
cts to the orig
ina
l
gri
d
in ter
m
s of the gri
d
structur
e, the directi
o
n
of
pow
er flow
, the fault curre
n
t
level w
h
e
n
a fault ha
pp
ens, etc and su
bse
que
ntly t
he rel
a
y protectio
n
mec
h
a
n
is
m
must be look
ed
into
.
T
h
is pa
per
an
alyses th
e i
m
p
a
ct of access
in
g the
DG on
the d
i
strib
u
ted
grid
in thr
ee c
a
ses w
h
ic
h ar
e t
h
e
DG accessin
g
to the en
d of the dist
ri
bute
d
feed
ers, to the
mi
ddl
e, an
d th
e DG accessi
n
g
to lin
es, on r
e
lay
protectio
n
s. At
the end
of t
he pap
er it also co
mes u
p
w
i
th improve
m
ents in
detai
l.
Ke
y
w
ords
:
dis
t
ributed g
e
n
e
ra
tion, distrib
u
tio
n
grid, rel
a
y pr
otection, recl
os
ure
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Distri
buted g
eneration (DG) is a ne
w
electri
c
po
we
r techn
o
logy,
and it is the result of
earth environment
sus
t
ai
nable
development polic
y and tec
hni
c
a
l
progress
[1].
The IEEE def
ines
distrib
u
ted g
eneration a
s
the gen
er
atio
n of ele
c
tri
c
ity by facilities that are
suff
iciently small
e
r
than ce
ntral
gene
rating pl
ants so as t
o
allow in
te
rcon
ne
ction at
nearly any point in a po
wer
system
[2]. Distri
buted
g
enerati
on i
n
cl
uding
the
po
wer of
small
intern
al
com
bustio
n
e
ngin
e
s,
micro-tu
rbin
e
s
, fuel cell
s, and vari
ou
s form
s of
ren
e
w
abl
e ene
rgy
sou
r
ces
su
ch as p
hotovol
taic
cell
s for solar po
wer,
win
d
po
wer an
d
bioma
s
s po
wer g
ene
ration
. The b
enefit
s of
DG
can
be
con
c
lu
ded int
o
the followe
d aspe
cts: i
m
provin
g en
ergy efficie
n
cy, increa
sin
g
the diversity of
energy use t
o
solve th
e e
nergy
cri
s
i
s
and e
nergy
secu
rity, playing a
role i
n
pea
king
sh
aving,
improvem
ent
of voltage profile, re
du
ction of di
stri
bution an
d transmi
ssion l
o
sse
s
, increa
sed
reliability, sol
v
ing the p
r
obl
em of ele
c
tri
c
ity suppl
y in
remote a
r
ea
s,
redu
ction
of carbo
n
emi
s
si
on
and inve
stme
nt deferral. [3-10]. Ho
wev
e
r, introd
ucti
on of nume
r
ous
DG
s wit
h
large
r
cap
a
city
has be
en rep
o
rted to ca
use the increa
se of the s
hort
-
ci
rcuit curren
t as well as th
e mal-op
eration
of the p
r
ote
c
tive device
s
and th
e d
e
te
rioration
of the p
o
wer
qu
ality [11-12].
Refe
ren
c
e
[13]
analyses th
e
impact
of DG
s in
a p
o
wer
netwo
rk to th
e ope
ratio
n
o
f
ARDs in
different
mann
ers,
by using of a
Fault Cu
rre
nt Limiter to avo
i
d la
rge
cu
rre
nt when fault
happ
en was reporte
d in [14
].
For
reli
ability and security
, it is im
portant to
further i
n
vestigate these impact
s
before
DGs
are
interconn
ecte
d to any MV
netwo
rk [13].
