TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 2, Februa
ry 20
15, pp. 257 ~ 263
DOI: 10.115
9
1
/telkomni
ka.
v
13i2.698
7
257
Re
cei
v
ed
No
vem
ber 7, 20
14; Re
vised
De
cem
ber 2
5
,
2014; Accep
t
ed Jan
uary 1
0
, 2015
Impact
Analysis of Midpoint Connected ST
A
T
COM on
Distance Relay Performance
R. Ilango
1*
, T. Sree Renga Raja
2
1
MAM School
of Engin
eer
ing,
T
i
ruchira
ppa
lli,
T
a
mil Nad
u
, India, 62
11
05
2
Anna Un
iversi
t
y
, Anna U
n
ive
r
sit
y
BIT
Campus,
T
i
ruchira
p
p
a
lli, T
a
mil Nad
u
, India, 62
002
4
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: ilan
gore
n
g
a
r
a
ju@
g
ma
il.co
m
A
b
st
r
a
ct
T
h
is pa
per
pr
esents th
e i
m
pact
of the
Static Synchr
on
ous
Com
p
ens
a
tor (STATCOM) on the
perfor
m
ance of distance pr
otec
tion of EHV transmission lines.
A 400kV trans
m
i
ssion system
having
mi
dp
oint co
nn
ected ST
AT
COM w
i
th its control circ
u
i
t is
mo
del
ed us
in
g M
A
T
L
AB/SIMULINK softw
are. T
h
e
impact of ST
AT
COM on dista
n
ce rel
a
y for di
fferent fault
co
nditi
ons a
nd d
i
fferent fault loc
a
tions is
ana
ly
z
e
d
.
Simulati
on res
u
lts ind
i
cate th
at the prese
n
c
e
of
the ST
AT
COM in the trans
missi
on sy
stem si
gnific
a
n
t
ly
chan
ges t
he
li
ne i
m
pe
da
nce
see
n
by
the
dista
n
ce r
e
la
y to b
e
l
o
w
e
r or h
i
g
her th
a
n
the
actu
al l
i
n
e
impe
danc
e. D
ue to
this
the
perfor
m
ance
of the
dista
n
c
e
re
lay c
h
a
n
g
e
s, eith
er
over
reach
e
s or
u
n
der
reach
e
s.
Ke
y
w
ords
:
distanc
e relay
protection, fl
exibl
e
AC tra
n
smission sys
tem
(FACTS), static synchronous
compensators (STATCOM),
E
H
V tra
n
s
mi
ssion
l
i
ne
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The d
e
ma
nd
of ele
c
trical p
o
we
r i
s
g
r
o
w
i
ng d
a
y by d
a
y
with a
very
fast rate. To
meet out
this a si
gnifi
cant mo
dification in the
convent
io
na
l powe
r
syst
em is requi
red. The recent
developm
ent of
power ele
c
tronics provid
es
a
solu
tion
by the way of
usin
g FA
CT
S device
s
in
the
power sy
ste
m
s. The FACTS device
s
which a
r
e con
necte
d in parallel, seri
es o
r
com
b
inatio
n
of
both in the
po
wer sy
stem,
enha
nce the
system
co
nt
rollability and
also i
n
crea
sin
g
po
wer tran
sfer
capability [1, 2]. Static
sy
nchronous compensat
o
r (STAT
C
OM) is the
most used
shunt
con
n
e
c
ted F
A
CTS devi
c
e
whi
c
h
cont
ro
ls the
co
nne
cting point
bus voltage n
ear stable
an
d al
so
enha
nce sy
stem sta
b
ility by inject
ing or absorbi
ng re
active
po
we
r into
the
tra
n
smissi
on syste
m
[3, 4].
