TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 15, No. 1, July 2015, p
p
. 14 ~ 19
DOI: 10.115
9
1
/telkomni
ka.
v
15i1.796
9
14
Re
cei
v
ed Fe
brua
ry 9, 201
5; Revi
se
d April 30, 201
5; Acce
pted Ma
y 20, 201
5
LEDs Lighting Arrange
ments for Unde
rground Mines
Pratap Singh Yadav
*
,
Nitai Pal, Dh
eeraj Kumar, S.
Vamsi Krishna
Dep
a
rtment of Electrical E
ngi
neer
ing, Ind
i
an
School of Min
e
s (und
er MHR
D
, Govt. of
India),
Dha
nba
d, Jhar
khan
d, India-
8
260
04, T
e
l
.:+
9
1
-32
6
-22
3
-5
62
3; fax: +
91-32
6
-
229-
656
3
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: prtpsing
h9
1
@
gmai
l.com
A
b
st
r
a
ct
Lig
h
ting c
ond
ition is v
e
ry critical to
min
e
w
o
rkers, since t
hey co
mp
lete
l
y
depe
nd
upo
n visua
l
indic
a
tio
n
. Effective lig
hting s
ystems prov
id
e
better
visibi
lity
and contri
bute
to improv
ed s
a
fety, producti
on,
prod
uctivity a
nd efficie
n
cy
of equi
p
m
e
n
ts. T
h
is
paper
intend
ed to
present a si
mu
lati
on stud
y of
config
uratio
ns for the unifor
m
illu
mi
natio
n ov
er a rectang
ul
ar-target surfa
c
e (und
ergro
u
nd mine 2
6
X4.
8
m
gall
e
ry) usin
g p
o
w
e
r LEDs. T
h
is cost effective lighti
ng
inv
o
l
v
ed differe
nt sets of arrange
me
nts
of
LEDs
that
provi
de a cl
ose
unifor
m
li
ght l
e
vel for g
i
ven
opti
m
i
z
e
d
p
a
ra
meters. T
he
op
timi
z
e
d va
lu
es of the varia
b
l
e
s i
n
the arran
g
e
m
e
n
ts w
e
re obtain
ed by the us
ing
of MAT
L
AB fu
nctions for opti
m
i
z
at
io
n toolb
o
x.
Ke
y
w
ords
: po
w
e
r LED, unifo
rm il
lu
mi
natio
n,
objectiv
e
funct
i
on, opti
m
i
z
a
t
io
n.
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Lighting
is ve
ry impo
rtant i
n
min
e
s e
s
pe
cially
in
un
de
rgrou
n
d
mine
s. The
environ
ment of
unde
rg
roun
d
mines i
s
not
comp
arable
with any othe
r su
rface ind
u
strie
s
. It is an indu
stry wh
ere
work i
s
full of
dust, limited
spa
c
e
s
, very
low
refle
c
tive su
rfa
c
e
s
a
nd lo
w visu
al
cont
ra
sts [1
-3].
These are de
pend
ent on the moistu
re
con
d
ition
of unde
rg
roun
d
atmosp
he
re. Cou
n
trie
s wit
h
a
well-esta
blish
ed un
de
rgrou
nd mini
ng in
dustry
are
u
s
ually q
u
ite
spe
c
ific i
n
th
eir requi
rem
e
nts
rega
rdi
ng wh
at con
s
titutes a safe mine l
i
ghting sy
ste
m
[4-6].
The lig
hting i
ndu
stry toda
y is in
a m
a
j
o
r
st
ate of t
r
ansitio
n. Fo
r
more
than
a
centu
r
y
incandescent
bulbs have
dominated
the landscape
of
general
illumination.