From the
sta
ndpoi
nt of the distrib
u
tion g
r
id,
the DG i
s
a controllabl
e unit and tha
t
shows
the load character a
nd p
r
odu
ce
s the p
o
we
r. Wh
e
n
a fault occurs, the DG sh
ows the po
wer
cha
r
a
c
ter an
d ge
nerates
a fault
curre
n
t. From
the
relay
protection pe
rspe
ctive, distrib
u
ted
gene
ration
m
odel
ca
n b
e
repre
s
e
n
ted
a
s
a
p
o
wer
su
pply an
d a
re
actan
c
e
conn
ected
in
serie
s
.
What
nee
ds t
o
be
con
s
ide
r
ed i
s
h
o
w la
rge the
f
ault
current the
di
stributed
gen
e
r
ation
provide
s
.
For diffe
rent
types of
DG,
the re
acta
nce value i
s
al
so differe
nt, it rep
r
e
s
ent
s th
e po
we
r of th
e
fault cu
rrent i
n
jectio
n
cap
a
c
ity.
Barker h
ad the
research
on va
ri
o
u
s
type
s of
di
stribute
d
power
fault current i
n
jecting ability, as shown i
n
Table 1 [15]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Im
pact of Distributed G
ene
ration on Rela
y Prote
c
tion
s of Distrib
u
tion
Grid (Z
HO
U
Bin)
3237
Table 1. Fault
Current Insert of Different Kinds of DG
DG t
y
pe
Fault current inje
ction capacity
converter
100%~400
%
,
th
e duration de
pen
ds on the control
devices
sy
nch
r
onous gen
erator
500%~1000
%
,
g
r
aduall
y
deca
y
to
200%~400
%
asynchronous ge
nerator
500%~1000
%
,
a
ttenuated
to the
negligible level
in
10 c
y
cles
Base on thi
s
point, the distribution g
r
id i
s
se
en as a d
ouble
-
en
ded
power supply
system
rathe
r
than th
e sin
g
le-end
e
d
after a
c
cessing th
e DG. The relay pro
t
ection
s an
d
even directio
n
comp
one
nts sho
u
ld
th
en
b
e
in
stalled at both side
s
of
lines bet
wee
n
the
DG
an
d
the di
strib
u
tion
grid. Be
side
s,
the effect of the increa
se
d
curre
n
t must
be co
nsi
d
e
r
ed in the d
o
w
n
s
trea
m of
th
e
acce
ss p
o
int, and the bran
ching facto
r
sh
ould be
cal
c
ul
ated rea
s
o
n
a
b
ly.
In this pape
r,
the author a
nalyze
s
seve
ral di
ffere
nt impact
s
, espe
cially the sh
o
r
t-current
faults, when
DG i
n
diffe
re
nt location
of
the net
wo
rk.
A method
is
prop
osed to
make
the
ori
g
inal
relay protecti
ons a
nd auto
m
atic re
clo
s
in
g adj
u
s
ted a
c
cordingly afte
r acce
ssing the DG.
2. Impact of
DG on Dis
t
ri
bution Grid
Protec
tion
Most of the di
stributio
n g
r
id
is
a radial
sy
stem; even fo
r a me
sh
li
ke
grid, it is
still runnin
g
as a ra
dial like system thro
ugh the op
en
loop gri
d
poin
t
s.
There a
r
e
se
veral
ways o
f
distrib
u
tion
grid
relay
protection
s i
n
the tra
d
itional
po
we
r
system. Ba
sed on
wh
ethe
r or not
impl
e
m
enting th
e
distrib
u
tion a
u
tomation, p
r
otection
s
can
be
divided into t
h
ree type
s:
①
No
distri
b
u
tion autom
a
t
ion. The co
mmon p
r
ote
c
tion strate
gy is the
pha
sed
-
curre
n
t prote
c
tion
, the fuse, the circuit b
r
ea
ke
r and
so on.
②
The
di
stribut
ion
automation
b
a
se
d on
the
recl
osure mo
de. Lo
cate
a
nd i
s
olate th
e fault by
co
operation
of
the
recl
osure an
d
the se
ction
switch.
