Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 2,
May 2016, pp
. 328 ~ 333
DOI: 10.115
9
1
/ijeecs.v2.i2.pp32
8-3
3
3
328
Re
cei
v
ed
Jan
uary 12, 201
6
;
Revi
sed Ma
rch 1
1
, 2016;
Acce
pted Ma
rch 2
9
, 2016
Design of Electro Cardiograph Machin
e Based
on
ATmega Microcontroller
Bamban
g G
u
ruh Irianto
1
, Budhiaji
2
, Sy
a
i
fudin
3
1,3
Department of Electromed
i
c
al Eng
i
ne
eri
n
g, Pol
y
t
e
chn
i
c of Health Mi
nis
t
r
y
of Hea
l
th Surab
a
y
a.
Jl Pucan
g
Jaj
a
r
T
i
mur 10 Suraba
ya,In
do
nesi
a
. Ph/F
ax +
62
31-5
037
09
5
2
Departme
n
t of Electromed
ica
l
Engi
neer
in
g, Pol
y
t
e
ch
ni
c of Healt
h
Ministr
y
of Health Jak
a
rta II.
Jl Hang Jebat III Blok
F3 Kebay
o
ran Baru, Jakarta Se
latan
Indonesia Ph/Fax
+6221-
726
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: bgi_
p
s@
ya
h
oo.com
A
b
st
r
a
ct
ECG machi
n
e
on th
e
mark
et, has a c
o
nsid
erab
le c
o
s
t, the techno
l
ogy us
ed
is
still very
complic
ated. In efficient an
d
display ECG
still not in
terconn
ect w
i
th
other dev
ices.
In this study, the
researc
hers de
sign
ed ECG machi
ne 12 ch
a
nne
ls to
take advanta
ge AT
mega
microc
ontr
o
ller tec
hno
lo
g
y
,
Graphic LC
D 64x1
2
,
w
h
ich can be obtai
n
ed on
th
e mar
k
et
at low
pr
ic
es, thus yi
el
di
ng
a p
o
rtabl
e
ECG
app
aratus, can
intercon
nect
w
i
th other devi
c
es and c
h
e
a
p
.
Objective is to desi
gn a E
C
G mach
ine
usi
n
g
AT
meg
a
micro
c
ontrol
l
er tech
nol
ogy, by ma
king a seri
es of bio a
m
pl
ifier
ECG, measur
ing the a
m
plitu
d
e
and freq
ue
ncy
respons
e bio
amplifi
e
r,
and
mak
e
the EC
G signal pr
oce
ssing circu
i
t w
i
th microc
ontro
l
l
er,
w
h
ich can
be d
i
splay
ed
on a
1
28x6
4
gra
p
h
i
c LCD or P
C
. T
o
answ
e
r the re
search
obj
ectiv
e
s, the des
ign
o
f
the rese
arch is
to use p
u
re e
x
peri
m
e
n
tal r
e
search is
th
e d
e
sig
n
of exp
e
ri
me
ntal s
e
ries.
T
he in
dep
en
de
nt
varia
b
le E
C
G pha
nto
m
or h
u
m
a
n
a
nd the
d
epe
nd
ent va
ri
a
b
le is th
e ECG
mac
h
in
e. W
h
il
e the d
e
sig
n
E
C
G
mac
h
i
ne thr
o
u
gh th
e stag
es
as foll
ow
s: circuit d
e
sig
n
, circ
uit testin
g a
nd
calibr
a
tio
n
o
u
tp
ut. T
he co
nclu
si
o
n
of this study: T
he res
u
lt
of th
e
des
ig
n of
mi
crocontro
ller
A
T
meg
a
pr
ogr
a
m
listin
g
s ca
n
be us
ed
transf
o
rm
and ru
n the pr
ogra
m
to the E
C
G mac
h
in
e to
know
the
nu
mber of he
artbe
a
ts, a bee
p so
und ev
ery w
a
ve
R
the ECG sign
a
l
, displ
a
ye
d on
the grap
hic
a
l
LCD, PC
, pri
n
ted thro
ugh
a computer, a
nd
can b
e
stored
i
n
computer.