With depleting
non-
rene
wa
ble
so
urces a
nd th
reat of
global
warming,
th
ere ha
s bee
n
a
n
in
crea
sing
awa
r
en
ess
a
n
d
need
for en
e
r
gy effici
en
cy togethe
r
wit
h
con
s
e
r
vation [6,
7]. M
easure
s
hav
e be
en
take
n by
several cou
n
tries
for
the p
hased withd
r
awal
of
in
ca
n
desce
nt lamp
s. Th
e in
ca
n
desce
nt lamp
s
are b
e
ing
rep
l
ace
d
by Co
mpact Fl
uore
s
cent Lam
ps
(CF
L
)
whi
c
h
posse
ss long
er life an
d be
tter
efficien
cy. Certain p
r
o
b
le
ms tho
ugh
e
x
ist in CF
Ls
inclu
d
ing fli
c
ker, presen
ce
of mercu
r
y and
slo
w
sta
r
t am
ong oth
e
rs. S
o
lid-state ligh
t
ing, pr
ima
r
ily LEDs have
come a l
ong
way in term
s o
f
light outp
u
t a
nd
ran
ge
of
colors [1], [8
-1
0]. They h
a
ve al
rea
d
y o
c
cupied
some
nich
e a
r
e
a
s li
ke
traffic lamp
s
and bill
boa
rd
lighting a
nd
are in
crea
sin
g
ly becoming
com
petitive for h
o
me lig
hting
also.
With a
d
vantage
s ra
nging from h
i
gher
ene
rg
y
efficien
cy, modula
r
ity, long life, no
toxic
mercury, no
flicke
ring, i
n
stant
start
and ma
ny
m
o
re
whe
n
co
mpared to traditional lig
hting
sou
r
ces [1
1, 12]. LEDs
are po
sitione
d to be
come th
e ch
oice of li
ghting in th
e
comin
g
day
s. But
in mining fiel
d espe
cially
unde
rg
roun
d
mine, LEDs
li
ghting i
s
very
less. As LE
D ha
s lo
nge
r life
and better
e
fficiency,
it will redu
ce
accide
nt
fact
or, the
en
ergy co
st, imp
r
ove th
e
wo
rking
efficien
cy and
lighting syste
m
also [13].
There a
r
e dif
f
erent type
s
of mining m
e
thods
fo
r ext
r
actin
g
o
r
e. In und
erg
r
o
u
nd coal
mining, the
“Bord a
nd Pill
ar” i
s
o
ne of t
he coal ex
tra
c
ting meth
od.
In this meth
o
d
of mining
coal
seam
s involv
es the
dyna
mic of a
se
ri
es of n
a
rro
w
headi
ng
s in t
he seam all
of them pa
ral
l
el to
each other and conn
ected by cross
headings to form
pillars.
It has to be either
partial
or
should
be squa
re b
u
t
they are so
metimes
re
ctangul
ar o
r
of
rhom
bu
s sha
pe. The g
a
lle
ries
su
rroun
di
ng
the pillars are invariably of
squa
re cross-section.
The
Bord
and Pillar m
e
t
hod of
mining i
s
suit
ed
to work flat coal seam
s of
aver
ag
e thickness a
nd at l
o
w d
epth
s
. For this
metho
d
the co
al se
ams
of 1.8 to
3m
thickne
s
s a
r
e be
st
suitab
le, thoug
h th
e metho
d
h
a
s
b
een
su
ccessful in
thin
ner
seam
s
also
down to a t
h
ickne
s
s of
1.2m an
d in
thicker
se
a
m
s u
p
to 4.
8m in thi
c
kn
ess.
Acco
rdi
ng
to “Indian Co
al Mining Reg
u
l
a
tions, (R
eg.
99(2
)
, 19
57)” width a
nd h
e
i
ght of a gall
e
r
y
should be restri
cted to
4.8m and 3m.
And the
length of pillar
varies from
12m to
45m,
it
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
LEDs Li
ghtin
g Arran
gem
e
n
ts for Unde
rgrou
nd Min
e
s (Pratap Sing
h Yadav)
15
depe
ndent
s upon the de
p
t
h (60m to 3
60m) of the
mi
ne. Gene
rally in lower
seam
coal mi
ning,
the pillar’s length 26m,
wi
dth 4.8m
and the heigh
t
is 3m. And here al
so i
n
all the
cases t
he
dimen
s
ion
of
a pillar is
26
X4.8m and
h
e
ight is
3m [
14-1
6
]. Un
de
rgroun
d mine
s a
r
e
compl
e
tel
y
depe
ndent o
n
artificial
so
urces
of illumination. La
ck of pro
per
a
nd ade
quate
lighting, there is
much p
o
ssibil
ity of acciden
ts. Especi
a
lly undergro
und
mining ope
rations a
r
e ca
rrie
d
out in very
hazard
o
u
s
e
n
vironm
ents.