Impedan
ce
ba
sed
di
sta
n
ce
p
r
ote
c
tion rela
ys
are widely used
f
o
r prote
c
ting
EHV/HV
transmissio
n lines
du
e
to
their simpl
e
operati
ng
pri
n
cipl
e. Th
e relay me
asures th
e
appa
rent
impeda
nce of
the fault lo
op
by con
s
ide
r
i
ng the
voltag
e an
d
current
sig
nal
s at th
e rel
a
y lo
cati
on,
then the relay
calculate
s
the fault locatio
n
by using thi
s
app
are
n
t impeda
nce [5, 6]
In dista
n
ce
relay du
e to
the p
r
e
s
en
ce
of STAT
CO
M in th
e faul
t loop th
e m
easure
d
voltage and
curre
n
t sign
al
s are chang
e
d
. The mea
s
ured
cu
rrent
at the relay
point de
crea
ses
whe
n
the ST
ATCOM inj
e
cts rea
c
tive power in
to th
e power
syst
em and in
creases
whe
n
th
e
STATCOM
draws re
active
power from th
e syste
m
.
Du
e to this
cha
n
ge in the volt
age a
nd
current
sign
als
the
appa
rent
imp
edan
ce
calcu
l
ated by th
e
distan
ce
rela
y cha
nge
s. T
he di
stan
ce
relay
will be
over
reach if the m
easure
d
imp
e
dan
ce i
s
le
ss
than the a
c
tu
al mea
s
u
r
em
ent and th
e relay
will be
und
er
rea
c
h
whe
n
t
he impe
dan
ce is g
r
e
a
ter t
han the
actu
a
l
mea
s
ureme
n
t. So due to
the
pre
s
en
ce of
STATCOM i
n
the fault loop the di
stance relay chara
c
te
risti
c
s will be affected.
Therefore, no
wad
a
ys it is importa
nt to analyze
the im
pact of STATCOM on the
distan
ce rela
y to
desi
gn an a
d
aptive prote
c
tive sch
eme to get accurate fault locatio
n
.
Some researche
s
h
a
ve b
een d
one
on
the impa
ct
of different F
A
CTS devi
c
e
s
on
the
distan
ce
rela
y. K. El-Arroudi, G. Jo
os,
and
D. T.
McGillis [7] p
r
e
s
ent the an
alytical results b
a
s
ed
on the
steady
-
state
mod
e
l
of STAT
CO
M, and
out
lin
e the
impa
ct
of STATCOM
on
differe
nt l
oad
levels. In [8] and [9] a comprehe
nsiv
e analysi
s
of
the impact
of thyristor-controlle
d se
ri
es
cap
a
cito
r (T
CSC) on the
prote
c
tion o
f
transmi
ssio
n lines
ha
s been p
r
e
s
ent
ed sh
owi
ng t
hat
TCSC
not on
ly affects the
prote
c
tion
of its line,
but
also th
e prot
ection
of adj
ace
n
t line. T
he
study in [10
], demonstra
t
es the imp
a
ct of
FACTS controllers and th
eir location in
the
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 257 – 263
258
transmissio
n
line o
n
the
tri
p
bo
und
ary
o
f
a di
gital mu
ltifunctional
p
r
otective
rel
a
y. The
wo
rk i
n
[11], derivates appa
rent i
m
peda
nce ca
lculatio
n see
n
by a distan
ce rel
a
y in the pre
s
en
ce o
f
a
unified p
o
wer flow controller (UPF
C)
b
a
se
d
on th
e
power frequ
e
n
cy sequ
en
ce co
mpon
ent
and
also
explain
s
the effect of
UPFC
ope
rat
i
onal mo
de a
s
well a
s
its
control pa
ra
meters. Previ
ous
work [12] present
s the Im
pact
analysi
s
of static
synchronous se
ries compensato
r (SSSC) on
the
perfo
rman
ce
of the
digital
distan
ce
rela
ying. In
[13
]
va
r
i
o
u
s
d
i
s
t
an
c
e
pr
o
t
ec
tion
sc
he
mes
for
a
midpoint
co
mpen
sated t
r
an
smi
ssi
on
line ha
s b
e
e
n
co
mpa
r
ed.
The
work
reporte
d in [
14],
demon
strates the impact of TCSC on the paramet
e
r
s of prote
c
tive transmissio
n line durin
g a
singl
e pha
se
to groun
d faul
t condition
s.
