TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 449 ~ 45
7
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.712
7
449
Re
cei
v
ed
De
cem
ber 2, 20
14; Re
vised Janua
ry 5, 20
1
5
; Acce
pted Janua
ry 2
1
, 20
15
Soft Switching Boost Converter Solution for Increase
the Efficiency of Solar Energy Systems
Alireza Kav
i
ani-Ar
ani*
1
, Alireza
Ghei
ratmand
2
1
Departme
n
t of Electrical En
gi
nee
ing, Maj
l
es
i
Branch, Islami
c Azad Univ
ers
i
t
y
, Isfahan, Ira
n
1
Shahi
d Raj
a
e
e
Center, De
pa
rtment of
T
e
chnica
l
and V
o
ca
tiona
l Educ
atio
n in Isfaha
n Provinc
e
2
Iran
T
e
chnica
l
and Vocati
on
a
l
T
r
aining Orga
nizati
on
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: A.Kaviani
@i
a
u
majl
esi.ac.ir, A.Kavian
i@etv
t
o.ir
A
b
st
r
a
ct
Now
adays, re
n
e
w
able
ener
gi
es are co
nsid
e
r
ed as
a
n
i
m
p
o
rtant sourc
e
o
f
non-p
o
ll
uting
and fre
e
ener
gy. Solar
ener
gy in the f
o
rm of p
hotov
o
l
taic system
s is
one of the mo
st promi
n
e
n
t of them. Usi
ng this
type of en
ergy
can b
e
an
affor
dab
le a
nd s
u
ita
b
le s
o
lu
ti
on to
supp
ly el
ectrici
t
y to the consu
m
ers w
ho
do
n
o
t
have
access t
o
the
distrib
u
ti
on n
e
tw
ork du
e to g
eogr
ap
hi
cal co
nditi
ons.
Reg
a
rdi
ng to
low
efficiency
and
hig
h
cost of ins
t
allin
g so
lar p
a
nels, rec
e
ivi
ng
the ma
xi
mum
pow
er of the
m
is taken
into co
nsid
eratio
n. D
C
-
DC conv
erters
are on
e of the key co
mpo
nents of
sol
a
r
energy syste
m
s. These c
o
nverters h
a
ve
the
sw
itching
loss
es a
n
d
the
i
r e
fficiency
is
not
so
hi
gh. T
h
is
pa
per
exp
l
or
e
s
the
sw
itchin
g l
o
sses
in
h
a
r
d
switching boos
t converter and by prov
iding
a soft sw
itching
boost converter, r
educes swit
ching loss
es and
incre
a
ses t
he
efficiency
of s
o
lar
ener
gy syst
ems.
T
he
perf
o
rmanc
e of
the
conv
erter
has
bee
n stu
d
ie
d
a
n
d
simulations indicate
its perfor
m
ance.
Ke
y
w
ords
: bo
ost converter, soft sw
itching converters, har
d
sw
itching conv
erters, solar en
ergy
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
No
wad
a
ys,
with dwi
ndling
resou
r
ces of
fossil
fuel
s a
nd g
r
o
w
th of
the con
c
erns abo
ut
air p
o
llution,
the u
s
e
of re
newable
ene
rgie
s i
s
g
r
o
w
ing. Amon
g t
hese e
nergie
s
, solar en
ergy
coul
d b
e
a
go
od alte
rnative
to the
fossil f
uels du
e to th
e availa
bility, non-pollutin
g
, unlimited
an
d
low cost of the mainten
a
n
ce of the solar
eq
uipme
n
ts. Beside
s the above advantag
es,
the
prod
uced en
e
r
gy by these system
s have
some di
sadv
antage
s su
ch
as high in
sta
llation co
st an
d
low effici
en
cy (abo
ut 9 to 1
6
%). Since
implem
e
n
ting
sola
r sy
stem
s are
expen
sive and
due to t
h
e
nonlin
earity of output ch
ara
c
teri
st
ics
of these a
rra
ys, using the
s
e sy
stem
s efficiently is not
possibl
e with
out usi
ng po
wer
ele
c
troni
c conver
te
rs and suitabl
e co
ntrol m
e
thod
s. Several
method
s are sug
g
e
s
ted to increa
se the
efficien
cy of sola
r syste
m
s and
receiving the maxim
u
m
power of the
m
whi
c
h are
referred a
s
Maximum Powe
r Point T
r
ackin
g
(MP
P
T). The ma
jor
differen
c
e be
tween the a
bove mentio
ned metho
d
s
is in the indexes
su
ch as
converge
nce
spe
ed, o
scill
ations
aro
u
n
d
the poi
nt o
f
maxi
mum p
o
we
r in
stea
dy-state, impl
ementation
cost
and complexi
ty and numbe
r of the requi
red mea
s
u
r
em
ent equipm
en
ts [1].