These are
depe
ndent
o
n
the moistu
re condition
of undergrou
nd
atmosp
he
re. This is p
a
rticularly true fo
r mine
s whi
c
h have meth
ane ga
s give
n off from th
e
workin
gs,
usually co
al mi
nes. T
he
pro
v
ision of li
gh
ting in
coal
mines an
d ot
her
mine
s h
a
ve
alway
s
p
r
e
s
e
n
ted a
probl
em du
e to t
he d
ang
er
of inflamma
ble
ga
s. Th
e n
eed fo
r g
ene
ral
lighting in un
derg
r
o
und mi
nes a
s
well a
s
in ope
n ca
st mines is de
sirable [6].
One of the desi
r
abl
e fea
t
ures in ta
sk-li
ghting i
s
the uniform i
llumination o
v
er an
unde
rg
roun
d
mine
roa
d
way galle
ry. This
ha
s to d
o
with th
e u
s
er’
s
pe
rce
p
tion of the
ta
rget-
s
u
r
f
ac
e
,
as
w
e
ll as
, r
e
du
c
i
ng
p
o
w
e
r c
o
ns
u
m
ptio
n by ensu
r
i
ng that there is no excess
illumination.
A gene
rally a
c
cepted m
e
a
s
ure of unifo
rm
ity of illumination is
- ratio
of the minim
u
m
illumination
o
n
the ta
rget
-surface to
the
mean ill
um
in
ation ove
r
the
target
-surfa
ce. An inte
re
sting
appli
c
ation of
obtaining th
e uniform ill
u
m
ination ov
e
r
a targ
et su
rface, i
s
the
illumination
o
f
unde
rg
roun
d
mine
ro
ad
way galle
ry.
Acco
rdi
ng to
“the
coal
mines regul
a
t
ion 19
57, t
hese
stand
ard
s
a
r
e
summa
rized
belo
w
[14-1
6
].
Table 1. Light
ing Standa
rd
s
A
.
Ope
n
cas
t mi
ne
s
Sl. no
Location
Minimum illum
i
nation (
L
ux
)
1.
Oper
ational area
of
draglines and
shavels
5-10
2.
O
perational area
of drills
10
3.
O
perator
’s cabin of s
hovel, dr
agline dr
ill etc.
30
4.
Dumper h
aul roa
d
0.5 to 3.0
5.
OB and C
oal du
mps
3
6.
Road
w
a
ys & foot
paths from benc
h to bench
3
7.
Coal Handling plant,
w
o
rkshop an
d service buildin
gs
30-50-
100
B. Under
g
rou
nd
m
i
nes
Sl. no
Place
Recommended
minimum average
illumination le
vel
(
i
n lumens per
sq.
foot) for satisfact
o
r
y
light condition
1.
Pit bottom
1.5 to 3.0
2. Main
junctions
1.25
3. Road
w
a
ys
0.4
4.
Haulage engines
, control gear a
n
d
haulage dru
m
1.5
The light
sh
ould e
n
sure
adeq
uate ill
umination
wi
thin the gall
e
ry dime
nsi
o
ns. Th
e
probl
em
of obtaining a
sui
t
able and
uni
form illumi
nat
ion i
s
, to
det
ermine the best
configuration
with the
co
rre
s
po
ndin
g
pa
rameters fo
r d
i
fferent
arra
n
gement
s of t
he lam
p
s. T
h
i
s
is ap
pro
a
ch
e
d
by a combi
n
ation of opti
m
ization,
a
n
d
iteration. A config
uratio
n
is ch
osen by
intuition with
th
e
kno
w
le
dge of
source radia
t
ion pattern, geomet
ry
, and symmetry. Here the parameters for the
config
uratio
n
are id
entified
and the p
r
obl
em is fo
rm
ula
t
ed. This is
solved usi
ng
MATLAB toolbox
“optimi
z
ation
”
. There
are
many configu
r
ation
s
p
o
ssi
b
le. Thu
s
b
a
s
ed
on p
h
ysi
c
al, opto
m
etric,
eco
nomi
c
al, and othe
r ap
plicatio
n-spe
c
ific con
s
id
era
t
ions, the co
n
f
iguration
s
a
r
e to be studi
ed.