In this p
ape
r,
the imp
a
ct o
f
midpoint
co
nne
cted STA
T
COM
of the
tran
smi
ssio
n
line o
n
distan
ce
rel
a
y prote
c
tion i
s
a
nalyzed. F
i
rst, a
det
aile
d mod
e
l of S
T
ATCOM
is p
r
esented
then
the
perfo
rman
ce
of the
dista
n
ce relay fo
r dif
f
erent fa
ult condition
s
at d
i
fferent fault l
o
catio
n
s in th
e
pre
s
en
ce of
STATCOM i
s
analyze
d
an
d
finally the result
s have b
een presente
d
.
2. Stud
y
Test Sy
stem
The
im
pa
ct
of
the STATCOM on the performa
n
ce
of distan
ce rel
a
ys is studied u
s
i
ng the
model devel
oped by the
MATLAB/SIMULINK
softwar
e [15]. The test tran
smissi
on sy
stem
model with S
T
ATCOM a
n
d
distan
ce rel
a
y are de
scri
bed in this
se
ction.
2.1. Transmission Sy
stem Model
w
i
th STATCOM
The sim
u
latio
n
diag
ram of
the test syste
m
unde
r anal
ysis is
sh
own
in Figure
1. The test
system
con
s
i
s
ts of a 400
kV 50 Hz, 300 km le
n
g
th transmissi
on line, with
two equival
ent
sou
r
ces,
source
1
and
sou
r
ce
2
conn
ected at
th
e se
nding
an
d re
ceiving
en
d resp
ectively. The
positive
seq
u
ence re
si
stan
ce a
nd
ze
ro
seque
nce re
si
stan
ce of t
he
line is
0.03 o
h
m/km a
nd 0.
25
ohm/km
re
sp
ectively. Similarly the po
sitive sequ
en
ce
indu
ctan
ce a
nd ze
ro
seq
u
ence indu
cta
n
ce
of the line i
s
1.01 mH/
k
m
and 3.7
3
mH/
k
m respe
c
tively. The dista
n
ce
relay
con
necte
d ne
ar t
he
sen
d
ing e
nd
sou
r
ce is con
s
ide
r
ed fo
r an
alysis.
A 100 MVA, 48 pul
se vol
t
age source i
n
verter
ba
se
d STATCO
M
is conn
ecte
d at the
midpoint
of th
e tra
n
smi
s
sio
n
line.
The
m
a
in o
b
je
ctive
of the STAT
COM
controll
er i
s
to
re
gul
ate
the conn
ectin
g
poi
nt voltag
e of the
tran
smissi
on li
ne t
o
the
setting
value (V
ref)
by su
pplying
or
absorbi
ng the
reactive
current [16, 17].
Figure 1. Test transmi
ssi
o
n
simulatio
n
system imple
m
ented in M
A
TLAB
2.2. Distan
ce
Rela
y
model
The
dista
n
ce
relay m
odel
u
s
ed
for this a
nalysi
s
con
s
i
s
ts of
six Mh
o di
stan
ce
el
ements,
three el
eme
n
t
s for p
hase-t
o
-ph
a
se loo
p
s
an
d thre
e
element
s for
the pha
se
- to
-groun
d loop
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact Analysis of Midp
oin
t
Conne
cted
STATCOM
o
n
Dista
n
ce Relay Pe
rform
ance (R. Ilan
go)
259
The di
stan
ce
relay
calcula
t
es the a
ppa
rent imped
an
ce of the fault
line con
s
ide
r
ing the voltag
e
and current
signal
s at the relay lo
cation
, then the f
ault location i
s
cal
c
ulate
d
by con
s
ide
r
ing t
h
e
positive
seq
u
ence impe
da
nce
of the lin
e [18]. T
he relay is a
s
su
med to be
se
t to prote
c
t 8
0
%
(240
km
) of
th
e tra
n
smi
s
sio
n
line.
The
Fi
gure
2
sh
ows the m
odelin
g
of on
e el
em
ent (“A”
pha
se
-
to-groun
d ele
m
ent) of the distan
ce rela
y used to
loc
a
te the faults
whic
h occ
u
r in “A” phas
e
.