Ke
y
w
ords
: EC
G, AT
mega Mi
crocontro
ller, H
eart
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
ECG ma
chi
n
es a
r
e
stan
d
a
rd e
quip
m
e
n
t use
d
to di
agno
se
hea
rt dise
ase [1]-[
3
]. ECG
machi
ne is n
eede
d in hea
lth facilities such a
s
: healt
h
cente
r
s, co
mmunity Hea
l
th centre a
n
d
Ho
spital, even gave for monitori
ng can be used
in the Hou
s
e. For the purpo
se
s of e
a
rly
detectio
n
of
heart
attack,
it is ne
ce
ssary for t
he p
u
rposes
of mo
nitoring
ECG
machine
or
daily
che
c
ks. ECG
machin
e on the market, h
a
s the pri
c
e i
s
quite expe
n
s
ive, so it
is not acce
ssi
bl
e to
the pu
blic
me
dium o
r
small
clini
c
s in
add
ition to th
e
te
chn
o
logy u
s
e
d
is difficult t
o
un
derstan
d
,
if
the devi
c
e
is dam
age
d v
e
ry difficult a
nd m
any
el
e
c
troni
c ci
rcuits a
r
e
secret.
Te
chn
o
logi
cal
kno
w
le
dge m
i
cro
c
o
n
troll
e
r for ECG m
a
chi
ne de
sig
n
has
been
done by
several resea
r
ch
ers,
inclu
d
ing mi
cro
p
rocesso
r
-based physi
ologi
cal si
gn
al monito
ring
and
re
co
rdi
ng
system f
o
r
ambulato
r
y
subje
c
ts
(Kao,
199
5) [4] De
velopment
of
a Porta
b
le E
C
G li
nux-Ba
s
ed M
e
a
s
urem
ent
and
Monito
ri
ng System
(Without
Hsu,
201
1) [5],
Rese
arch of
p
o
rtable
ECG Monitori
ng Device
(Gen
g hu
ang
Yang, 201
2) [6], Desig
n
of the in
tellig
ent simpl
e
Electro
c
a
r
di
ograph (S
un, 20
12
)
[7], Microcontroller-based dat
a acquisition
system for
Heart Rate Vari
ability (HRV
)
measurement
(Ak
h
ter, 2012) [8
], Two
Low-Cos
t
Solutions
for
Cardiac
Mobile
Monitoring (R.I.
Gon
z
ale
z
, 2
008) [9],
No
vel compa
c
t
micro
strip
low pa
ss fi
lter with sha
r
p tran
sition
and
improve
d
sto
p
ban
d
(Ping
Jua
n
Zh
ang,2
015) [10], Fa
st Di
stan
ce P
r
otectio
n
fo
r
Proximal Fa
ul
t of
EHV Tra
n
smi
ssi
on Li
ne (Li
Zhen
kun,
20
13) [1
1], De
si
gning E
C
G
mini one
ch
a
nnel
with gra
phic
displ
a
y LCD (Triwiya
nto, 2014) [12].
