TELKOM
NIKA
, Vol.11, No
.1, Janua
ry 2013, pp. 167
~17
2
ISSN: 2302-4
046
167
Re
cei
v
ed Se
ptem
ber 30, 2012; Revi
se
d No
vem
ber
24, 2012; Accepted Decem
ber 2, 201
2
The Electromagnetic Interference Mo
del Analysis of the
Power Switching Devices
Zhang Wei
F
a
cult
y
of Ph
ysics & Machin
e
r
y
an
d Electro
n
Engin
eeri
ng,
Xi'
a
n Un
iversit
y
of Arts and S
c
ienc
e,
No. 168 T
a
iba
i
South Ro
ad,
Xi
'
an
e-mail: zh
w
e
i
_
top@
126.com
A
b
st
r
a
ct
The sw
itching
devic
e turn-
o
n
and t
u
rn-off p
r
ocess w
ill
pro
duce
hi
gh-freq
uency
el
ectro
m
a
g
n
e
tic
interference, based
on the finite
element method
ANSYS software
with
powerful c
o
mputi
ng c
a
pabilities,
has b
een w
i
d
e
l
y used
in co
mp
lex e
l
ectro
m
a
g
n
e
tic fiel
d
calcul
atio
ns. In this pap
er, ANSYS softw
are t
o
mo
de
l an
d a
naly
z
e th
e in
sulate
d gate
bip
o
lar tra
n
si
s
t
or (IGBT
)
a
nd qu
antitativ
e distrib
u
tio
n
of
electro
m
agn
eti
c
interference (
E
MI),
and for the staff and scientists doi
ng r
e
searc
h
in ele
c
troma
g
n
e
tic field
ana
lysis prov
id
es an effective
referenc
e pro
g
r
am.
Key
w
ords
: I
G
BT, electro
m
agnetic inte
rfere
n
ce, finite elem
ent m
e
thod, power switchi
ng de
vi
ce
s
Copyrig
h
t
©
2013
Univer
sitas Ahmad
Dahlan. All rights res
e
rv
ed.
1. Introduc
tion
The tren
ds
of the swit
chin
g
powe
r
suppl
y is small
size, light weig
h
t, high efficie
n
cy, high
power d
e
n
s
ity. The eme
r
g
ence of the p
o
we
r devi
c
e so
that
the switchi
ng
p
o
wer supply cap
a
city
is in
crea
sing.
In switchi
n
g
power
su
ppl
y use
som
e
nonlin
ear po
wer
switchin
g
devices, which
can in
cre
a
se
the frequen
cy of the switching po
we
r supply, but
sub
s
e
que
ntly increa
se
s the
swit
chin
g losse
s
and el
ect
r
oma
gneti
c
in
terfere
n
ce
also increa
se
s,for the switchi
ng po
wer
su
p
p
ly
itself co
nstit
u
tes a l
a
rg
e so
urce of
interf
eren
ce
.Therefo
r
e, analysi
s
of electroma
gne
tic
interferen
ce model of power swit
chin
g device
s
mu
st
be taken into account in the desig
n of the
power p
r
oble
m
. Insulated
gate bipol
ar transi
s
tor IG
BT
usually was
use
d
in po
we
r device
s
[1
-2]
.
IGBT as both a powe
r
MOSFET hig
h
-spee
d swit
chin
g perfo
rmance and
a bipolar
transi
s
to
r hig
h
voltage, la
rge
curre
n
t handli
ng cap
ability of the new
comp
o
nents, with t
h
e
advantag
es o
f
high curre
nt den
sity, small drive pow
er, in powe
r
electronic convert
e
rs an
d powe
r
transmissio
nthe larg
e num
ber of ap
plications i
s
an i
nevitable tren
d. The high v
o
ltage an
d hi
gh
curre
n
t is the
main
sou
r
ce
of high
-freq
u
ency el
ect
r
o
m
agneti
c
inte
rfere
n
ce in th
e IGBT turn
-on
and turn-off
transi
ent p
r
o
c
e
ssi
ng. The
r
efore, the
a
nalysi
s
of its dynamic
ch
ara
c
teri
stics
of
electroma
gne
tic interferen
ce model ha
s
some p
r
a
c
tical value.