③
The
distrib
u
tion a
u
tomation i
s
based o
n
the
feeder termi
nal
unit (FTU) mode. The
FTU and th
e main station locate a
nd isolate t
he fault through
comm
uni
cati
on a
nd
by u
s
ing
of
circui
t brea
ke
rs.
Protectio
n
d
e
vice
s follo
w the p
r
in
cipl
e of
sele
ctivity in
the above three method
s. As to t
he co
nfiguratio
n of protectio
n
s,
the coo
r
din
a
tion
among prote
c
tion
s
may derive
from the
co
ope
rati
on bet
wee
n
two devi
c
e
s
. A three-pha
se
prote
c
tion ca
n be made u
p
of two group
prote
c
tion
s, shown in Figu
re 1.
The P
l
a
nd P
2
divide the
line into
thre
e
segm
ents: th
e up
stre
am o
f
A, the se
gm
ent AB
and th
e d
o
wn
strea
m
of B.
The
DG
a
c
ce
ss ap
pro
a
che
s
h
a
ve
seven
(
12
3
33
3
7
CC
C
) ways
. It is
not re
asonab
le that the
DG acce
sse
s
t
o
the up
strea
m
of A sin
c
e
the co
ordinati
on bet
wee
n
P1
and P
2
d
o
e
s
n’t ch
ang
e.
So the
acce
ss a
p
p
r
oa
che
s
will b
e
th
re
e ways
(
12
22
3
CC
): th
e D
G
acce
sses to
the se
gment
AB, to the down
s
tr
e
a
m o
f
B and to b
o
th the segm
ent AB and t
he
downstream
of B. The pro
t
ection
s coordination
sh
ou
ld be
con
s
id
e
r
ed
whe
n
a f
ault occu
rs at
the
downstream
of B, at the
segment AB
a
nd at th
e up
strea
m
of A.
The a
s
yn
ch
ronou
s
re
clo
s
ure
and the isl
a
n
d
situation
sh
ould al
so be l
ooked into [1
6].
D
i
s
t
r
ibu
ti
on
Ne
tw
ork
P
1
A
DG
1
P
1
B
DG
2
DG
1
Figure 1. The
coordinatio
n among two sets of
prote
c
tive eq
uipment
Figure 2. The
DG acce
sse
s
to the end o
f
distrib
u
tion fe
eders
2.1. DG
A
c
ce
s
ses to
En
d
o
f
Distrib
u
t
io
n Feed
er
s
As sh
own in
Figure
2, the DG a
c
ce
sse
s
to
the feeder
bu
s terminal D, the
system
become
s
bila
teral po
we
r supply system.
1
)
When
a f
ault occu
rs a
t
K
1
, the fault current
whi
c
h
com
e
s fro
m
the
DG
wi
ll flow
throug
h the p
r
otectio
n
1 a
nd 2. We
ho
pe that
prote
c
tion
s can m
a
ke th
e fault line AB isolat
ed,
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No. 6, June 20
13 : 3236 – 3
241
3238
however, th
e
B si
de
of th
e AB
segm
e
n
t ha
s n
o
pro
t
ection
s o
r
breakers,
so th
e p
r
ote
c
tion
2 of
BC segm
ent cut
the
fault. Acco
rdi
ng
to
the
requi
re
m
ent of
sel
e
cti
v
ity, the prot
ection
2
sho
u
ld
work befo
r
e
the prote
c
tio
n
1, but When a fault occurs at
K
2
,
the same fa
ult current flows
throug
h
the
prote
c
tion 1 and 2,
therefore,
the
existing si
ngle
-
e
nded
thre
e-current p
r
ote
c
tion
can
not gua
ra
ntee the sel
e
ctivity of protection.
