TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 410 ~ 41
7
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.709
7
410
Re
cei
v
ed
No
vem
ber 2
8
, 2014; Re
vi
sed
Jan
uar
y 3, 20
15; Accepted
Jan
uary 20, 2
014
Modeling and Controlling of Standalone PMSG WECS
for Grid Compatibility at Varying Wind Speeds
Shilpa Mishra*
1
, S Chatterji
2
,
Shi
m
i S
.
L.
3
,
Sandeep
Shukla
4
1
Instrumentation and
Control, NITTTR
Chandigar
h India
2,3
Dept. of Electrical Eng
i
ne
eri
ng, NIT
T
T
R Chand
igar
h Indi
a
4
Dept. of Electrical En
gin
eeri
n
g, RG
IPT
,
Rae
bare
li Indi
a
*Corrres
p
onding author, e-ma
il: er.shilpa2k8@gmail.com
A
b
st
r
a
ct
W
i
nd e
nergy
i
s
one
of the
most av
ail
a
b
l
e
and
expl
oita
bl
e forms
of ren
e
w
able
en
ergy
. Variab
le
spee
d PMSG
base
d
W
i
nd E
nergy C
onvers
i
on Syste
m
(W
ECS) offers many adv
anta
g
e
s
comp
are
d
to the
fixed sp
ee
d sq
uirrel
cag
e
i
n
d
u
ction
ge
nerat
ors such
as i
m
prove
d
stator
output
oper
atio
n at b
e
tter po
w
e
r
factor, no mai
n
tena
nce cost
for gear box
(as it is di
rect-
d
rive
n) reducti
on in w
e
i
ght a
nd loss
es, hig
h
e
r
efficiency a
nd
abil
i
ty to run at
low
speeds. T
he el
i
m
in
atio
n of the gear
bo
x and
br
ushes
can en
ha
nce t
h
e
efficiency of
w
i
nd
turb
ine by 10%.
In
this p
aper a
Per
m
a
n
ent Mag
net Sy
nchro
nous G
e
nerator (PMSG
)
is
mo
de
led w
h
os
e stator is
co
n
nected to t
he
constant si
ng
le
phas
e
lo
ad (
i
n pl
ace of
grid
) throug
h AC/
DC
thyristors base
d
rectifier foll
o
w
ed by capacit
or (dc-
link) a
n
d
DC/DC conv
erter control. O
v
erall
arran
g
e
m
en
t
provi
des c
onst
ant o
u
tput to
conn
ected
lo
a
d
if
ap
pli
ed w
i
th pr
oper
co
n
t
rollin
g tec
h
n
i
q
ues. H
enc
e th
is
prop
osed w
i
nd
gener
ation sy
stem des
ig
n can be exte
nde
d
for grid con
nectio
n
also vi
a DC/AC inver
t
e
r
control. Res
u
lt
s are simul
a
ted
and ve
rifi
ed i
n
MAT
L
AB/Simul
i
nk pl
atform.
Ke
y
w
ords
:
W
E
CS, variab
le
spee
d PMSG
,
AC/DC rectifier
,
converter con
t
rol
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
ts reser
ve
d
.
1. Introduc
tion
It is importan
t
to find an alternative form of energy
before the
world’
s fossil fuels a
r
e
deplete
d
as it is predi
cted
that oil and gas re
se
rves
will be deplet
ed by 2032 [1]. Wind ene
r
gy
has be
en the
subje
c
t of much recent re
sea
r
ch
and d
e
velopme
n
t. The only neg
ative point tha
t
degrade
s the
perform
an
ce
of Wind Ene
r
gy Conve
r
si
on System (WECS
)
in terms of maximum
utilization
of available power is
high vari
ation in
wind-velocity (r
anging from
3 m/
s to 15
m/s and
above). Now a day’s win
d
system o
p
e
ration i
s
wi
dely being
worked out
so
as to extra
c
t
maximum a
c
tive powe
r
at
all po
ssi
ble
wind
sp
eed
s with lea
s
t d
e
trimental
effects
on
overall
perfo
rman
ce.
In a fixed sp
eed
wind tu
rb
ine sy
stem,
the ge
nerator
rotates at an
almost
con
s
t
ant
spe
ed for whi
c
h it is de
sign
ed reg
a
rdle
ss of variation in wind
spe
e
d
.