For IGBT n
e
e
d
to build it
s
simulatio
n
m
odel
s. The IG
BT’s mod
e
l h
a
s th
ree typie
s
of that
Behavioral model, Mathem
aticalp
h
ysi
c
al
model
and 3
-
dime
nsi
onal
solid mod
e
l. Behavior mo
del
based on th
e equivalent
circuit, the
simple mo
de
l, the simulation results are not accu
rate
enou
gh.The
mathemati
c
al
model base
d
on the ph
ysical stru
cture and mecha
n
ism of the IGBT
as its ba
se, usin
g the ma
thematical e
q
uation
s
to describe the p
h
y
sical
cha
r
a
c
teristics of the
device, su
ch
model
s can b
e
preci
s
ely d
e
scrib
ed t
he physi
cal ch
aracteri
stics of the IGBT, but
the
dynamic el
ectromag
netic fi
eld dist
ri
butio
n of the IGBT can not refle
c
t. The soli
d model is b
a
sed
on the phy
sical stru
ctu
r
e a
nd me
cha
n
ism of the
IGBT, and in the
approp
riate l
o
catio
n
usi
n
g
the
same si
ze an
d the corre
sp
ondin
g
filling
material,
ma
de of the hig
h
preci
s
io
n of the
IGBT solid
model. Such model
s to overcome the
shortcom
in
gs
of the above-ment
ione
d two model
s, the
simulatio
n
accuracy, and can refle
c
t the
the IGBT
surroundi
ng ele
c
troma
gneti
c
field distrib
u
tio
n
.
This paper, using ANSYS
software based on the fi
ni
te element m
e
thod for IGB
T
3D modeling,
and an
alysi
s
of the surrou
nding el
ectro
m
agneti
c
field distrib
u
tion
[3-5].
Evaluation Warning : The document was created with Spire.PDF for Python.
168
ISSN:
2302-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013: 167 – 1
7
2
2. Structu
r
e, w
o
r
k
ing prin
ciple and ch
arac
teris
t
ics
of the IG
BT
2.1 Struc
t
ure
of the IG
BT
IGBT is a three-te
rminal
d
e
vicem,it wa
s of
a gate G,
the colle
cto
r
C and th
e e
m
itter E.
Figure 1
sho
w
s
a sch
e
ma
tic blo
ck
diag
ram of a
n
N-
cha
nnel IGB
T
, it is a field
controlle
r pa
rts,
the gate and the emitter of the voltage be
tween t
he UG
E is positive and greate
r
than the turn
-on
voltage the
UGE (th), the IGBT is
turned; UGE
Equal 0 or less, the IGBT off. Which
is
config
ure
d
as sho
w
n in Fig
u
re 1.
2.2 Working
principle of the IGBT
The switchi
n
g action of the IGBT by t
he addition
of a positive
gate voltage form a
cha
nnel
,
so
that the IGBT is turne
d
on to provi
de ba
se current to the PNP tran
sist
or.
Conve
r
sely,
plus reve
rse gate voltage to elimi
nate
cha
nnel flowi
ng throug
h the reverse b
a
se
current of the IGBT is turned off. The driving me
thod of the IGBT a
nd the MOSF
ET are basically
the same, th
e only control input pole
of N-ch
ann
el MOSFET, has a high
input imped
a
n
ce
c
h
arac
teris
t
ic[6].
Whe
n
the the
MOSFET ch
annel formin
g, from P + base i
s
inje
cte
d
into the N-l
a
yer of
the hole
(mi
n
ority ca
rri
er), the co
ndu
ctivity modulation
of the N laye
r,
to re
du
ce t
he resi
stan
ce
of
the N layer of
the IGBT at
high voltage,
and al
so ha
s
a low on
-stat
e
voltage.
Figure 1. Basic
stru
ct
ure of IGBT and symbol
2.3 Char
acte
r
istics of
the
IGBT
I
G
B
T
cha
r
a
c
t
e
rist
i
cs in
clu
d
e
st
at
ic an
d d
y
namic two types, he
re focuse
s on the d
y
namic
operating ch
ara
c
teri
stics.
IGBT chara
c
teri
stic
s incl
ude stati
c
a
nd dynami
c
two types, h
e
re
focu
se
s on th
e dynami
c
o
p
e
rating
ch
ara
c
teri
stics.IG
BT in the o
peni
ng p
r
o
c
ess,
most of the ti
me
is to ru
n as
a MOSFET, the drai
n-sou
r
ce volta
ge
Ud
s do
wn la
ter in the p
r
oce
s
s, the PNP
transi
s
to
r enl
arge
d area t
o
satu
ration,
but also
i
n
crease the time delay. td (on) turn-on d
e
lay
time, tri curre
nt rise time. The pra
c
tical applicati
on by the drai
n current of
given openin
g
time ton
is TD (on
)
and of Tri. The
decli
ne of drain-sou
r
ce voltage the time
by tfe1
and tfe2 comp
ositi
on.