The Pro
b
lem
from the re
sea
r
ch is
cu
rrent
ly still ha
s the di
sa
dvantage th
at the data
stora
g
e
sy
ste
m
an
d the
m
easure
m
ent
of only
one
chann
el
can
n
o
t be
u
s
edd
t
o
dig
ano
se
h
eart
dise
ase an
d
not a
sso
ciate
d
with
a pe
rson
al
comp
u
t
er. Besi
de
s
the pri
c
e
is
expen
sive, the
comp
one
nt
commercially available.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 328 –
333
329
T
h
e
pr
op
os
ed
so
lu
tio
n
to
s
o
lve
the
pr
ob
le
ms
foun
d in
previou
s
rese
arch. Re
searche
r
trying to d
e
velop a E
C
G
m
a
chi
ne that
can
store
mo
re data
and
in
cre
a
se the
m
easure
m
ent p
o
int
to 12 chan
ne
ls, espe
cially
in the field
of the
mea
s
u
r
eme
n
t of fro
n
tal and t
r
an
sverse
plane
by
utilizing a
p
p
r
opriate te
ch
n
o
logy whi
c
h
use
s
comp
onent
s of m
i
cro
c
o
n
troll
e
r ATmega, L
CD
Grap
hic 6
4
x1
2, RAM and SD Card whi
c
h can be obt
ained on the
market at low price
s
, so it can
be de
sig
ned
as E
C
G m
a
chine
s
a
r
e p
o
rtable an
d ine
x
pensive, a
n
d
ca
n
conn
ect with a p
e
rso
nal
comp
uter by reco
rdin
g the sign
als of he
art whi
c
h do
e
s
not differ wi
th sophi
sticated equi
pment
.
2. The Purpo
sed of the d
esign of ECG machne b
ased on Micr
ocontroller ATmega
The p
u
rpo
s
e
of re
sea
r
ch t
o
devel
op a
syst
em of
E
C
G equi
pme
n
t
that
can st
ore more
data and in
crease the mea
s
ureme
n
t poi
nt to 12
chan
nels, utilizi
ng
approp
riate tech
nolo
g
y.
2.1. Rese
arc
h
Purpuses
Gene
ral
pu
rp
ose
:
De
sign
of ECG
ma
chine
usi
ng A
T
mega
mi
cro
c
ontrolle
r te
chnolo
g
y. Spe
c
ial
purp
o
se are :
2.1.1.
Make a
se
rie
s
of ECG si
g
nals inte
rcept
s,
2.1.2.
Make a bi
o-a
m
plifier ci
rcuit,
2.1.3.
Cre
a
ting
a se
ries of
mi
crocontrolle
r ci
rcu
i
t to circuit
L
C
D graphi
c di
splay and the
Personal
Comp
uter (P
C),
2.1.4.
Make a d
e
si
g
n
softwa
r
e p
r
ogra
m
mea
s
u
r
ing he
art rat
e
(hea
rt rate
) and the ECG
sign
al,
2.1.5. Measure h
e
a
r
t rate
respon
se
and
the
a
m
p
litude
of th
e ECG
sign
al
6. Perfo
r
m
calibratio
n
to see he
art rate and ampli
t
ude of the ECG si
gnal o
n
grap
hic L
C
D and PC
2.2. Conce
p
tual Frame
w
o
r
k
The
con
c
ept
ual fram
ework de
scri
bes
how th
e rese
arch p
r
o
c
e
s
s run
s
in th
e form of a
block dia
g
ra
m. Which ca
n
be explaine
d
as in Figu
re
1.
Figure 1. Block
Diag
ram
Rese
arch
Signal of bioelectri
c
al ECG phantom o
r
t
he human
body has a
n
amplitude very small
tapped
by th
e ele
c
trode
s and
then
o
u
tput from
t
he el
ect
r
ode,
an i
nput
ci
rcuit b
u
ffer th
at
PHANTOM
ECG/ HUMAN
ELECTRO
D
E
SELEC
T
ION
BIOAMPLIFIER
ECG
ATMEGA
MICRO
CONTROLLER
DISPLAY
EC
G/PC
PRINTER
SPEAK
E
R
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
De
sign of Ele
c
tro
Cardiog
r
aph Machine
Based on AT
m
ega Micro
c
ontrolle
r
(Bam
bang G.I.)
330
function
s a
s
a se
rie
s
of buffer zo
ne, the output
of the circuit buffe
r will ente
r
a
s
an input blo
c
k
electrode sel
e
ctor (multipl
exer) whi
c
h serves
to
sel
e
ct the area o
f
measu
r
em
e
n
t or sele
ct the
desi
r
ed l
ead,
the output of
the multiplex
e
r blo
c
k a
s
the inp
u
t of the amplifie
r bl
ock Bio. So the
sign
als
can
be re
co
rde
d
better than t
he blo
ck i
s
al
so e
quip
p
e
d
with a seri
es of filters.