2
)
When a f
ault occu
rs a
t
K
3
, only pr
otection 4
sh
ould work. But the reverse fault
curre
n
t whi
c
h
com
e
s f
r
om
the DG
lea
d
s to the ma
lfu
n
ction
and
no
n-sele
ctive of
prote
c
tion
1, 2
and 3. Acco
rding to the
feature of the thre
e-
cu
rrent prote
c
tio
n
, prote
c
tion
1 most like
l
y
malfunctions
with the mini
mum
st
arting
curre
n
t. Beca
use
the fa
ult
curre
n
t from
the
DG i
s
add
ed
to the one fro
m
the system
side,
the increasi
ng fault current flowin
g
through
prot
ection 4 m
a
kes
loss the sele
ctivity and the coo
p
e
r
atio
n with the
protection 5
by rea
s
on of th
e extensio
n o
f
the
scope of protection 4.
2.2. DG
A
c
ce
s
ses to
Mid
d
l
e
o
f
Distrib
u
t
ion
F
eed
ers
1
)
As
sh
own
in Fig
u
re
3,
whe
n
a fa
ult
occurs
at
K
1
, prote
c
tion
3
cuts the A
D
segment
and n
o
po
we
r at the d
o
wnstre
am of th
e fault poi
nt i
n
a sy
stem
without the
DG. After the
DG
con
n
e
c
ting to
the
bu
s B, if
prote
c
tion
3 works alon
e whe
n
a
fault occurs
at
K
1
,
the BD line
would
enter into the
island
ope
ra
tion. Whe
r
ea
s, becau
se
of
no prote
c
tio
n
betwe
en th
e fault point and
the bus B, the continu
o
u
s
supple
m
ent of the fault current from
the DG to the
fault point will
result in the self-protectio
n of DG maki
n
g
itself
leaves the powe
r
gri
d
in the end. So it is neede
d
to install prot
ection d
e
vice
s and di
re
ctio
n comp
one
nts at the AB line clo
s
e to th
e bus B sid
e
.
2
)
When
a f
ault occu
rs a
t
K
2
, the DG
cau
s
e
s
the
in
cre
a
se of the
fault cu
rrent
flowing
through the protection 2 and its ex
tension of the
scope. Particularly
the protection 2
will lose t
he
sele
ctivity and the co
ope
ration with the
prote
c
ti
on 1
whe
n
its sco
pe re
ache
s the CD se
gm
ent.
The sam
e
problem may h
appe
n to the limit curr
ent
prote
c
tion 2 and 3. By contrast, the fault
curre
n
t flowi
n
g thro
ugh
the
prote
c
tion
3
is redu
ce
d b
y
the DG a
n
d
its
scop
e
may be
com
e
too
sho
r
t to be the back-up p
r
o
t
ection of the adja
c
ent line
s
.
Figure 3. The
DG Acce
sse
s
to the Middl
e of
Distri
bution F
eede
rs a
nd K
1
has F
ault
Figure 4. The
DG Acce
sse
s
to the Middl
e of
Distri
bution F
eede
rs a
nd
K
2
has Fault
3
)
When a f
ault occu
rs a
t
K
3
, if the fa
ult current flo
w
ing th
roug
h
the prote
c
tio
n
3 is
stron
g
eno
ug
h, it perhap
s misop
e
rates
unle
ss in
stalli
ng dire
ction
compon
ents.
2.3. DG
A
c
ce
s
ses to
L
i
n
es
As sho
w
n in
Figure 5, to
more cl
early
analyse the
impact of DG con
n
e
c
tion
on the
prote
c
tion 3, we ign
o
re the
effects from
other
feed
ers, simplified as sho
w
n in Fig
u
re 6.