Figure 2. One element of the dista
n
ce relay model
3. Simulation Resul
t
s an
d Analy
s
is
To stu
d
y the
impact
of ST
ATCOM
on t
he p
e
rfo
r
ma
nce
of di
stan
ce
relay va
rio
u
s type
s
of faults hav
e been
appli
ed on the te
st tran
smi
ssi
on sy
stem at
variou
s lo
ca
tions. Altho
ugh
several case
s involving
all
types of fault
s
with
di
ffere
nt fault re
sist
ances
at different lo
cation
s of
the tra
n
smi
ssion lin
e h
a
ve
bee
n
simul
a
ted, only t
w
o
ca
se
s,
nam
ely, “A”
pha
se to
gro
und
fault
with a fault
re
sista
n
ce
of
ze
ro o
h
m an
d thre
e
ph
ase to groun
d fault with a fa
ult re
sista
n
ce of
zero ohm a
r
e
prese
n
ted.
3.1. The Effe
ct of Single
Phase Faul
t
The t
e
st
re
sul
t
s of
t
he t
e
st
sy
st
em
wit
h
STATCOM
a
nd with
out ST
ATCOM fo
r “A” pha
se
to grou
nd fa
ult is sh
own i
n
Table
1. It
clea
rly sh
ows that, when t
he fault occu
rs b
e
twe
en t
h
e
relay poi
nt an
d the STAT
COM lo
cation
(betwe
en 1
0
a
nd 15
0 kil
o
m
e
ters in thi
s
case
), there is
no
much
ch
ang
e
on the a
ppa
rent imp
eda
n
c
e, me
asu
r
e
d
by the di
stance rel
a
y i.e. the mea
s
u
r
ed
impeda
nce is almost the same as that
f
o
r the sy
stem
without STATCOM.
Table 1. Vari
ations of the
appa
rent im
p
edan
ce for
si
ngle ph
ase-to
- gro
und fault
Fault location in Km
Apparent impeda
nce
in ohms
Without STATC
O
M
Apparent impeda
nce
in ohms
With STATCO
M
20 06.35
06.37
40 12.69
12.73
60 19.00
19.08
80 25.28
25.42
100 31.53
31.53
120 37.77
37.75
140 43.28
43.43
160 50.18
51.05
180 56.59
58.01
200 62.59
65.11
220 68.83
72.38
240 75.15
79.94
260 81.65
87.94
280 88.54
96.80
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 257 – 263
260
For exam
ple,
when the fa
u
l
t is occurring
at 140 km, the app
are
n
t impeda
nce m
easure
d
by the dista
n
c
e
relay with
out co
nne
ctin
g the STAT
COM in the fa
u
l
t line is 4
3
.2
8 ohm
s, and
with
the STATCO
M is 43.43 oh
ms. This is d
ue to the
fact, that when the STATCOM
is not pre
s
ent
in
the fault lo
op
for
ze
ro fa
u
l
t re
sistan
ce,
the
me
asured imp
eda
nce is eq
ual to
the a
c
tual
li
ne
impeda
nce of the line se
ction between
t
he relay poi
nt and the fault point.
Whe
n
the
fa
ult (‘A’ p
h
a
s
e-to-gro
und
fault) o
c
cu
rs
beyond
the
STATCOM
l
o
catio
n
,
(between
15
0
and
30
0
kilo
meters in
this ca
se
) th
e ap
pare
n
t imp
e
d
ance of th
e
system i
s
g
r
ea
ter
than that fo
r t
he
system
wi
thout STATCOM, si
nc
e th
e STATCOM
involves i
n
th
e fault lo
op; t
he
injecte
d
/ab
s
o
r
bed
current
of the STAT
COM
ch
ang
es the a
ppa
rent
imped
an
ce
measured
by
the
distan
ce rela
y.