Con
n
e
c
ting
p
hotovoltaic systems to th
e ele
c
tri
c
al
g
r
id i
s
usu
a
lly don
e u
s
in
g
a DC-DC
conve
r
ter an
d
an
i
n
verte
r
(Figu
r
e 1). DC-DC co
nverter i
s
appli
ed with
cont
rol
strategy t
o
followin
g
the
maximum p
o
we
r poi
nt of the a
rray.
In this pap
er, we have u
s
ed the
boo
st
conve
r
ter. Th
e efficien
cy of t
hese syste
m
s are low, b
u
t the effi
cien
cy coul
d be increa
sed in t
w
o
ways, o
ne b
y
using foll
o
w
ing
maxim
u
m po
we
r p
o
int method
and the
ot
her i
s
u
s
in
g
the
function
ality of switchi
ng su
pplie
s.
Figure 1. The
compo
nent
s of photovoltai
c
sy
ste
m
and
their con
n
e
c
tion to the network
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 449 – 4
5
7
450
Due to the hi
gh switchi
ng
losse
s
, hard
swit
chin
g DC-DC co
nverte
rs do
n’t have
a good
efficien
cy. Also, their
swit
chin
g freq
ue
ncy is lo
w. By the soft swi
t
ching m
e
tho
d
s, the switching
freque
ncy of t
he converte
r
coul
d be i
n
creased a
nd th
e switchi
ng lo
sses
co
uld b
e
de
cre
a
sed.
By
increa
sing th
e frequ
en
cy of the
co
nverter, the si
ze
of the co
nverter
is decre
a
s
ed and also
the
electroma
gne
tic interferen
ce (EMI) is p
r
e
v
ented [2].
In
this pap
er,
both hard switchi
ng boo
st
c
onverte
r and soft swit
chin
g
b
o
o
s
t conve
r
ter
whi
c
h are used in sola
r e
nergy sy
stem
s are
st
udied
. Switching losse
s
in the hard
swit
chin
g
conve
r
ter a
r
e
calculated a
nd indicates t
hat usi
ng
soft switching me
thods, switchi
ng losse
s
co
uld
be de
cre
a
sed
,
resulting in i
n
crea
sed effi
cien
cy.
2. Ev
aluation and Selection of I
ndica
tors for DG I
n
stalla
tion
A sola
r p
ane
l is a
coll
ecti
on of p
hotov
oltaic
cell
s th
at are
co
nne
cted in
serie
s
o
r
in
parall
e
l with
each othe
r. Each PV cel
l
is a p
-
n
se
micon
d
u
c
tor
junctio
n
that
conve
r
ts
sol
a
r
radiatio
n
ene
rgy to th
e
el
ectri
c
al
en
ergy. An eq
uivalent
circuit
model
for PV cell
i
s
sho
w
n in
Figure 2, in
whi
c
h I
ph
indi
cate
s ph
otodi
ode
curre
n
t, R
j
, R
sh
an
d
R
s
are respe
c
tively nonlin
ear
impeda
nce of p-n jun
c
tion,
inhere
n
t sh
u
n
t impedan
ce
and se
rie
s
resi
stan
ce wit
h
in the cell.
R
s
resi
st
an
ce
is
v
e
ry
sm
all a
n
d
R
sh
re
sista
n
c
e i
s
ve
ry la
rge, thu
s
to
si
mplify the
circuit, both
can
be
negle
c
ted.