In this pape
r, all of the conf
iguratio
ns
a
r
e
studied throu
gh simul
a
tion
[17, 18].
2. Methodol
og
y
2.1. Assump
tions
The p
o
int so
urce of lig
ht
assumptio
n
f
o
r t
he
LED
source i
s
n
o
t
valid acco
rdi
ng to the
stand
ard
CIE
-
127,
as
state
d
[11]. A g
o
o
d
ap
proxim
ation
woul
d b
e
con
s
id
erin
g it
as an
imp
e
rf
ect
Lambe
rtian e
m
itter. For si
mulation p
u
rp
ose
s
ho
weve
r, the LED is
con
s
id
ere
d
a
s
an id
eal poi
nt
sou
r
ce of light (ideal La
mbertia
n
emi
tter). This i
s
a simplisti
c model for
small an
gle
s
o
f
illuminance, suitable as
an
approxi
mation and for task lighting
applications. Assuming the LE
D
to be a point sou
r
ce of ligh
t
entails it to follow the inve
rse
squ
a
re law and La
mbe
r
t’s Co
sin
e
La
w
[19-22].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 1, July 201
5 : 14 – 19
16
2.2. Problem Specificatio
ns
1)
The targ
et-su
r
face fo
r illum
i
nation is a re
ctang
ular a
r
e
a
of side unit
length (2
6 X 4.8).
2)
Each of the p
o
int sou
r
ce (L
EDs) in the si
mulation is of
unit luminou
s inten
s
ity (1 p.u).
3)
Bound
s for th
e height (h
) a
t
which the L
E
Ds a
r
e pla
c
ed: 0 < h < 1
unit.
4)
The
LEDs
are al
ways pla
c
ed
withi
n
di
fferent
config
uration
in
gal
lery dim
e
n
s
io
n (26m
X
4.8m).
5)
The bo
und
s
are
cho
s
e
n
from the p
e
rspecti
ve of lig
hting sy
stem
desig
n for u
nderground
road
way lighti
ng.
2.3. Optimization
The optimization is ca
rri
ed out with the use
of MATLAB functions fo
r optimizatio
n
in the
Optimizatio
n
Toolbox. The
MATLAB function u
s
e
d
is ‘fminco
n
’ which find
s th
e minimum o
f
a
con
s
trai
ned
nonlin
ear mu
ltivariable fun
c
tion. ‘f
minco
n
’ is a gra
d
i
ent based m
e
thod an
d u
s
e
s
He
ssi
an to find the minimu
m [19, 20].
The o
b
je
ctive functio
n
is vital for the
opt
im
ization
pro
c
e
s
s [23, 24].
A goo
d an
d
suitabl
e
obje
c
tive function help
s
in
obtainin
g
the
desi
r
ed
re
sult
s. ‘
α
’ i
s
cho
s
e
n
as
a me
asu
r
e of u
n
iformit
y
of illumination
and define
d
as follo
ws,
∝
∗
100
Whe
r
e, I(max
)
is the maximum illumina
nce, I(
min
)
is the minimum illuminan
ce and I(mea
n
)
is
the avera
ge
illuminan
ce
o
n
the targ
et-surfa
ce.
T
h
e
goal of the
optimizatio
n
pro
c
e
ss i
s
to
minimize ‘
α
’ b
y
optimizing the value
s
of the variabl
e p
a
ram
e
ters.
2.4. Configur
ations
In all the con
f
iguration
s
, the LEDs a
r
e
placed pe
rpe
ndicular to th
e target-su
r
fa
ce in a
symmetri
c
al f
a
shi
on ab
out the cent
e
r
of the mine road
way galle
ry.