Figure 5. The
DG Co
nne
ct
s to the AB Line in
a Distri
bution
Grid
Figure 6. Simplified Dia
g
ram of the
Distri
bution G
r
id
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Im
pact of Distributed G
ene
ration on Rela
y Prote
c
tion
s of Distrib
u
tion
Grid (Z
HO
U
Bin)
3239
s
E
1
k
I
2
k
I
s
I
(a)
(b
)
Figure 7. The
Superp
o
sitio
n
Network
Acco
rdi
ng to
the supe
rpo
s
i
t
ion theo
rem,
sh
own
a
s
Fi
gure
7, th
e
short
cu
rrent fl
owin
g throug
h
the head
side
12
kk
k
I
II
(1
)
We a
s
sume that the syste
m
voltage
S
E
and the impeda
nce
s
x
is con
s
tant. Then
1
k
I
is
con
s
tant a
nd
k
I
depe
nd
s o
n
2
k
I
whi
c
h i
s
the
p
o
sition
of the
DG.
1
x
is the i
m
peda
nce of th
e AM
line.
2
x
is th
e li
ne im
peda
nce from
M
poi
nt to the
fault
point. A
s
su
ming th
at
12
x
xl
,
l
is
th
e
line imped
an
ce from A poi
nt to the fault
point. We get
the following
equatio
n:
21
2
12
ks
s
ss
xl
x
I
II
x
xx
xl
(2
)
As sho
w
n in
Figure 8, the
positio
n
wh
ere th
e DG
acce
sses i
s
f
a
rthe
r a
w
ay f
r
om the
head
side, th
e smalle
r imp
a
ct on the p
r
o
t
ection.
l
1
x
k
I
0
Figure 8. The
Curve of the
Curre
n
t Flowi
ng
throug
h the Protectio
n
3
Figure 9. DG
Feede
r in Fail
ure
3. Impact of
DG on Auto
matic Dev
i
ces of Dis
t
ribu
tion Grid
3.1. The Line
Fault at the
Feeder
to
w
h
ere th
e DG
Acc
ess
es
Powe
r syste
m
operation
experie
nce h
a
s sho
w
n tha
t
on overhe
a
d
lines the m
a
jority of
failure
s
are
i
n
stanta
neo
us and
pe
rma
n
ent faul
t i
s
a
bout 1
0
%~2
0
%
amon
g all
of them.
Th
e
automatic re
clo
s
ing appli
c
ation
s
can
signifi
c
antly
improve th
e relia
bility of power
su
pply
distrib
u
tion n
e
twork. Th
e a
u
tomatic fo
rm
er a
c
cele
ratio
n
re
clo
s
ing
is gene
rally u
s
ed for
radi
al li
ne
with parag
rap
h
s serie
s
, whi
c
h is o
n
ly mounted to a lin
e clo
s
e to the
powe
r
.
Figure 9 sho
w
s two feed
e
r
s a
dopt the
automat
ic fo
rmer a
c
cele
rat
i
on re
clo
s
ing
device
s
whi
c
h a
r
e in
stalled at the
prote
c
tion 3
and 4. In
the ca
se without the
DG, whe
n
a
tran
sie
n
t
fault
occurs at
K
1
, the protectio
n
3 act
s
in
stan
taneou
sly an
d re
clo
s
e
s
to
eliminate the
transi
ent fault.
In this ca
se, t
he protectio
n
3 bre
a
ks in
stantane
ou
sly to make the a
r
c bl
owout, and then recl
o
s
e
s
after cutting t
he fault. If the sa
me fault
whe
n
the
DG
con
n
e
c
ts to
the bu
s B h
a
ppen
s, altho
u
gh
the sy
stem
si
de d
o
e
s
n’t
su
pply the fa
ult
curre
n
t
any more,
th
e co
ntinuou
s su
p
p
lement
f
r
om
the
DG m
a
kes th
e arc
kee
p
on
. So the re
clo
s
ure failu
re of
the protectio
n
3 may le
ad
to a pe
rma
n
e
n
t
fault and the
expan
sion
of the bl
a
c
kout range. Simila
ri
ly when
a tra
n
sie
n
t fault o
c
curs at
K
2
, the
former a
c
cele
ration
re
clo
s
i
ng trip
s
off i
mmediatel
y.