Figure 2. equi
valent circuit of a solar
cell
Acco
rdi
ng to
t
he e
quivale
nt ci
rcuit of the
PV ce
ll, th
e o
u
tput current
of the PV
array is a
s
follows
:
ex
p
1
PV
PV
P
P
h
P
s
a
t
S
q
nk
V
IN
T
IN
I
N
(1)
In which I
PV
and V
PV
are t
he cu
rrent a
nd voltage of
the PV arra
y, N
s
and N
p
are the
numbe
r of ce
lls in se
rie
s
a
nd in parallel,
q is the cha
r
ge of each el
ectro
n
(1.6*
1
0
-19
Coulom
b), k
is the B
o
ltzm
ann’
s
con
s
ta
nt (1.38
*
10
-23
J/°K), T
is th
e tempe
r
atu
r
e of the PV
a
rray
(°K) an
d
n is
the ideal p
-
n j
unctio
n
coefficient (betwee
n
1 to 5). In a
ddition, I
sat
refers
to the inv
e
rse saturation
curre
n
t of a
PV cell, which is dep
end
e
n
t on th
e
PV array temp
e
r
ature a
nd
can b
e
calcul
ated
usin
g the followin
g
equati
on:
0
00
3
11
x
ep
n
ga
p
sa
t
q
II
E
T
Tn
k
T
T
(2)
In which, T
0
is the cell reference tempe
r
a
t
ure, I
0
is inverse
satu
ration
current of cel
l
at T
0
and E
gap
is the voltage of the semi
co
nd
uctor
ai
r ga
p in PV array. In Equation (1
), I
ph
var
i
es
wit
h
cha
ngin
g
the radiatio
n do
se S
i
and arra
y temperature T. That can
be analyzed
as follo
ws:
0
,0
ph
S
C
T
i
i
TT
II
S
K
(3)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Soft Switc
h
ing Boos
t Converter Solution for Inc
r
e
a
se the Efficiency
of… (Alire
z
a
Kaviani
-Arani
)
451
In whic
h,
I
sc,T0
is
the
s
h
ort
c
i
rcuit current of the array in T
0
tem
p
eratu
r
e and
K
i
is the
temperature
coeffici
ent. Accordi
ng to the Equat
io
n (1), the o
u
tp
ut powe
r
of the PV array (P
PV
)
can b
e
identif
ied as follo
ws:
ex
p
1
PV
PV
PV
P
V
P
P
h
P
V
P
s
a
t
P
V
S
V
PI
q
nk
T
VN
I
V
N
I
V
N
(4)
This eq
uation
sho
w
s that t
he pro
d
u
c
ed
power P
PV
depend
s on the
radiatio
n do
se S
i
and
temperature
T of the PV a
rray [3-4].
3. Hard S
w
i
t
ching Boo
s
t
Conv
erter
Boost
co
nverter i
s
sho
w
n
i
n
Fig
u
re
3.
Here
solar cell
is m
odel
ed
with a volta
ge
sou
r
ce.
When the
key is turned
on, t
he inductor current increases linearl
y and the diode D is off.
When
the key i
s
turned
off, the energy
stored
in the i
nductor i
s
transferred to
the load
through
D. T
h
e
input indu
ctor must be larg
e enou
gh so the input
cu
rrent coul
d be
ripple
-
fre
e
. For CCM mo
d
e
L
s
h
ou
ld
be
L>L
min
. While the diode i
s
off, the
capacitor pr
ovides the
l
oad
current so the
capacit
o
r
sho
u
ld b
e
la
rge en
oug
h so that its volt
age
remai
n
s
con
s
tant. Fo
r boo
st mod
e
l
,
we h
a
ve th
e
equatio
ns b
e
l
o
w [5]:
1
in
dc
V
V
D
(5)
2
mi
n
(1
)
2
s
D
DR
L
f
(6)
()
o
s
o
D
C
V
Rf
V
(7)
Figure 3. The
boost converter
Figure 4. Voltage, cu
rr
ent and po
we
r lo
sses
durin
g turni
n
g
on the key
Figure 5. Voltage, cu
rr
ent and po
we
r lo
sses
durin
g turni
n
g
off the key
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 449 – 4
5
7
452
In hard
switching bo
ost
converte
r, the
voltage of the key d
e
crease and th
e cu
rrent
begin
s
to ri
se, while tu
rni
ng on the
ke
y. And the current of the
key begi
ns t
o
de
cre
a
se a
n
d
voltage to in
cre
a
se
while
turnin
g off t
he
key. At these
switchi
ng time
s, th
ere i
s
an ov
erlap
betwe
en voltage an
d current of the ke
y and thus
switchi
ng lo
sses a
r
is
e. Voltage, cu
rrent
and
power l
o
sse
s
in the
bo
ost
conve
r
ter du
ring turning
o
n
the
key i
s
i
ndicated i
n
Fi
gure
4. Al
so t
he
voltage, curre
n
t and po
wer
losse
s
duri
n
g
turning off the key is sho
w
n in Figure 5.