As sho
w
n in
Figure 2.
ri
t
)
on
(
D
t
)
t
(
D
i
D
I
t
)
of
f
(
D
t
)
t
(
D
i
re
t
2
fe
t
1
e
f
t
t
en
t
MOSFETcur
r
curre
n
t
R
T
G
(a) IGBT turn-on
c
u
rrent
(b)
IGBT
turn-off
c
u
rrent
Figure 2. IGBT turn-on current and turn
-off current wa
veform
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
169
The Elect
r
om
agneti
c
Interferen
ce M
odel
Analysi
s of the Powe
r Swi
t
ching
De
vice
s (Zh
ang
Wei
)
3. IGBT Modeling and Simulation
3.1 Solid mo
deling
For the ba
si
c stru
cture of
Figure 1, to cre
a
te the correspon
ding
solid finite e
l
ement
model of the IGBT sho
w
n i
n
Figure 3. The IGBT
internal stru
ctu
r
e
more
compl
e
x, using ANS
YS
softwa
r
e to b
u
ild 3
D
soli
d
modelin
g, the com
b
inatio
n of layers can be
used
according to
the
layers of seg
m
ents
of different fu
nctio
n
s, ea
ch
correspon
ding
p
a
rt is set ba
sed
on
different
material
s ap
p
r
op
riate rel
a
tive magnetic
perm
eability and re
si
stivity rate [11].
Figure 3. Solid model of IG
BT
Figure 4. Example of load
division
3.2 Finite Element Simulation[7
-
1
1
]
ANSYS software simul
a
tion of the switchin
g device IGBT adopt transi
ent loadi
ng mode,
the load ap
pli
ed to the cu
rrent den
sity. 3D tran
sient a
nalysi
s
, boun
dary conditio
n
s an
d load
s
are
applie
d to a functio
n
of time. Therefo
r
e required
to loa
d
the physica
l quantity cha
nge
s with time
of divided int
o
a plu
r
ality
of peri
o
d
s
, and
were a
n
a
lyzed fo
r e
a
ch tim
e
se
gment a
nd t
hen
grad
ually. There are thre
e ways of loading st
e
p
, ramp and aut
omatic time step, here th
e
sele
ction ram
p
load. Dep
e
nding on the
spe
ed of t
he load cu
rrent trend, is divid
ed into different
time intervals, the the IG
BT actual op
ened off the curre
n
t wave
form simul
a
tion clo
s
e to the
actual
wavefo
rm of the loa
d
form.The tu
rn-on
and tu
rn
-off wavefo
rm
painting tog
e
t
her, as
sh
own
in Figure 4 of the IGBT spe
c
ific current wa
veform is a
p
p
lied in the switchi
ng process.
It should b
e
n
o
ted that the t
i
me su
bste
p
sele
ct
ap
pro
p
r
iate, load
not
pitch, is divid
ed into
different sub-step a
c
cordin
g to the cha
nge
s of
the current load, d
i
vidi
ng time sub-step
shoul
d
carefully wei
gh its advant
age
s and di
sadvantag
es
. The
sub
s
tep
excessive, slo
w
co
mputi
n
g
spe
ed, high
pre
c
isi
on cal
c
ulatio
ns, the
incre
a
sed d
e
mand fo
r memory spa
c
e
.
Substep is
too
small, the calcul
ation sp
eed, accu
ra
cy, and ma
ke
useful information is lo
st and ca
n not
acc
u
rately reflec
t the true res
u
lt
s
.
The IGBT
internal each laye
r be of different the curre
n
t
den
sity, Acco
rding to ea
ch
layer se
ction
cal
c
ulat
e
d
loa
d
amount for
each part of the are
a
before
the load, after solvi
ng an
d post-processi
ng.
Thro
ugh the
gene
ral po
stpro
c
e
s
sor ob
servatio
n
IGBT simulatio
n
results. Fig
u
re 5 (a
)
and (b) a
r
e
a persp
ective
view of the IGBT of
the magneti
c
fiel
d stre
ngth a
nd the ma
gn
etic
indu
ction inte
nsity of the simulation re
sults. As
can
be see
n
from
the results i
n
the pin at the
magneti
c
fiel
d strength
a
nd the m
agn
etic ind
u
ctio
n
intensity i
s
stron
g
e
r
, and
from
whi
c
h i
t
is
clea
r that the distributio
n of t
he magn
etic field, different colo
rs
rep
r
e
s
ent different na
mepl
ate
size of the magneti
c
field strength in Fig
u
re 5.