But the
suppl
ement of
the
fault cu
rrent f
r
om
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No. 6, June 20
13 : 3236 – 3
241
3240
the DG
will
make the reclosing fa
iled.
To avoid the
failure of t
he
automatic former accelerat
i
on
recl
osi
ng, the
r
e are two scheme
s
:
1
)
When
a fault occu
rs,
cut out the DG to
gua
ra
ntee the
su
cce
ss
of re
clo
s
in
g by the
addition
al p
r
o
t
ection. But th
e DG’s
po
we
r su
pplem
ent t
o
the d
o
wnst
ream lo
ad
will
be inte
rru
pted
if the fault is
a perm
ane
nt one.
2
)
Install p
r
otection d
e
vice
s on the A
B
line clo
s
e t
o
the bu
s B. Whe
n
a fault occurs at
K1, protectio
n
s on both
si
des of the AB line take e
ffect so the fault is cut off reliably. The DG
side a
nd the
downstream l
oad will tu
rn
into an is
l
a
n
d
. This a
ppro
a
ch e
n
sures
the contin
uou
s
power
sup
p
ly to the do
wn
stream lo
ad, b
u
t probl
em
s d
ue to the i
s
la
nd come
s up,
su
ch a
s
h
o
w to
adju
s
t the v
o
ltage
and
the fre
que
ncy to ke
ep t
he p
o
wer
q
uality, how to de
al
with
the
asyn
chrono
u
s
problem
s af
ter cutting
off the faul
t. It r
equires fe
ede
r prote
c
tion
s,
the adju
s
tme
n
t
of automatic
device
s
an
d the co
ntrol of
the DG to solving these pro
b
lems.
3.2. The Adj
acen
t Feed
e
r
Line Fault
As sh
own in
Figure 10, when a tra
n
si
e
n
t fault occurs at
K
1
, the protectio
n
4 works a
nd
cuts off the fault and the
n
recl
oses.
But the
protection 3 whi
c
h locate
s the
upstre
a
m of the
feeder may
malfunctio
n
when th
e fault
curre
n
t flowi
n
g thro
ugh
K
1
i
s
stron
g
e
nou
gh. So d
o
e
s
t
h
e
automatic former accel
e
ra
tion recl
osi
n
g
of the
protection 3. If there is a perma
nent fault at
K
1
,
the prote
c
tio
n
4 can’t re
close
su
ccessfully and
pro
t
ection
s of the feeder
will
act orde
rly b
y
setting tim
e
li
mits. When
t
he fault
point
K
1
is out
of t
he
ran
ge
of p
r
otectio
n
4, i
t
is
nee
ded
the
time delay limit current protection to
cut off the f
ault. But it is probably that the protection 3
will
malfunctio
n
b
e
ca
use of the
continu
o
u
s
fault cu
rre
nt
from the DG. So it is necessary to
con
s
i
der
about in
stallin
g dire
ction
co
mpone
nts o
n
upstream p
r
o
t
ection
s to ju
dge the a
n
ti-power flo
w
from
the DG.
Figure 10. Th
e Structu
r
e of
the Adjacent
Feede
r Lin
e
Fault
Acco
rdi
ng to the analysi
s
of the two ca
se
s,
we can
find that the existen
c
e of the DG
contri
bute
s
to
the fail
ure
of
re
clo
s
in
g, be
co
min
g
a p
e
rmanent
fault
and
sp
re
adin
g
the
ra
nge
of
the bla
c
kout
whe
n
a
tra
n
si
ent fault o
c
cu
rs at th
e
feed
er
with th
e
DG. The
up
stream
prote
c
tio
n
s
and re
closure
devices of
the feede
r
wi
th the DG m
a
y malfun
ction wh
en a fa
u
l
t occurs at t
he
adja
c
ent feed
er.