4. Soft S
w
i
t
c
h
ing Boos
t
Conv
erter
In soft
switching
method
s, a
high
fre
quen
cy
re
so
nator ci
rcuit i
s
a
dde
d to
the a
bove
mentione
d h
a
r
d
swit
chin
g
circuit. T
he
re
sonan
ce
ci
rcui
t may incl
ude
only L
and
C eleme
n
ts
or it
may
inclu
de addition
al
ele
m
ents su
ch as key
an
d
diode. Th
erefore, the volt
age a
nd
current
oscillate and
cro
ss
zero point and a
s
a result
pro
v
ides the sof
t
switchi
ng condition
s for the
power switch
es. By the reson
a
n
c
e ci
rcuit, switch
waveform is b
u
ilt in a way that minimize
the
swit
chin
g lo
sse
s
, de
crea
se the
swit
chin
g stress
and
prevent EMI
resultin
g in im
provem
ent in
the
efficien
cy of the circuit. Various te
chniqu
es of soft switchin
g
boost co
nverter have b
een
prop
osed so far and exten
s
ive rese
arch
e
s
in this a
r
ea
are on
goin
g
[6].
The p
r
op
ose
d
soft
swit
chi
ng bo
ost
con
v
erter i
s
indi
cated in Fi
gure 6. An ind
u
ctor, two
cap
a
cito
rs an
d two
diod
es
are
add
ed to
the ha
rd
swit
chin
g bo
ost
circuit. T
h
is
co
nverter ha
s o
n
ly
one key and
usin
g re
son
a
n
ce thi
s
key
coul
d turn o
n
or off at zero voltage swi
t
ching
(ZVS)
and
zero
cu
rre
nt
swit
chin
g (ZCS) conditio
n
.
The o
p
e
r
atio
n of the
ci
rcui
t inclu
d
e
s
7
steps
as follo
ws.
The wavefo
rms of the ope
ration of the circuit a
r
e indi
cated in Fig
u
re 7.
Figure 6. Soft switching b
o
o
st co
nverte
r
Figure 7. Wa
veforms of th
e conve
r
ter
4.1. State 1
-
t
0
<t
<
t
1
:
In this
state, the key is
off and the
out
put
DC
current of the
sola
r
panel
dire
ctly
transfe
rred to
the load thro
ugh L
1
and D. At this time, the current o
f
the main inducto
r begi
n to
decrea
s
e.
Co
nsid
erin
g initi
a
l co
ndition
s
0
)
2
(
2
L
i
,
o
1
Cr
V
)
t
(
V
and
0
)
t
(
V
2
Cr
w
e
h
a
v
e
t
h
e
followin
g
equ
ation:
11
7
1
()
(
)
oi
n
LL
VV
it
it
t
L
(8)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Soft Switc
h
ing Boos
t Converter Solution for Inc
r
e
a
se the Efficiency
of… (Alire
z
a
Kaviani
-Arani
)
453
Figure 8. Equivalent circuit for each t
0
<t
<
t
1
4.2. State 2
-
t
1
<t
<
t
2
:
At the begin
n
i
ng of this sta
t
e, the key
in
the condition
of ZCS
(due
to L
2
indu
cto
r) tu
rn
s
on. The
curre
n
t of the L
2
inducto
r be
gin
s
to increa
se li
nearly. As th
e cu
rre
nt of the L
2
be
com
e
s
equal to the current of the L
1
, this state end
s.
2
1
()
o
L
V
it
t
L
(9)
1m
i
n
()
L
it
I
(10
)
Figure 9. Equivalent circuit for each t
1
<t
<
t
2
4.3. State 3
-
t
2
<t
<
t
3
:
Whe
n
the
current of the
L
2
become
s
eq
u
a
l to the current of the L
1
, diode
D g
o
e
s
off and
this state
sta
r
ts. At this mo
m
ent
re
so
na
nce between cap
a
cita
nce C
r1
and i
ndu
ctor L
2
is
start
e
d
and th
e volta
ge of th
e
cap
a
citan
c
e
C
r1
decrea
s
e
s
an
d
at
the
end
of
this state,
i
t
rea
c
he
s ze
ro.