Bio
amplifier i
s
a
s
input for th
e output of the mi
cro
c
ont
rolle
r blo
ck.
ATmega Mi
croco
n
trolle
r bl
ock
serve
s
a
s
th
e sign
al processing of the
circui
t bio a
m
plifier to bo
th LCD
displ
a
y and Personal
Comp
uter.
3. Rese
arch
Metho
dolog
y
This type of
rese
arch i
s
re
sea
r
ch Qu
as
i
-
Experim
enta
l
, Variable: In
depe
ndent v
a
riabl
es
in this stu
d
y is th
e ECG
sig
nal
and
the de
pen
de
nt variabl
e i
s
ECG M
a
chine. [13], [
14]
Location
and
Time
Re
se
a
r
ch:
Lo
cation
of resear
ch
done
at
the
Dep
a
rtme
nt of
Electrome
d
ical
Enginee
ring
Polytechni
c
o
f
Ministry of Health
Sura
b
a
ya, Indon
esi
a
an
d research
duration fo
r 10
months,
starti
ng from Janu
ary to Octob
e
r
, 2015.Data pro
c
e
ssi
ng a
nd data an
alysis :
The
re
sults o
f
the me
asua
reme
nt of th
e he
art
rate f
r
om th
e d
e
si
gn of E
C
G
machi
ne
based on mi
crocontolle
r ATmega
will b
e
anal
yzed b
y
compa
r
ison
with stand
ard.
Then th
e re
sea
r
che
r
s
compa
r
ed th
e
re
sult
s of measurement
s
with
calcu
l
ations
manually, the
dista
n
ce b
e
twee
n
wave
s
R1 to
R2 to
note that th
e
sp
eed
of 2
5
mm / mi
n o
r
phantom, the
formula:
15
00
Hea
r
t Rate (
BPM) = ---
--
--
--
--
--
--
- BPM
Number
of Small Box
Example: Re
sea
r
che
r
s det
ermin
e
on ph
antom He
ar
t rate listed in the phanto
m
30, the distan
ce
from R1 to R2 are 30
smal
l boxes, then
Hea
r
t rate ca
n be cal
c
ul
ated:
1500
H
R
(BPM) =
--------------
=
50 BPM
30
4. Results a
nd Discu
ssi
on
4.1. Results
The
re
sult o
f
this
re
sea
r
ch i
s
th
e d
e
sig
n
of E
C
G ma
chin
e
based
on A
T
mega
microcontroll
er (Fig
ur 2
)
. While the result
s of
the measu
r
em
e
n
t of heart rate by using
the
stand
ard e
c
g
phantom a
nd
measuri
ng re
sults p
wave
can b
e
se
een
in Table 1- 3
)
.
Table 1. Re
sults of Mea
s
u
r
eme
n
t of He
art
Rate (BP
M
) with a sta
ndard pha
nto
m
30 BPM
Set media
Personal Compu
t
er (BPM)
LEAD I
II
III
IV
V
Lead
1,2,3,
30 30 30
30
30
Lead
AVR
29 30 30
30
30
Lead
AVL
30 30 29
29
30
Lead
AVF
30 30 30
30
29
Lead
V1,V2,V3,V
4,V5,V6
30 30 30
30
30
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 328 –
333
331
Table 2. Re
sults of Mea
s
u
r
eme
n
t of He
art
Rate (BP
M
) with a sta
ndard pha
nto
m
60 BPM
Set media
Personal Compu
t
er (BPM)
LEAD I
II
III
IV
V
Lead 1
60
60
59
59
60
Lead 2
60
60
59
60
60
Lead 3
59
60
60
60
60
Lead AVR
60
60
60
59
60
Lead AVL
59
60
59
60
60
Lead AVF
60
60
60
59
60
Lead V1,V2,V6
60
60
60
60
60
Lead V3
59
60
60
60
60
Lead V4
60
59
60
59
60
Lead V5
60
60
59
59
59
Table 3. The
R wave am
pli
t
ude mea
s
u
r
e
m
ent on an E
C
G Mo
dule
Set media
R
w
a
ve measure
m
ent.