4. Conclusio
n
Thro
ugh th
e
above a
nalysis, due
to the
introd
uctio
n
of DG, the t
r
aditional
distribution
grid in
whi
c
h
only sin
g
le
dire
ctional
po
wer flow
fro
m
the supply
to the load
s is not valid
any
more. T
h
e
r
ef
ore, the
initia
l ope
rating
chara
c
te
rist
i
c
s of protectio
n
s o
n
the
dist
ribution g
r
id
a
r
e
also affe
cted
by the access of the DG.
①
Partial pro
t
ection
s not functio
nal, sel
e
ctivity lost and
the sen
s
itivity re
duced,
an
d is related
to
the lo
catio
n
of t
he a
c
ce
ss point
s di
stri
b
u
ted g
ene
rati
on;
②
Prote
c
tion
s of the lin
e o
r
the a
d
jacen
t
line malf
un
ction. The imp
a
ct on th
e re
clo
s
ure is th
a
t
a
synchro
n
izi
n
g
swit
chin
g on
, the failure
of re
cl
osi
ng,
the arc rene
wing, b
e
comi
ng a p
e
rm
an
ent
fault and the
spread of the bla
c
kout rang
e.
To eli
m
inate these
impact
s
, on
e approa
ch i
s
con
s
id
erin
g about the dou
ble dire
ction
cha
r
a
c
ter of the flow after acce
ssing th
e DG to inst
all
dire
ction
co
m
pone
nt. The
other
metho
d
is tu
rnin
g the
DG
into th
e i
s
lan
d
state i
mmediately
when
a fault occurs. But how t
o
config
ure
p
r
otectio
n
s
of the DG
worki
ng as a
n
isl
a
nd state n
e
e
d
s
more study.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Im
pact of Distributed G
ene
ration on Rela
y Prote
c
tion
s of Distrib
u
tion
Grid (Z
HO
U
Bin)
3241
Referen
ces
[1]
Hu Che
ng-z
h
i,
LU Ji-pin
g, Hu LI-hua, et al.
Anal
ysis of the Impact of
DG on the Protection o
f
Distributi
on S
ystem.
Jounal o
f
Chong
qin
g
U
n
iversity (Natur
al Scie
nce Edit
ion)
. 20
06; 29(
8): 36-39 (i
n
Chin
ese).
[2]
Don
d
i, Ba
y
o
u
m
i et al. IEEE
stands for the Institut
e of Elec
trical an
d Elect
r
onics En
gin
e
e
r
s. 2002; 2.
[3]
Alarco
n-Ro
drig
uez AD. A Multi-ob
jectiv
e
Plann
ing F
r
a
m
e
w
ork for Anal
ysi
ng the I
negr
ation
of
Distribut
ed En
erg
y
R
e
sourc
e
s. PhD T
hesis, Instit
ute
of
Energ
y
an
d Enviro
nment, Univers
i
t
y
of
Strathcl
yde. 2
0
09.
[4]
PANG Jian-
ye,
XIA Xi
ao-
bin
F
A
NG Mu, et
al. Impact
of distributed g
e
n
e
r
a
tion to rel
a
y
protectio
n
of
distrib
u
tion s
y
s
t
em.
Relay.
20
07; 35(1
1
): 5-8
(in Chi
nese).
[5]
LI Yong-
li, LI S
hen
g-
w
e
i, LIU Sen.
Effects of inverter-b
a
s
ed distri
bute
d
gen
eratio
n on
distributi
o
n
feeder pr
otecti
on
. T
he 8th Internati
ona
l Po
w
e
r Engi
ne
erin
g confere
n
ce.Si
n
gap
ore. 20
07: 138
6-13
90.
[6]
JO Petinri
n
, M Sha
aba
n.
Overcomin
g
C
hall
e
n
ges of Ren
e
w
a
ble
E
nerg
y
onF
utur
e
Smart
Grid.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(2): 2
29-2
34.