1)
Config
uratio
n
1 (5 LEDs):
In this co
nfigu
r
ation, five LEDs a
r
e pla
c
e
d
along the le
ngth of the
pillar
Figure 1. Con
f
iguration
of
five LEDs pla
c
ed alon
g the length of the p
illar
Whe
r
e, ‘h’ i
s
height of th
e ro
ad
way g
a
llery, ‘b’
i
s
distan
ce
of a
lamp from corne
r
of th
e
gallery, ‘
c
’ i
s
dista
n
ce of
a lamp
from
edge
of the
pillar
and
‘d’
is di
stan
ce
b
e
twee
n two
lamps. Th
e variabl
es
con
s
i
dere
d
for opti
m
ization a
r
e ‘
b
’, ‘c’, ‘d’ and ‘h’.
2)
Config
uratio
n
2 (6 LEDs): In this co
nfigu
r
at
ion, six LE
Ds a
r
e pla
c
e
d
along the le
ngth of the
pillar in the above sam
e
pattern.
3)
Config
uratio
n
3 (7 LEDs): In this co
nfigu
r
ation, seve
n LEDs a
r
e pl
a
c
ed al
ong the
length of
the pillar in th
e above sam
e
pattern.
4)
Config
uratio
n
4 (8 LEDs): In this co
nfigu
r
ation, eight L
E
Ds a
r
e pla
c
ed alon
g the length of
the pillar in th
e above sam
e
pattern.
5)
Config
uratio
n
4 (9 LEDs): In this co
nfigu
r
ation, nine L
E
Ds a
r
e pla
c
ed alon
g the length of
the pillar in th
e above sam
e
pattern.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
LEDs Li
ghtin
g Arran
gem
e
n
ts for Unde
rgrou
nd Min
e
s (Pratap Sing
h Yadav)
17
6)
Config
uratio
n
4 (10 LEDs):
In this config
ur
ation, ten L
E
Ds a
r
e pla
c
ed alon
g the length of
the pillar in th
e above sam
e
pattern.
7)
Config
uratio
n
4 (11 LEDs):
In this config
ur
ation, eleve
n
LEDs a
r
e pl
ace
d
alon
g the length
of the pillar in
the above sa
me pattern.
8)
Config
uratio
n
4 (12 LEDs):
In this config
urat
ion, twelv
e
LEDs a
r
e pl
ace
d
alon
g the length of
the pillar in th
e above sam
e
pattern.
2.5. Simulation
For
ea
ch
of t
he
config
urations, th
e
opti
m
izat
ion
of
d
e
fined va
riabl
e pa
ram
e
ters is carried
out. Table 2 i
s
a
comp
ari
s
on of the stat
istical
re
sults,
of the illumin
a
tion levels
o
b
tained o
n
th
e
target-su
r
face, from the
eight set of
LEDs
co
nfig
uration
s
. Fro
m
Table 2, it
is ob
se
rved
tha
t
among the
co
nfiguratio
ns, the be
st possi
ble uniformit
y is obtaine
d in the ca
se of config
uratio
n-8
comp
ri
sing
of 12 LE
Ds. All
of the re
sult
s were ca
lcul
ated with
opti
m
ized
varia
b
l
e
s valu
e. Thi
s
differen
c
e
ca
n be
attribute
d
to the
differen
c
e i
n
the
height
s at
which
the LE
Ds a
r
e
pla
c
ed,
to
minimize the stated obj
ecti
ve function.
Table 2. Co
m
pairson a
m
on
g different set
of LEDs
Sl no
Configuration
Illumination (in Lux)
‘
α
’
Max
i
mum
Minimum Mean
1.
5 set of LEDs
0.157
0.027
0.090
144.7
2.
6 set of LEDs
0.144
0.048
0.089
106.9
3.
7 set of LEDs
0.178
0.043
0.124
109.6
4.
8 set of LEDs
0.153
0.082
0.113
62.55
5.
9 set of LEDs
0.209
0.056
0.161
94.80
6.
10 set of LEDs
0.172
0.114
0.140
40.90
7.
11 set of LEDs
0.237
0.079
0.195
80.80
8.
12 set of LEDs
0.194
0.143
0.169
30.28
1W LE
D fro
m
ProLi
ght
Opto Te
ch
no
logy
Co
rp
ora
t
ions
con
s
id
e
r
ed fo
r the
physi
cal
arrang
ement.