ECG Stand
ard
LEAD I
II
III
IV
V
Standard
Lead 1
13
13
13,05
13
13
13
Lead
2
20 20 20
20
20
20
Lead
3
5 5 5
5
5
5
Lead
AVR
15 15 15
14,8
15
15
Lead
AVL
3 3 3
3
3
3
Lead AVF
11,8
12
12
12
12
12
Lead
V1
4 4 4
4
4
4
Lead
V2
8 8 8
9
8
8
Lead V3
17,8
18
18
18
18
18
Lead
V4
22 22 22
22
22
22
Lead
V5
22 22 22
22
22
22
Lead
V6
15 15 15
15
15,05
15
4.2. Discussi
on
The re
sult o
f
this rese
arch is the
d
e
sig
n
of ECG machi
ne
based on A
T
mega
microcontroll
er. How it works
as follo
ws: In
put
de
rived from
ph
antom
will b
e
tappe
d by
the
electrodes. T
he output of the lead
s will
be entered int
o
a seri
es of
Low pass filter (Figure 2).
Figure 2. LPF Circuit
By entering a
10K Ohm re
sista
n
ce valu
e and t
he val
ue of the cap
a
citor 1
0
pF then cut
off freque
ncy
of the lo
w p
a
s
s filter
circuit
is 3
12 K
H
z. I
t
serve
s
as a
high frequ
en
cy filter that wil
l
pass. Ea
ch in
terce
p
tion i
s
equip
ped
wit
h
Lo
w pa
ss fi
lter ci
rcuit is
comp
osed
of
12 filters. Out
put
of Low pass
filter will enter the
buffer circuit (Fi
gure 3).The buffer circuit consi
s
ts of 12 buffer
mounted o
n
e
a
ch le
ad.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
De
sign of Ele
c
tro
Cardiog
r
aph Machine
Based on AT
m
ega Micro
c
ontrolle
r
(Bam
bang G.I.)
332
Figure 3. Buffer Amplifier
This
circuit i
s
very be
nefi
c
ial b
e
cau
s
e
it can b
e
ret
r
ieved an
am
plifier with ve
ry high
impeda
nce input (10
-
10
12
Ohms) and
a very low impeda
nce o
u
tput (10
-3
-10
-1
Ohm). that is
approa
chin
g the ideal
con
d
i
tions.
The output of
the buffer
circuit
will be entere
d into
a
seri
es of im
ages multiplex
e
r. The
multiplexer
ci
rcuit functions as
a switch option.
Where from 12
lead
will come
out as output a
signal in accordance
with a
se
l
e
ctor
switch selection. While
the
output of
the multiplexer
will
enter Bio am
plifier
circuit
will go into t
he mi
crocontroller ATmega to
be processed and the
results are di
splaye
d o
n
a
co
mpute
r
o
r
on th
e L
CD graph. In
Mi
cro
c
o
n
troll
e
r
ATmega
will
be
pro
c
e
s
sed by
the application pro
g
ram Delphi [12].
The re
sult b
e
twee
n
the
measurement
data
an
d standa
rd
pha
nt
om will be compa
r
ed
usin
g
statisti
cal
cal
c
ul
atio
ns, the
n
: 1.
BPM: 30 BP
M ha
s
a %
error of 0,0
2
2
,222
and
Ua:
0,0003
247
48.