Also the cu
rrent of the load is
fed from the output cap
a
citan
c
e.
1m
i
n
()
L
it
I
(11
)
2m
i
n
1
1
()
s
i
n
(
)
o
L
V
it
I
t
z
(12
)
11
()
c
o
s
(
)
Cr
Vt
V
o
t
(13
)
1
21
1
r
LC
(14
)
2
1
1
r
L
z
C
(15
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 449 – 4
5
7
454
Figure 10. eq
uivalent circui
t for each t
2
<t
<t
3
4.4. State 4
-
t
3
<t
<
t
4
:
As the voltag
e of the
cap
a
c
itan
ce
C
r1
b
e
com
e
s zero,
diode
s
D
1
a
nd D
2
turn on. The
curre
n
t of th
e indu
cto
r
L
2
remai
n
s
co
n
s
tant in thi
s
mode
and th
e cu
rrent of
the indu
cto
r
L
1
incr
ea
se
s line
a
rly
.
1m
i
n
1
()
in
L
V
it
I
t
L
(16
)
22
3
()
(
)
LL
it
it
(17
)
Figure 11. Equivalent circui
t for each t
3
<t
<t
4
4.5. State 5
-
t
4
<t
<
t
5
:
At the begin
n
ing of this
state, we turn
off
the key at ZVS condi
tion. In this case, two
sep
a
rate
ci
rcuits a
r
e fo
rm
ed. The
curre
n
t of the
L
1
ind
u
c
tor
c
h
ar
ge
s
C
r1
cap
a
ci
tance
an
d m
a
ke
the voltage
of C
r1
ca
pa
ci
tance to
be
increa
sed to
t
he output
voltage. Also
the re
son
a
n
c
e
betwe
en L
2
a
nd C
r2
cause
cha
r
gin
g
the
cap
a
cita
nce
and the
curre
n
t of the indu
ctor L
2
be
co
mes
zer
o
.
11
4
()
(
)
LL
it
it
(18
)
22
3
2
()
(
)
c
o
s
(
)
LL
it
it
t
(19
)
2
22
3
2
()
(
)
s
i
n
(
)
Cr
L
Vt
z
i
t
t
(20
)
2
22
1
r
LC
(21
)
2
2
2
r
L
z
C
(22
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Soft Switc
h
ing Boos
t Converter Solution for Inc
r
e
a
se the Efficiency
of… (Alire
z
a
Kaviani
-Arani
)
455
Figure 12. Equivalent circui
t for each t
4
<t
<t
5
4.6. State 6
-
t
5
<t
<
t
6
:
At the beginning of this state, the cap
a
citan
c
e
C
r2
is ch
arg
ed to
its maximum voltage
and th
e
cu
rre
nt of the i
ndu
ctor L
2
i
s
ze
ro. At this
mo
ment, the
re
sonan
ce
bet
ween
L
2
an
d
C
r2
cau
s
e
the e
n
e
rgy of th
e
capa
citan
c
e to
be tran
sf
erred to the
ind
u
ctor an
d th
e current of t
h
e
indu
ctor L
2
b
egin
s
to rise
in the oppo
si
te directio
n.
At the end of this state, the voltage of C
r2
become
s
ab
solutely zero.
11
5
1
()
(
)
oi
n
LL
VV
it
it
t
L
(23
)
23
22
2
()
()
s
i
n
(
)
oL
L
Vi
t
it
t
z
(24
)
2
22
3
2
()
(
)
c
o
s
(
)
Cr
oo
L
Vt
V
V
z
i
t
t
(25
)
Figure 13. Equivalent circui
t for each t
5
<t
<t
6
4.7. State 7
-
t
6
<t
<
t
7
:
In this
state, i
n
verse p
a
rallel diod
e of th
e
key turn
ed
on a
nd tran
sfer the
current
of the
L
2
to the loa
d
a
nd finally its
curre
n
t be
co
mes
ze
ro. In
addition
L
1
tran
sfer
ene
rg
y to the load
by
diode
D and i
t
s cu
rre
nt decrea
s
e
s
[7].