4. Analy
s
is o
f
simulation
results
From th
e IGB
T
model
equ
a
l
distan
ce, b
u
t
orientation
o
f
the different
node
s of
sim
u
lation
data sho
w
n i
n
Tabl
e 1
sh
own
by the t
i
me cour
se
o
f
post-pro
c
e
s
sor Statistics. Comp
arativ
e
multiple sets
of data shows that the IG
BT through
a certai
n load, the size of the electrom
agn
etic
field generated around diff
erent.In or
der to compare t
he si
ze of the
different ori
entations of th
e
magneti
c
field in a more intuitive manner, the line
chart in Figure
6 in
the figure is a more clear
contrast data
of Table 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
170
ISSN:
2302-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013: 167 – 1
7
2
(a) Ma
gneti
c
field stre
ngth
conto
u
rs
(b) Ma
gneti
c
indu
ction
Figure 5. Magnetic field di
stributio
n view of IGBT
Table 1. Elect
r
oma
gneti
c
field data
Node
H(A/m)
B(T*E-6
)
11711
261.374
328
11712
145.621
278.9
11713
163.606
2056
11714
226.828
285
11715
372.397
468
11716
136.16
171.1
11718
348.939
468
7891
7501.32
9426
8132
6978.32
8769
8105
8582.35
10784.9
8062
3212.59
4037
1691
13378.2
16815
1131
12452.6
15651
Figure 6. Co
mpari
ng ele
c
t
r
oma
gneti
c
d
a
ta of
IGBT in different direc
t
ions
Table 2 is ta
ken in fro
m
the IGBT dist
ance gra
duall
y
increa
sin
g
part of the si
mulation
data of the n
ode value
s
of the different
orientat
io
ns.
The comp
ari
s
on re
sult
s fro
m
the data in
the
table can be
clea
rly con
c
lu
ded that the
different
nod
es, into a non-line
a
r prop
ortional de
cre
a
se
with in
cre
a
si
ng di
stan
ce I
G
BT dista
n
ce, and a
s
th
e dista
n
ce in
cre
a
ses, the
increa
sing
rat
e
of
cha
nge of the
magnetic fiel
d stren
g
th an
d
the magneti
c
indu
ction int
ensity small.
Table 2. Elect
r
oma
gneti
c
fields
simulatio
n
results of IGBT at different distan
ce
0
20
00
40
00
60
00
80
00
10
00
0
12
00
0
14
00
0
16
00
0
18
00
0
11
71
1
1
1
7
1
2
1
1
7
1
3
11
71
4
1
17
15
1
1
7
1
6
1
1
7
1
8
7
8
9
1
81
32
8
10
5
8
0
6
2
1
6
9
1
11
31
H(
A/
m)
B(
T*
E-
6)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
171
The Elect
r
om
agneti
c
Interferen
ce M
odel
Analysi
s of the Powe
r Swi
t
ching
De
vice
s (Zh
ang
Wei
)
The line ch
art in Figure 7 (a) an
d (b
) directly
refle
c
ts the chang
e in magneti
c
field of
table 1 simplif
y the proce
ssing,
the trend
of the polyline.
(a) Ma
gnetic
field intensity
(b) Ma
gneti
c
indu
ction inte
nsity
Figure 7. Magneti
c
field polyline
s
com
pari
s
on of IG
BT
On the fa
ce
of the differe
nt node
s to
do a
com
pari
s
on, Fi
gure 8
(a) and
(b
) i
s
take
n
arou
nd the IGBT pin abo
ut 7 mm is a node of t
he magnetic fie
l
d stren
g
th a
nd the magn
etic
indu
ction inte
nsity ch
ang
e
s
with
time, can be
seen t
he IGBT a
r
ou
nd tra
n
si
ent
magneti
c
fiel
dthe
stren
g
th and t
he si
ze of the
magnetic in
d
u
ction in lin
e with the ch
an
ge of load.
(a) tran
sient magneti
c
field intensity
(b) tran
sient magneti
c
ind
u
ction inte
nsit
y
Figure 8. Tra
n
sie
n
t magne
tic field cha
n
g
e
of IGBT
5. Conclusio
n
Most analyze
s swit
ching
power ele
c
tromagn
etic
field distrib
u
tio
n
only for q
ualitative
analysi
s
, and
can n
o
t be
quantitatively the size of
the sp
ecifi
c
a
nalysi
s
of the
electromag
n
e
tic
field of a poi
nt. In
this paper, the IGBT model
in ANSYS environment Quanti
t
ative analysis of
the electro
m
agneti
c
field
distrib
u
tion, with the t
heoretical calcul
ation of
the
data is con
s
i
s
tent.