The rated
cu
rre
nt of
the LED is 350 mA
, and the con
s
t
ant cu
rrent drive is p
r
ovi
ded
by the appro
p
riate LE
D drivers.
In flux characte
ri
stics of Lam
be
rtain type (Ra
d
iation pattern)
white
“PM2B-1LWE
”
(part
numbe
r e
m
itter). T
he av
e
r
age lu
minou
s flux of each
LED i
s
e
s
tim
a
ted
to be 13
1 lm
and vie
w
ing
angle i
s
13
0
0
[25]. So, the light inten
s
ity is aro
und
3
6
.11cd [26]. By
usin
g the
sa
me inten
s
ity, some
co
nfig
uration
ca
n fulfill the illum
i
nation requi
rement of giv
e
n
stand
ard
s
. Here th
ree diff
erent
config
u
r
ation
s
with
8 set
s
of LE
Ds
sh
own in
Figure 2. T
h
e
simulation
results have been di
sc
ussed in T
able no
3. And
Figure 3
shows the
illumination pl
ot
of all three co
nfiguratio
ns.
Config
uratio
n
-
1
Config
uratio
n
-
2
Config
uratio
n
-
3
Figure 2. Top
view of three
different
conf
iguratio
ns
with 8 sets of LE
Ds
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 1, July 201
5 : 14 – 19
18
Config
uratio
n
1
Config
uratio
n
2
Config
uratio
n
3
Config
uratio
n
4
Figure 3. Illumination plot
of a 26m long
and 4.
8m wi
de pillar by ei
ght point light
ing so
urce
placed at a h
e
ight h with di
fferent co
nfiguration
s
Table 3. Co
m
pari
s
on a
m
on
g different co
nfiguratio
n wi
th 8 sets of L
E
Ds
Sl no
Configuration
Illumination (in Lux)
‘
α
’
Max
i
mum
Minimum Mean
1. Configuration-
1
5.51
2.97
4.07
62.55
2. Configuration-
2
5.64
3.07
4.31
59.72
3. Configuration-
3
6.07
1.99
4.23
96.18
4 Configuration-
4
(Illuminance leve
l colorbar)
5.64 3.07
4.31
59.72
3. Conclusio
n
A near-unifo
rm illuminatio
n level is po
ssi
ble with
a suitabl
e arra
ngeme
n
t of LEDs. An
arrang
ement
of eight LE
Ds
of thre
e
different
conf
iguratio
ns
of 1 W
(a
ssu
m
ing an
ave
r
age
luminous intensity of 36.11 cd
for the 1
W LED), can provide
cl
ose uniform illumination over a
target-su
r
face, for the optimal values of
the va
riable
para
m
eters, as pe
r the si
mulation resu
lts.
The propo
se
d all three LE
D arrang
eme
n
ts
provid
e an averag
e illumination mo
re than 4
lx over the
entire gallery t
hat fulfills the requ
ired illumination level acco
rding to The
Coal
Mi
nes
Reg
u
lation
s
1957. Config
uration
-
2 (
α
= 59.72) gives t
he greatest uniform illumination over
a
gallery i
n
co
mpari
s
o
n
to
configuration
-
1 (
α
=
62.5
5
) and config
ura
t
ion-
3
(
α
=
96.18). So for t
h
e
LEDs lightin
g
arran
geme
n
t, config
uratio
n-
2 i
s
su
itab
le in
every
a
s
pe
ct a
nd
provide the
mo
st
near unifo
rm
illumination. I
n
term
of co
st
benefit, init
ia
l installatio
n
o
f
LED light fitting cost i
s
little
high but overall co
st is very low in comp
arison
to CF
L
,
incand
esce
nt lamps an
d other lam
p
s.
Referen
ces
[1]
John J Samma
rco, Migue
l A Re
yes, Joh
n
R
Bartel
s, Sean
Galla
gher. Eva
l
uati
on of Peri
p
hera
l
Visua
l
Performanc
e
W
hen Us
in
g In
cand
esce
nt an
d LE
D Mi
ner
Cap
Lam
ps.