2. BPM: 60 B
P
M ha
s a
%
error of -0.00
3888
889
an
d
Ua: 0.0
005
50
637. By lo
oki
ng
at the results of the ab
ove cal
c
ulati
ons
, the de
sign of ECG
machi
ne ba
sed on ATme
ga
Microcontroll
er still withi
n
the lim
its permitted tolerance values, be
cause the limi
t
value tolerance
of 5%. In the
sam
e
way, then the
an
al
ysis
ca
n be
u
s
ed
to an
alyze wave si
gna
l R. Namely:
1.
The R sig
nal
lead 1 has a
n
% Error of 0.0007
69 an
d Ua: 0.01. 2. R signal lea
d
s 2 ha
s an %
error of 0.53
8462 a
nd
Ua
: 0. 3. R sign
al lead 3
h
a
s a % erro
r of
-0.615
38 an
d Ua: 0. 3. 4. R
sign
al lea
d
A
V
R ha
s
a %
error
150
76
9
and
Ua: 0.0
4
. 5. R si
gnal
lead
AVL ha
s a
% Error o
f
-
0.7692
3 an
d
Ua: 0. 6. T
h
e
sign
al
R lea
d
AVF ha
s a
%erro
r of
-0.
08% an
d Ua: 0.04. 7.
R si
gnal
lead V1 ha
s a
% erro
r of -0.
6923
1 and
Ua: 0. 8.
R sig
nal lead V2 h
a
s an% e
r
ror
of -0.386
15 a
nd
Ua: 0.0
2
. 9.
R
sign
al le
ad
V3 h
a
s a
%
Erro
r of
0, 3
8
4
61
5 a
n
d
Ua: 0. 1
0
. R si
gnal l
ead
V4
has
an % Error
of 0, 692
308
a
nd Ua: 0. R
1
1
.sinyal le
ad
s V5 ha
s a %
error
0.6923
0
8
% and
Ua:
0
.
R 1
2
.sinyal
le
ad V6
ha
s a
% Erro
r
of 0,
154
615
an
d
Ua: 0.0
1
. By l
ooki
ng
at the
value of% E
r
ror
and Uncertai
nty still below 5%, it is feasible to use E
C
G mo
dule
5. Conclusio
n
Re
sults
of ECG m
a
chine
based o
n
AT
mega mi
cro
c
ontrolle
r i
s
u
s
ed to
mea
s
ure
hea
rt
rate, as
havi
ng %
error
of 0.150769% level of
uncertainty (Ua) m
o
st
0.04, still bel
ow
the
stand
ard
5%.
The
de
sig
n
o
f
each E
C
G
R
wave
ap
p
e
a
rs to
0.002
6
2888
9% e
rro
r and
un
ce
rtai
nty
(Ua
)
0.0
006
0
5608,
still be
low the
stan
dard
5%
, so
the de
sign
of ECG ma
chine b
a
e
s
d
on
ATmega microco
n
trolle
r feasibl
e
to use
.
The re
sult of the design
of microcont
rolle
r ATmeg
a
prog
ram li
sti
ngs
ca
n be
use
d
tra
n
sf
orm a
nd
run
prog
ram
s
b
a
se
d ECG
module AT
m
ega
microcontroll
er with a pull to see the nu
mber
of hea
rtbeats, a bee
p
sound eve
r
y wave R an
d the
ECG
sign
al. The
results
of this E
C
G d
e
s
ign
ca
n b
e
d
i
splaye
d on
the g
r
ap
hical
LCD, PC, p
r
i
n
ted
throug
h a co
mputer a
nd can be sto
r
ed i
n
the comp
uter.
Referen
ces
[1]
Carr Jos eph.
Introducti
on to
Bio
m
e
d
ica
l
Eq
uip
m
ent T
e
chn
o
lo
gy
. Ne
w
Jer
s
y
:
Prentic
e Ha
ll. 199
8.
[2]
Gabrie
l JF.
F
i
si
ka Kedokter
a
n
.
Jakarta: EGC.199
5.
[3]
Khan
dp
ur.