Usi
ng ANSY
S softwa
r
e to
analyze swit
chin
g po
we
r
sup
p
ly ele
c
tromagn
etic fie
l
d distri
bution
law
is an effe
ctive method fo
r accurate mo
deling of
the
swit
ching
po
wer
su
pply d
i
fficulties. By a
seri
es of articles on the swi
t
ching po
we
r sup
p
ly comp
onent
s and switchi
ng po
wer sup
p
ly typical
circuit analy
s
i
s
and exp
e
ri
mental re
sult
s
verify the correctn
ess of the analysi
s
.
Ackn
o
w
l
e
dg
ments
The author
is highly thankful for the
financial su
pport of xi’an city scien
ce and
techn
o
logy project CXY11
34WL12.
Referen
ces
[1]
Z
hang W
e
i, W
ang Y
i
n.
Analyse
the F
i
e
l
d-
circuit Co
up
lin
g Mod
e
l of th
e S
w
itch
ing P
o
w
e
r S
upp
l
y
,
Journ
a
l of Ce
ntral South U
n
iv
er
sity of Scienc
e and T
e
ch
no
l
ogy
, 2
0
11
Evaluation Warning : The document was created with Spire.PDF for Python.
172
ISSN:
2302-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013: 167 – 1
7
2
[2]
W
e
i Z
hang, Sh
ouzh
i
Li, F
eng Gao.
T
he Modelin
g
And Sim
u
lati
ons of
T
he Circuit Eleme
n
t Based On
F
i
nite Eleme
n
t Methods, 200
5.
IEEE Internation
a
l Confer
ence on Veh
i
c
u
larEl
e
ctron
i
cs
and Safety
,
Xi
’a
n, Chin
a, 2
005; 25
7-2
6
0
[3]
Che
nbi
n T
ao.
S
w
itc
h
i
ng po
w
e
r suppl
y com
m
on mode EM
I suppressio
n
techn
o
lo
g
y
r
e
s
earch.
Journ
a
l
of T
i
anji
n
Univ
ersity
, 2008
[4]
Bai F
u
-sh
eng.
Rese
arch o
n
t
he El
ectromag
netic
Interfere
n
c
e of the S
e
rie
s
-paral
le
l Res
o
nant Invert
er,
Xi'
a
n Un
iversit
y
of T
e
chnolo
g
y
master'
s
thes
is,200
9
[5]
GAO Yan-xi
a. GUO Shui-ba
o
.
CHEN Bo-shi
, Mat
hematical
-ph
y
sic
a
l Simu
l
a
tion Mo
del
of IGBT
and its
Par ameter Identification,
Power Electronics
, 200
6; 40(5): 13
5-13
7.
[6]
http://
w
w
w
.
elecfans.com
[7]
Gao feng, Li s
hou-z
h
i, Z
han
g
w
e
i. F
i
nite E
l
ement
An
al
ysis
for Near-F
iel
d
Char
acteristics
of Converte
r
circuits,
System Si
mu
lati
on
, 200
6; 8(7): 176
6-17
68
[8]
W
e
i Z
hang. An Improved H
-
Conv
erter Cir
cuit
Electroma
gnetic Interfer
ence An
al
ysis,
Advance
d
Materials R
e
se
arch, 201
2. 52
5-52
8
[9]
W
e
i Z
han
g, Quantitative A
nal
ysis f
o
r N
ear-F
iel
d
C
har
acteristics of
Conv
erter Cir
cuits,
Ap
p
lied
Mechanics and Materials
, 20
1
1
; 01: 589-
594
[10]
M Youssef, J Roud
et, Y
Marech
a. Nea
r-field
char
act
e
rizati
on of p
o
w
e
r el
ectron
i
cs circuits for
radi
ation pr
ed
i
c
tion.
PESC97
:
1529-
15
34
[11]
Yan Zhao-
w
e
n
,
ANSYS10.0 eng
ine
e
ri
ng
el
ectromag
netic ana
l
y
sis
techn
o
lo
g
y
and e
x
pl
ain
e
x
ampl
es
,
Chin
a Water Pow
e
r Press
, Novemb
er 20
06
the first edition
of the first printed.
Evaluation Warning : The document was created with Spire.PDF for Python.