IEEE Transactions on Industr
y
Appl
icatio
ns.
2
009; 45(
6)
.
[2]
SV Krishna,
Nitai Pal, Pra
d
ip kum
a
r Sa
dhu. Po
st Dis
aster Illumin
a
ti
on for Und
e
rg
roun
d Mines.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2015; 1
3
(3); 4
25-4
30.
[3]
Gupta RP, Pr
a
s
ad U, S
a
d
hu
PK,
Pal N. Effi
cient
Lig
h
tin
g
S
y
stem for
Un
dergr
oun
d C
o
a
l
Min
e
s us
in
g
LED.
Journ
a
l o
f
Institution of Engi
neers
(I), Minin
g
Eng
i
n
e
e
rin
g
Divisi
on.
201
0; 91: 21-2
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
LEDs Li
ghtin
g Arran
gem
e
n
ts for Unde
rgrou
nd Min
e
s (Pratap Sing
h Yadav)
19
[4]
Nitai P
a
l, Pr
adi
p Kum
a
r Sa
dh
u, S Vamsi
Kri
s
hna.
A
Co
nstant Bri
ghtness
LED B
a
sed
Ca
p L
a
mps f
o
r
Und
e
rgro
un
d Coal
min
e
s usi
ng Buck Re
gu
l
a
tor
. W
o
rld Co
ngress of En
gi
neer
ing
201
2 (W
CE 2012)
.
London, UK. 2012; II: 986-990.
[5]
Pal N, Sa
dh
u
PK, Gupta RP,
Prasad
U.
Re
view
of LED
b
a
sed c
ap
la
mp
s for und
ergr
o
und c
oal
min
e
s
to impr
ove e
n
e
r
gy efficiency a
s
comp
are
d
to other li
ght sour
ce.
T
he 2nd In
ternatio
nal C
o
nferenc
e o
n
Comp
uter and
Automatio
n
En
gin
eeri
ng (ICC
AE).
2010; 5: 6
7
5
.
[6]
W
H
Le
w
i
s. Un
dergr
oun
d C
o
al Mi
ne
Li
ghti
ng H
a
n
d
b
ook.
Unite
d
States
Dep
a
rt
ment
o
f
the Interi
or,
Don
a
ld Pa
ul H
ode
l, Secretar
y. Bureau of Min
e
s,
9074. Bur
e
au of Mines Inf
o
rmatio
n
Circu
l
a
r. 1986.
[7]
Neval
o
Pro
duc
t Lighti
ng T
e
a
m
.
A S
y
stems
Appro
a
ch to
th
e Des
i
gn
an
d
Manufactur
e
of
Soli
d Stat
e
Lig
h
ting F
i
xtur
es.
W
h
ite Pape
r, LED Journa
l.
[8]
Gururaj S
Pu
n
e
kar, Su
has, P
r
atap S
i
ng
h, N
K
Kish
or
e. LE
Ds : A Stud
y fr
om Illum
i
na
nce
Persp
e
ctive
.
Journ
a
l of Elec
trical Eng
i
ne
eri
ng.
201
2; 12.
[9
]
Sa
n
c
he
z S, Sw
een
ey
S.
LE
D vs T
5
T
e
ch
nol
og
y-T
he Ad
vantag
es an
d
Disadv
anta
ges
.
Lumiversa
l
W
h
ite Paper.
2
010.
[10]
Christia
n Br A
ñas, F
r
ancisc
o
J. Azc
ondo,
J Marcos Alo
n
so. Sol
i
d-Stat
e Li
ghtin
g.
IEEE industrial
electro
n
ics ma
ga
z
i
n
e
. 20
13.
[11]
Hon
g
min
g
Yan
g
, Jan W
M
Bergmans, T
i
m C
W
Schenk, Jean-Pa
ul MG Li
nnartz, Ron
a
l
d
Rietman. A
n
ana
l
y
t
i
cal mo
d
e
l for the ill
umi
nanc
e distrib
u
ti
on of a po
w
e
r LED.
Optics Express 21
64
1
. 2008; 16(
26).
[12] Maha
jan
V.