[7]
Z
H
ANG Chao,
JI Jian-ren, XIA Xian
g. Effect of
distributed gen
eratio
n o
n
the feeder p
r
otection i
n
d
i
stri
bu
ti
o
n
ne
tw
ork.
Rel
a
y.
2006; 34(
13): 9-
12 (in C
h
in
ese)
.
[8]
Girgis A, Brahma S.
Effect o
f
distribute
d
ge
ner
ati
on on pr
otective devic
e
c
oord
i
n
a
tion
i
n
distri
buti
on
system
. Proce
edi
ngs of 20
01
Large E
ngi
ne
e
r
ing S
y
stems
C
onfere
n
ce o
n
Po
w
e
r En
gin
eer
i
ng, Hal
i
fa
x,
Can
ada. 2
002:
115-1
19.
[9]
Lakshm
i
R
a
vi,
Vaid
ya
nat
han
R, Shish
i
r K
u
mar D, et
al. Optimal
Po
w
e
r
Flo
w
w
i
th H
y
b
r
id
D
i
stribut
ed
Generators.
T
E
LKOMNIKA Indo
nesi
an Jo
u
r
nal of Electric
al Eng
i
ne
eri
ng.
2012; 1
0
(3): 4
09-4
21.
[10]
W
E
N Yan
g
-do
ng, W
A
NG
Xi
n. Im
pact of
d
i
stribute
d
g
e
n
e
r
ation t
o
re
la
y
protecti
on of distrib
u
tion
sy
s
t
e
m
.
Rel
a
y
.
2008; 3
6
(1): 1
3
-17 (i
n Chi
nes
e).
[11]
J Driese
n, P Verme
yen,
R Belma
n
s.
Protection iss
ues in
micr
og
rids
wi
th
m
u
l
t
ip
l
e
di
stri
b
u
t
ed
gen
eratio
n un
its.
Pow
e
r Conversio
n
Conf
., Nago
ya. 2
0
0
7
: 646-6
53.
[12]
T
Genji, K Miyazato, H T
s
utsush
i
o
, T
Nishi
w
a
ki. Stud
y
o
n
r
equ
ired
p
e
rfor
mance
of fa
ult
current
limite
r
for dispers
ed g
ener
ator.
T
r
ans. IEE Japan
. 2004; 12
4-B (1):
15-21.
[13]
LK Kump
ula
i
n
en, KT
Kauha
niem
i. An
al
ys
i
s
of the Impa
ct of
Distribute
d
Gener
ation
on Autom
a
tic
Reclos
in
g.
Pow
e
r Systems Confere
n
ce a
nd
Expositi
on. 20
04
; 1: 603- 6
0
8
.
[14]
S Sha
h
riar
i, A
Yazdi
an, M
Ha
ghifam. F
a
ult c
u
rrent
l
i
miter al
locati
on an
d
si
zing in distri
but
ion
s
y
st
em
in pres
ence
of distrib
u
ted g
e
n
e
ratio
n
.
IEEE
Power & Energy Society General Meeting
. 20
09; 1: 1-6.
[15]
Barker PP, Mello RW
. Determinin
g
the Impact of
Distributed Gener
ation
on Po
w
e
r S
y
st
ems: Part 1-
Radi
al D
i
stribut
ion S
y
stems.
Pow
e
r Engin
eer
i
ng Soci
ety Su
mmer Me
etin
g.
Piscata
w
a
y. 2
000.
[16]
Z
H
AO Shan
gli
n
, W
U
Z
a
i
j
un,
HU Mi
nq
ian
g
,
et al
. T
hou
ght
About Pr
otecti
on
of Distri
but
ed Ge
ner
ati
o
n
and Micr
ogri
d
.
Autom
a
tion of Electric Power System
s
. 20
10
; 34(1): 73-77 (
i
n Chi
nes
e).
Evaluation Warning : The document was created with Spire.PDF for Python.