11
6
1
()
(
)
oi
n
LL
VV
it
it
t
L
(26
)
2
6
2
2
()
()
L
L
it
it
t
L
(27
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 449 – 4
5
7
456
Figure 14. Equivalent circui
t for each t
6
<t
<t
7
5. Contr
o
l Circuit
Measured values of the out
put voltage and cu
rre
nt of the sola
r cell
and output vo
ltage of
the bo
ost
co
n
v
erter
are
giv
en to th
e
con
t
roller. T
he
o
u
tput po
we
r o
f
the solar cel
l
and
refe
re
n
c
e
power MPPT
are
compa
r
ed an
d afte
r pa
ssin
g
th
e
co
ntrolle
r, the
conv
e
r
ter output
reference
voltage is ma
de. This valu
e is com
p
a
r
e
d
with
the output voltage of the converte
r and the pul
ses
for the switch
gate are ma
de. Overview
diagram is
sh
own in Fig
u
re
15 [8-9].
Figure 15. Overview di
ag
ra
m of the solar cell co
nne
cte
d
to the conv
erter
6. Simulation
The sim
u
lati
on is p
e
rfo
r
med by PSIM softwa
r
e.
Voltage an
d
current of t
he key is
indicated i
n
F
i
gure
16.
As i
t
is o
b
viou
s, the
key i
s
tu
rned
on i
n
Z
C
S mode
an
d
is tu
rned
off i
n
ZVS mode. Therefo
r
e the
swit
chin
g losse
s
are mi
ni
mized [10].
The cu
rrent o
f
the L
2
is indicated in Figu
re 17 and Figu
re 18 sh
ows the cu
rre
nt of the L
1
.
Based o
n
th
e status of t
he key, the curre
n
t of L
1
is increa
sed
and de
cre
a
s
ed lin
early. Also
based
on th
e
resona
nce th
e current
of L
2
is i
n
crea
se
d
and
ab
so
rb
s
the en
ergy an
d by tu
rnin
g o
ff
the key, this energy return
s ba
ck to the
circuit.
Figure 16. Voltage (ab
o
ve)
and Current (belo
w
) of the key
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Soft Switc
h
ing Boos
t Converter Solution for Inc
r
e
a
se the Efficiency
of… (Alire
z
a
Kaviani
-Arani
)
457
Figure 17. Cu
rre
nt of the inducto
r L
2
Figure 18. Cu
rre
nt of the inducto
r L
1
7. Conclusio
n
Switchin
g
l
o
sse
s
in h
a
rd
switchi
ng boo
st conver
ters
whi
c
h is u
s
ed
in solar cells
are hig
h
and be
cau
s
e
of this, solar po
we
r system
s have
low efficien
ci
es. By using
soft switchi
n
g
method
s these losse
s
ca
n be eliminate
d
,
thus the
efficien
cy of the conve
r
ter
cou
l
d be increa
sed.
Sugge
sted
converte
r ha
s
only one
key
and i
s
turn
ed
on an
d off in
soft mod
e
. The pe
rform
a
n
c
e
of the convert
e
r is fully describ
ed an
d
si
mulation
s affirm its pe
rformance.
Referen
ces
[1]
Samosir, Ahm
ad Sau
d
i, NF
N T
aufiq, Abdul Ha
l
i
m Moh
d
Yatim. Simulation a
nd Impl
ementati
on o
f
Interleav
ed B
oost DC-DC
Conv
erter for F
uel Cel
l
Applic
atio
n.
Internati
ona
l Jou
r
nal of Pow
e
r
Electron
ics an
d Drive Syste
m
s (IJPEDS).
2011; 1(2): 16
8-1
74.
[2]
Carrasco, Ju
an
Manu
el, Le
op
old
o
Garcia F
r
anq
uel
o, Jan T
Bialas
ie
w
i
cz, Eduar
do Galv
á
n
, RC Portil
l
o
Guisad
o, Ma AM Prats, José Ignac
io L
e
ó
n
, Narcis
o Mor
e
n
o
-Alfonso. Po
w
e
r
-
electro
n
ic s
y
stems for t
h
e
grid
inte
grati
o
n
of re
ne
w
a
b
l
e
ener
g
y
s
ource
s: A surve
y
.