The ap
paren
t impedan
ce
seen by th
e distan
ce
relay with STATCOM a
n
d
without
STATCOM fo
r sin
g
le ph
ase fault occurring for fault
distan
ce of 2
40 km i
s
sh
o
w
n in Fig
u
re
3;
from this it i
s
evident that
the ap
parent i
m
peda
nce se
en by the di
stance rel
a
y is
highe
r than t
hat
of the sy
stem
without STA
T
COM. So
th
e protecti
o
n
zone of th
e di
stance
rel
a
y u
nder re
ache
s its
setting an
d d
oes n
o
t give the trip sig
nal.
Figure 3. The
apparent imp
edan
ce
see
n
by
the relay for sin
g
le ph
a
s
e fault
The plot of a
pparent resi
st
ance mea
s
u
r
ed at
the rela
y location fo
r
“A” ph
ase to
grou
nd
fault created
at vari
ous location
s o
f
the tra
n
sm
issi
on li
ne
with STAT
COM a
nd
wit
hout
STATCOM
is depi
cted
in
Figure 4.
It shows th
at wh
en
the
fault o
c
curs before the
STAT
CO
M
locatio
n
(i.e., <15
0
km
), the ap
parent
resi
stan
ce
i
s
almo
st
sa
me as
that
of the app
arent
resi
stan
ce
wi
thout STATCOM, but wh
en the f
ault occurs after
the STATCO
M location t
h
e
appa
rent resi
stan
ce de
cre
a
se
s.
Figure 4. Apparent resi
stan
ce versu
s
fau
l
t location plot
s for si
ngle p
hase fault
-2
0
-1
0
0
10
20
30
40
50
60
70
8
0
-1
0
0
10
20
30
40
50
60
70
80
90
100
a
p
p
a
r
e
n
t
r
e
sist
a
n
ce
(
o
h
m
s)
appar
ent
r
e
a
c
t
anc
e (
o
hm
s
)
Wi
t
h
S
T
A
T
C
O
M
Wi
t
h
o
u
t S
T
A
T
C
O
M
0
50
100
15
0
200
25
0
30
0
0
5
10
15
20
25
30
di
s
t
an
c
e
(
km
)
appar
ent
r
e
s
i
s
t
anc
e (
o
hm
s
)
W
i
t
hout
S
T
A
T
C
O
M
Wi
t
h
S
T
A
T
C
O
M
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact Analysis of Midp
oin
t
Conne
cted
STATCOM
o
n
Dista
n
ce Relay Pe
rform
ance (R. Ilan
go)
261
Figure
5 sho
w
s th
e plot o
f
apparent re
actan
c
e m
e
a
s
ured at the
relay lo
cation
for “A”
pha
se to gro
und fault cre
a
ted at vario
u
s lo
ca
tion
s
of the transm
i
ssi
on line
with STATCOM
and
without STAT
COM. It is ap
pare
n
t that when the
fault occurs befo
r
e
the STATCO
M location th
e
appa
rent
re
a
c
tan
c
e i
s
alm
o
st
sam
e
, but
wh
en th
e fa
ult occu
rs aft
e
r th
e STAT
COM
lo
cation
the
appa
rent
rea
c
tan
c
e in
cre
a
se
s
comp
ared to the
a
pparent rea
c
tance
of the
system
with
out
STATCOM.
Figure 5. Apparent rea
c
tan
c
e versu
s
fau
l
t location plot
s for si
ngle p
hase fault
This i
s
mainly
due to the fa
ct that wh
en t
he fault occu
rs after the ST
ATCOM lo
cat
i
on the
STATCOM
supplie
s the
reactive p
o
we
r to the
c
onn
ecting point, so
the app
arent
rea
c
tan
c
e
of
the tran
smission line in
cre
a
se
s an
d the appa
rent re
si
stan
ce of the transmissio
n line de
cre
a
se
s.
Further f
r
o
m
analy
s
is, i
t
is ap
parent
that the p
r
ese
n
ce of th
e STATCOM
in the
transmissio
n
system
sig
n
ificantly affects
th
e ap
pare
n
t re
si
stance
and a
pparent
reactance
measured by the distan
ce relay unde
r si
ngle ph
ase fault conditio
n
s.