Measur
e
m
ents o
f
LED and SS
L Devic
e
s.
Na
tiona
l Conf
ere
n
ce on R
e
ce
nt
T
r
ends an
d
T
e
chnolog
ica
l
Advanc
es in L
E
D lig
hting S
y
s
t
ems.
2010: 1-
5.
[13]
Mand
i RP, Pra
dee
p K.
Perfor
ma
nce Ev
alu
a
tion
of LED Sys
t
ems – T
o
w
a
r
d
s Standar
di
z
a
ti
on
. Nationa
l
Confer
ence
on
Recent T
r
ends and T
e
chnol
ogi
c
a
l Adva
nce
s
in LED li
ghtin
g S
y
stems.
20
10: 6-13.
[14]
LC Kaku. T
he Coal Mi
nes R
e
gul
ations
. 1
957
. Dhanb
ad: Lov
el
y
Pr
akas
han.
2011: 2
84.
[15]
Cod
e
of Pr
acti
ce for Interi
or I
llumi
nati
on P
a
r
t
II Schedu
le f
o
r val
ues
of Ill
u
min
a
tion
an
d
Glare In
de
x,
India
n
Stand
ar
ds: IS:3646 Pa
rt(II). 1979.
[16]
W
e
stern Australi
an
Cons
oli
date
d
Reg
u
lati
ons
.
http://
w
w
w
.
a
u
s
t
lii.ed
u.au/a
u
/le
g
is/
w
a/co
nsol
_
r
eg/msair
199
5
385/
.
[17]
Matlab Us
ers Guide ©
.
T
he MathW
o
rks, Inc. 2010.
[18]
Optimizatio
n
T
ool
bo
x User
’s Guide R
2
0
12a.
T
he MathW
o
rks. 2012.
[19]
Alma E, F
T
a
y
l
or. Illumin
a
tion
F
undam
enta
l
s.
Lighti
ng R
e
se
arch Ce
ntre. Rensse
laer. 2
0
0
0
.
[20]
Kishor
e NK. Illu
mi
nati
on e
n
g
in
eeri
ng.
N
a
tion
al Pro
g
ra
mme
on T
e
c
h
n
o
lo
gy Enh
anc
ed L
earn
i
n
g
(NPT
EL) Vide
o
s
and W
eb.
20
06.
[21]
Alvarez-Caic
oya J, Cosm
e-Torres AJ, Ortiz
-
Rivera EI
.
Co
mpact F
l
uor
es
cent L
a
mp, An
Anticip
a
tor
y
Mind to Mercur
y
.
Potentials. IEEE 30.
2011;
1: 35.
[22]
Lon
g
X, Li
ao
R, Z
hou J. D
e
ve
lo
pment
of street lig
htin
g s
y
stem-b
ase
d
nove
l
hi
gh-
brig
htness
L
E
D
modu
les
.
Optoelectro
n
ics.
20
09; 3(1)
.
[23]
Moren
o
, Aven
dañ
o-Ale
j
o, T
z
onch
e
v
,
Desig
n
in
g lig
ht-emit
t
ing di
ode
arra
y
s
for u
n
ifor
m near-
fi
el
d
irradi
anc
e.
Applied Optics.
20
06; 45(1
0
)
.
[24]
Moren
o
, Mun
o
z
, Ivanov. U
n
if
orm il
lumi
nati
o
n of
di
sta
n
t tar
gets us
in
g a
s
pher
ical
li
ght-e
mitting
dio
d
e
array
.
Optic
a
l Engi
neer
in
g
. 2007; 46(
3).
[25]
ProLi
ght PM2
B
-1L
x
E 1W
Po
w
e
r LE
D T
e
chnic
a
l Da
tas
h
e
e
t Version: 2.0
,
ProLight Opt
o
T
e
chnolo
g
y
Corp
oratio
n. 2011.
[26]
Rapi
d T
ables.
onli
ne r
e
fere
nces & too
l
s. http
://
w
w
w
.
ra
pidta
b
les.c
o
m/calc/lig
ht/lume
n
-to-can
del
a-
calcul
ator.htm.
Evaluation Warning : The document was created with Spire.PDF for Python.