Industrial Electronics,
IEEE Transactions
on.
200
6; 53(4): 10
02-1
016.
[3]
Shah
inza
de
h, Hossei
n
, Moh
a
mmad Moi
en
Najaf A
bad
i, Mohamm
ad H
a
ja
hmad
i, Ali Pak
nej
ad. Des
i
g
n
and Ec
onom
ic
Stud
y
f
o
r Use t
he Ph
otovolt
a
i
c
S
y
stems
for
Electricit
y Su
p
p
l
y
in Isfa
han
Museum P
a
rk.
Internatio
na
l Journ
a
l of Pow
e
r El
ectronics a
nd Driv
e Systems (IJPEDS)
. 201
3; 3(1): 83-
94.
[4]
Shah
inza
de
h, Hossei
n
, F
a
rh
ad Ma
ghzi
an,
Sa
yed
Am
in F
egh
hi, Omid N
e
matol
l
ah
i, Mo
hamma
drez
a
Radm
anes
h.
Red
u
ction of Energ
y
Cons
u
m
ption T
h
rou
gh us
ing
Sol
a
r He
ating
an
d Venti
l
ati
o
n
.
Internatio
na
l Journ
a
l of Eng
i
n
eeri
ng Res
earc
h
and Ap
pl
icati
ons (IJERA).
2012; 2(3): 1
260
-126
4.
[5]
Yao, Gang, Alian Chen,
X
i
angni
ng
He. Soft
s
w
itchi
ng c
i
rc
uit for i
n
terle
a
v
ed b
oost c
onv
erters.
Power
Electronics, IEEE Transactions on.
20
07; 2
2
(1): 80-8
6
.
[6]
Park, Sang-H
o
on, Gil-Ro C
h
a, Yong-C
h
a
e
Jung,
a
nd Ch
u
ng-Yu
en W
on.
Desig
n
an
d a
pplic
atio
n for
PV gen
eratio
n
s
y
stem us
ing
a
soft-s
w
itch
ing
boost co
nverte
r
w
i
th SA
RC.
Industri
a
l El
ectronics, IEEE
T
r
ansactio
n
s o
n
.
2010; 5
7
(2): 515-
522.
[7]
Shan
gg
uan,
Xuanfe
ng, H
u
imi
n
Yan
g
, Yon
g
li
ang W
a
ng, a
n
d
Ben
l
on
g Sh
i. T
he Design
a
nd Sim
u
lati
o
n
of Improve
d
and
Multi
p
l
e
x Boost
Co
nv
erter.
T
E
LKOMNIKA Indo
n
e
sia
n
Jo
urn
a
l
of El
ectrica
l
Engi
neer
in
g.
2014; 12(
4): 259
9-26
05.
[8]
Galam, Ses
ha
Giri Ra
o, S R
a
ghu,
N R
a
jas
e
karan.
Desi
gn
of F
eed
back
C
ontrol
l
er for
Bo
ost Co
nverte
r
Using Optimization T
e
chnique.
Intern
ation
a
l Jo
urn
a
l of
Pow
e
r Electr
onics
an
d Dri
v
e Syste
m
s
(IJPEDS).
201
3; 3(1): 117-1
2
8
.
[9]
Soomro, Amir
Mahmoo
d, A
m
jad Al
i S
y
e
d
,
Shahn
a
w
az
F
a
rhan K
hahr
o, Xi
aoz
hon
g
Lia
o
, F
a
rha
n
Manzo
o
r. A Stabl
e Co
ntrol St
rateg
y
for Inp
u
t
-Ser
ies Output
-Series C
o
n
n
e
c
ted Boost h
a
lf
Bridge
DC-
DC Conv
erter.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2014; 1
2
(1): 7
2
-79.
[10]
Kumar, K Vinoth, S SURE
SH KUMAR,
S DA
ISON S
T
ALLON. High Efficient M
o
dul
e of Bo
ost
Conv
erter in P
V
Modu
le.
Inte
rnatio
nal J
our
n
a
l of El
ectric
al and Co
mp
uter Engi
neer
in
g
(IJECE).
201
2;
2(6): 758-
76
5.
Evaluation Warning : The document was created with Spire.PDF for Python.