3.2. The Effect o
f
Three
Phase Faul
t
Whe
n
three
pha
se fault is create
d
at
a distan
ce of
240 km, the
apparent im
peda
nce
measured
by the di
stan
ce
relay with S
T
ATCOM
is
83
.40 ohm
s, a
n
d with
out ST
ATCOM
is
78
.75
ohms re
spe
c
t
i
v
e
ly
.
The impe
dan
ce traj
ecto
ry
of the dista
n
ce
relay for three p
h
a
s
e
faults creat
ed at a
distan
ce of 2
40 km
with
STATCOM a
nd witho
u
t STATCOM i
s
sho
w
n in Fi
g
u
re 6; it cle
a
r
ly
sho
w
s that
th
e ap
pa
rent i
m
peda
nce
se
en by
the
rel
a
y is greate
r
than that
of t
he
system
wit
hout
STATCOM.
So the prote
c
tion zon
e
of the dista
n
ce relay unde
r re
ach
e
s it
s setti
ng and
doe
s
not
give the trip signal.
Figure 6. The
apparent imp
edan
ce
see
n
by the relay for thre
e pha
se fault
0
50
10
0
15
0
20
0
250
30
0
0
20
40
60
80
10
0
12
0
di
s
t
a
n
c
e
(
k
m
)
app
ar
ent
r
e
ac
t
anc
e (
o
h
m
s
)
Wi
th
S
T
A
T
C
O
M
W
i
t
h
out
S
T
A
T
C
O
M
-4
0
-2
0
0
20
40
60
80
-1
0
0
10
20
30
40
50
60
70
80
90
100
a
pp
ar
en
t
r
e
s
i
s
t
an
c
e
(
oh
m
s
)
app
ar
e
n
t
r
e
ac
t
a
n
c
e
(
ohm
s
)
Wi
th
o
u
t
S
T
A
T
C
O
M
Wi
th
S
T
A
T
C
O
M
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 257 – 263
262
The
apparent
resi
stan
ce
versu
s
fau
l
t
lo
cation an
d appa
rent re
actan
c
e ve
rsus fault location
plots of tran
smissi
on
syst
em wi
th
and
without STA
T
COM
for th
ree
pha
se fa
ult are
sh
own in
Figure 7 and
Figure 8 re
sp
ectively.
Figure 7. Apparent resi
stan
ce versu
s
fau
l
t location plot
s for thre
e ph
ase fault
Figure 8. Apparent rea
c
tan
c
e versu
s
fau
l
t location plot
s for thre
e ph
ase fault
The inferen
c
e of the Figure 7 and Fi
g
u
re 8 sho
w
s that, when the three p
h
a
s
e fault
occurs b
e
twe
en the rel
a
y point and the
STATCO
M l
o
catio
n
the measured ap
pare
n
t re
sist
ance
and
rea
c
tan
c
e of the
sy
stem are alm
o
st
same
a
s
that of the
system
witho
u
t STATCO
M.
Ho
wever, wh
en the fault occurs beyon
d
the ST
ATCOM locatio
n
, both the app
arent resi
sta
n
ce
and re
acta
nce of the syste
m
are g
r
eate
r
t
han that of the syste
m
wit
hout STATCOM.
It is evident that like si
n
g
le pha
se fa
ult the three
pha
se fault a
l
so havin
g th
e sam
e
impact on th
e performan
ce of the distance rela
y in the presen
ce of the STATCOM in the
transmissio
n system.
4.
Conclu
sion
The pe
rform
ance of the
distan
ce
rel
a
y in the prese
n
ce of STATCOM
ha
s bee
n
analyzed for
different fault
con
d
ition
s
a
nd different
fault location
s. From the
si
mulation
re
su
lts it
is evident th
at during a f
ault, the injected or
a
b
sorbed current
of the STATCOM p
r
od
uces an
error in imp
e
dan
ce me
asu
r
eme
n
t and b
e
ca
use of this und
er /ove
r rea
c
h of the
distan
ce rel
a
y
happ
en
s.