Bio
m
e
d
ic
al Instru
me
ntatio
n
T
e
chno
logy a
nd
Appl
icatio
ns
. Unite
d
State of America:
McGra
w
H
ill. 2
005.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 328 –
333
333
[4]
Kao et
a
l
.
Micr
oproc
essor
ba
sed
physi
ol
ogi
cal si
gn
al
mon
i
toring
an
d r
e
co
rdin
g syte
m
f
o
r a
m
b
u
lato
r
y
subj
ects
. Chin
a: Medica
l an
d Biol
ogic
a
l En
gi
neer
ing & C
o
mputin
g. 199
5.
[5]
T
an-Hsu T
an. Devel
opm
ent o
f
a Portab
le
Li
nu
x-
Bas
ed E
C
G Measurem
e
n
t an
d Mo
nitori
ng S
y
stem
.
Jo
u
r
na
l
o
f
Me
di
ca
l
System
s
. 2
011; 35(
4): 559
-569.
[6]
Gengh
ua
ng Y
ang.
Res
earc
h
of
porta
ble
ECG Mo
nito
ring
Dev
i
ce
.
Lecture Notes in Electrical
Engi
neer
in
g. 2012; 12
1: 213-
220.
[7]
Jie Su
n.
Des
i
gn
of th
e Int
e
lli
ge
nt Si
mp
l
e
Electroc
ard
i
ogra
ph.
Adv
a
nces i
n
i
n
tell
i
gent
and s
o
ft
computi
ng. 20
12; 129: 1
57-1
62.
[8]
Nazn
een Ak
hter, Jinan F
a
d
h
il Ma
hdi, Ga
nesh R M
anz
a. Microcontro
ller b
a
sed
dat
a acqu
isiti
o
n
s
y
stem for H
e
art Rate Var
i
a
b
ilit
y (H
RV) m
easur
ement.
In
ternatio
nal J
o
u
r
nal
of
Appli
e
d
Scienc
e a
n
d
Engi
neer
in
g R
e
searc
h
. 201
2; 1(4).
[9]
RI Gonzal
ez.
T
w
o Low
-Cost Soluti
ons for
Cariac M
o
b
ile
Monitori
ng
. W
o
rld C
o
n
g
ress
on Me
dica
l
Ph
y
s
ics an
d Bi
omed
ical En
gi
neer
ing. Mu
nic
h
. 2009.
[10]
Ping J
u
a
n
Z
h
a
ng. N
o
vel
com
pact micro
stri
p lo
w
p
a
ss filte
r
w
i
th s
harp
transiti
on
an
d i
m
prove
d
st
o
p
ban
d.
Te
l
k
om
ni
ka
i
e
a
s
Jo
u
r
nal
. 2015; 1
3
(1): 85-9
0
.
[11]
Li Z
h
enku
n
, Ji
Hui, F
u
Yan
g
.
F
a
st Distanc
e
Protec
tion
for
Proximal
F
a
u
l
t
of EHV T
r
ans
mission
L
i
ne.
T
e
lko
m
nik
a
Ind
ones
ia ie
as Jo
urna
l
. 201
3; 11
(2): 615-6
22.
[12]
Triw
iy
a
n
t
o
. Per
anca
n
g
an EC
G mini sat
u
ch
ane
l de
nga
n ta
mp
ila
n grafik L
C
D
, Surab
a
y
a,
2014.
[13]
Sugi
yo
no.
Met
ode Pe
ne
litia
n Kuantitat
if Ku
al
itatif dan R & D
, Bandun
g: AL
F
ABET
A
. 2008.
[14]
Ka
ta
rzy
n
a C
i
esl
a
k-Bl
in
o
w
ska.
Practical
Bi
o
m
e
d
ic
al S
i
g
nal
Ana
l
ysis
usi
n
g MAT
L
AB
, Spanis: Press.
201
0.
Evaluation Warning : The document was created with Spire.PDF for Python.