The results
clearly sho
w
that the conn
ecti
on
of the
STATCOM
at the midpoi
nt of the
transmissio
n line affects th
e perfo
rman
ce of the di
sta
n
ce relay. Th
erefo
r
e, wh
e
n
a transmission
line syste
m
is conn
ecte
d wi
th STATCOM
,
the conv
enti
onal di
stan
ce
relay ch
aract
e
risti
cs
are
n
o
t
usa
b
le. So th
ere i
s
a n
eed
for di
stan
ce
relay to
adju
s
t to ne
w
settings in it
s
cha
r
acte
ri
stics a
n
d
to be adapte
d
to the system conditio
n
s i
n
orde
r to avoid mal ope
ra
tion.
0
50
100
150
200
25
0
30
0
0
2
4
6
8
10
12
di
s
t
an
c
e
(
k
m
)
ap
paren
t
resi
s
t
an
c
e
(oh
m
s)
W
i
t
hou
t
S
T
A
T
COM
Wi
t
h
S
T
A
T
C
O
M
0
50
10
0
150
200
25
0
300
0
10
20
30
40
50
60
70
80
90
100
di
s
t
an
c
e
(
k
m
)
ap
par
en
t
r
e
a
c
t
anc
e
(
ohm
s
)
Wi
t
h
S
T
A
T
C
O
M
W
i
t
hout
S
T
A
T
CO
M
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
pact Analysis of Midp
oin
t
Conne
cted
STATCOM
o
n
Dista
n
ce Relay Pe
rform
ance (R. Ilan
go)
263
Referen
ces
[1]
Hing
o
ra
ni NG,
G
y
u
g
y
i L.
Und
e
rstand
ing
F
A
CT
S:
Concepts and
T
e
chnol
og
y of F
l
e
x
ib
le
T
r
ansmissi
o
n
S
y
stems. Ne
w
York: IEEE Press. 2000.
[2] Hingorani
NG
.
F
A
CT
S-F
l
exible A
C
T
r
an
smiss
i
on Syst
em
. Proc
eed
i
ngs of 5th Internati
o
n
a
l
Confer
ence
on
AC and DC P
o
w
e
r T
r
ansmission.
IEE Conferenc
e. 199
1; 345: 1-7.
[3]
Adid
o MA. Po
w
e
r S
y
stem St
abil
i
t
y
En
hanc
ement Us
in
g F
A
CT
S Controll
ers: A Revi
e
w
.
Th
e
Arab
i
a
n
Journ
a
l for Sci
ence a
nd En
gi
neer
ing
. 2
009;
34 (1B): 153-
1
72.
[4]
Hani
ye
h Mar
e
fatjou, Moh
a
m
m
ad Sarvi. Po
w
e
r F
l
o
w
Stud
y a
nd Perform
ance of ST
AT
COM and T
C
SC
in Improv
eme
n
t
Voltag
e Sta
b
i
lit
y an
d
Loa
da
bilit
y Am
plific
at
ion
in
Po
w
e
r S
y
stem.
Inter
nat
ion
a
l J
ourn
a
l
of Appli
ed Pow
e
r Engi
ne
erin
g
. 2013; 2(1):
15-
26.
[5]
Phadke
AG
,
l
b
ra
h
i
m
M
,
H
b
lika
T
.
Fu
nd
am
e
n
tal
B
a
sis
for
Dista
nc
e
Rela
yi
n
g
w
i
t
h
S
y
mm
etric
a
l
Com
ponents.
I
E
E
E
T
r
a
n
s
ac
t
i
o
n
s
o
n
P
o
w
e
r
Apparatus a
n
d
Syste
m
s
. 1
9
7
7
;
635-6
7
6.
[6]
AREVA T
D
. Net
w
o
r
k Protecti
on & Automati
on Gu
id
e. Sec
ond e
d
iti
on. France. AREVA. 2010.
[7]
El-Arrou
d
i K,
Joos G, McGillis DT
. Operation of
im
pe
dan
ce protecti
on r
e
la
ys
w
i
th the
ST
AT
C
O
M.
IEEE Transaction on Power Delivery
. 2
002; 1
7
(2): 381
–3
87.
[8]
Khed
erza
deh
M, Sidhu T
S
.
Im
pact of TCSC on the protection of
transmission lines. IEEE Transaction
o
n
Po
we
r D
e
li
ve
ry
. 2006; 2
1
(1
): 80–87.
[9]
Sidh
u T
S
, Khe
derza
deh
M.
T
C
SC i
m
pact
on
co
mmu
n
icati
o
n a
i
de
d
dista
n
c
e
pr
otectio
n
s
c
he
mes
a
n
d
its m
i
tigation
. IEE Proc. Generatio
n, T
r
ansmission
and
D
i
s
tributio
n. 200
5; 152(5): 7
14–
728.
[10] Khed
erza
deh
M.
T
he i
m
p
a
ct of F
A
CT
S de
vice o
n
dig
i
tal
multifuncti
on
a
l
prot
ective r
e
l
a
ys
. T
& D
Confer
ence
an
d Exhib
i
tion IE
EE/PES
.
Asia Pacific. 2002;
3:
2043
–2
04
8.
[11]
Z
hou
X, W
a
ng
H, Agg
a
r
w
a
l
RK, Bea
u
mont
P. Pe
rformanc
e ev
alu
a
tio
n
of
a d
i
stanc
e re
l
a
y as
ap
pli
e
d
to a transmissi
on s
y
stem
w
i
th
UPF
C
. IEEE
T
r
ansactio
n
on
Pow
e
r Deliver
y
. 2006; 21 (3):
113
7– 1
147.
[12] Khed
erza
deh
M,
Ghor
bani
A, Salemni
a
A.
Im
pact of SSSC on the digi
tal dist
ance relaying.
IEEE/PES, Po
w
e
r &Energy Societ
y Gener
al
Meetin
g. PES
’
09.
200
9; 1-8.
[13]
Albasri F
A
, Sid
hu T
S
, Varma RK. Performan
c
e co
mparis
on
of distance pr
ot
ection sch
em
es for shunt-
F
A
CT
S compe
n
sated transm
i
ssion li
nes.
IEEE Transaction on Power Del
. 2007; 2
2
(4): 211
6-21
25.
[14]
Moham
ed Z
e
ll
agu
i, Abd
e
l
a
zi
z Cha
g
h
i
. Impact of T
h
y
r
ist
o
r
Co
ntroll
ed
Series
Ca
pacit
or
Insertio
n
o
n
Short-Circu
it C
a
lcul
atio
n i
n
P
r
esenc
e Ph
ase
to Earth F
a
ult
.
Internati
ona
l
Journ
a
l
of Ap
plie
d P
o
w
e
r
Engi
neer
in
g
. 2012; 1 (2): 93-
104.
[15]
S
y
b
ill
e G, L
e
-
H
u
y
,
Ho
an
g.
Digital simulation
of
power system
s and power
electronic us
ing the
MATLAB/Simulink Power Sys
t
em
B
l
ockset
.
Po
w
e
r E
n
g
i
ne
erin
g Soci
et
y
W
i
nter Me
eti
ng. 2
000;
4:
297
3-29
81.
[16]
EI-Moursi MS, Haraf AM. Nov
e
l contro
llers
f
o
r the 48- p
u
ls
e VSC ST
A
T
C
O
M and SSSC
for voltag
e
regu
latio
n
an
d
reactive p
o
w
e
r
compens
atio
n
.
IEEE Transaction on P
o
wer System
.
20
05;
20(4):19
85-
198
7.
[17]
Pranes
h R
ao,
Cro
w
M
L
, Z
h
ipi
n
g
Yan
g
.
ST
AT
C
O
M Control for P
o
w
e
r S
y
stem Vo
ltage
Co
ntro
l
Appl
icatio
ns.
IEEE Trans. On Power Deliver
y
. 2000; 15(
4): 131
1-13
17.
[18]
Z
i
gler G. Num
e
rical
Distanc
e
Pr
otection: Pri
n
cipl
es a
nd Ap
plicati
ons. T
h
ird editi
on. Ger
m
an
y
.
P
u
b
lic
s
Corp
orate. 20
0
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.