Figure1. Co
ntribution of Dif
f
erent Co
untri
es to Total In
stalled
Wind
Powe
r Glob
al
ly
China
26%
USA
34%
Re
st
of
world
16%
Po
r
t
ugal
4%
Germ
an
y
7%
F
r
ance
4%
Ital
y
1%
Sp
ain
1%
Indi
a
7%
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Controlli
ng o
f
Standalone
PMSG WECS for Grid Co
m
patibility… (Shilpa Mishra
)
411
As a re
sult, the turbi
ne wil
l
be the mo
st e
fficient in e
x
tracting the
maximum po
wer from
the win
d
for o
n
ly one pa
rticular
wind
sp
e
ed an
d wa
ste
d
sig
n
ificant a
m
ount of en
e
r
gy [2]. Also
as
turbine
is forced
to o
pera
t
e at con
s
tan
t
spe
ed,
it n
e
ce
ssary fo
r
the turbi
ne t
o
be
extrem
ely
robu
st to with
stand a
signifi
cant amo
unt
of mech
a
n
ica
l
stre
ss d
ue to the wind
sp
eed fluctu
atio
ns
On the other
hand
with variable speed
wind turbin
e sy
stem
s the rot
o
r of the gen
erato
r
is allo
wed
to rotate freel
y. Thus, it is possibl
e to contro
l the rotor speed
by the m
ean
s of
power ele
c
tro
n
ics
to maintain t
he optimum
tip spee
d ratio at all times un
der va
rying win
d
con
d
itions. Seve
ral
different
confi
guratio
ns are
re
sea
r
ched
and d
e
ve
lop
e
d
like
fixed speed
syste
m
with a S
quirrel
Cag
e
Indu
ction Gen
e
rator (SCIG), vari
able s
pee
d system with P
e
rma
nent Ma
gnet Synch
r
o
nou
s
Gene
rato
r (P
MSG) an
d Doubly Fed Ind
u
ction G
ene
rator (DFIG) t
o
improve the
efficiency While
recent
re
sea
r
ch
h
a
s con
s
ide
r
ed
la
rge
r
scale
de
si
gns, th
e
eco
nomics of la
rge
volume
s of
perm
ane
nt m
agnet
materi
al ha
s limited
their p
r
a
c
ti
cal
ap
plication
.
But
no
w a day’s as co
st
of
magnet ha
s fallen do
wn in
global market signifi
ca
ntly, PMSG WT has be
come
most prefe
r
red
system for
wind ge
ne
rat
i
on. The pri
m
ary
advant
age of Permanent Mag
net Synchro
nou
s
Gene
rato
rs
(PMSG) is th
at they do not requi
re
a
n
y
external excitation curre
n
t. A major cost
benefit in
usi
ng the PMS
G
is th
e fact
that a
thyri
s
tor
brid
ge
rectifier m
a
y
be u
s
ed
at the
gene
rato
r terminals
sin
c
e
no external e
x
citation cu
rrent is nee
ded
. Further, the
elimination of
the
gear b
o
x an
d bru
s
he
s
ca
n increa
se th
e efficien
cy of wind turbi
ne by 10% [2-4]. He
nce wind
turbine
s
ge
n
e
rato
rs b
a
se
d on Perma
nent Magn
et Synchro
nou
s Gen
e
rato
rs (PMSG) wit
hout
gear b
o
x is m
o
re u
s
eful ov
er ele
c
tri
c
ally excited ma
chi
nes [3-4].
Main o
b
je
ctive of thi
s
research i
s
to
model
and
control th
e
standal
one PM
SG win
d
turbine
conn
ected
to RL l
oad at
different win
d
vel
o
citie
s
in
su
ch a
way to g
i
ve con
s
tant
and
smooth
outp
u
t at desired
voltage to lo
ad. The si
mu
lation re
sult
s sho
w
that giv
en PMSG wi
nd
turbine
de
sig
n
can
be extende
d for g
r
i
d
con
n
e
c
ti
on.
Output po
wer an
d voltag
e of WECS g
e
ts
effectively sm
oothed u
s
in
g prop
osed met
hod.
Pitch angle control is al
so
provide
d
in pr
opo
sed mo
de
l of WECS for adjusting the
powe
r
output of the wind turbine
whe
n
win
d
sp
eed is a
bove
rated spee
d
2. Modelling of PMSG Wi
nd Turbine in MATL
AB/S
I
MULINK
This se
ction
will
p
r
e
s
ent mathemati
c
al
model
of PM
SG ba
sed
on
WECS. It
co
nsi
s
ts
of
wind e
nergy conve
r
si
on, wind turb
in
e, drive train, PMSG and converter a
s
sho
w
in Figure 2.
Figure 2. WE
CS Schem
atic Dia
g
ra
m Based o
n
PMSG
The case win
d
turbin
e use
d
for this p
r
oj
ect is a di
re
ct
driven vari
ab
le-spee
d win
d
turbin
e
with PMSG.
2.1. Wind Tu
rbine Aer
o
d
y
namic Char
acte
r
istic
Power in air flow,
3
2
1
Av
P
air
(1)
The ae
rodyn
a
mic efficie
n
c
y of a wind
turbi
ne is d
e
scrib
ed by the po
wer
co
efficient
function, Cp (
β
,
λ
) given by
,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 410 – 4
1
7
412
P
P
C
w
m
p
(2)
Wind
turbi
n
e
is
applie
d
to co
nvert t
he
wind
En
ergy to
me
chani
cal to
rqu
e
. The
mech
ani
cal t
o
rqu
e
of
turbi
ne
can
be
cal
c
ulate
d
from
mech
ani
cal
p
o
we
r at
the t
u
rbin
e extract
ed
from
wind
p
o
we
r. Thi
s
f
a
ct of th
e
wi
nd
spe
ed
after the
turbin
e isn’t zero.
Then, the
po
wer
coeffici
ent of
the turbin
e (Cp) i
s
u
s
ed. Th
e
po
wer
co
efficient i
s
fun
c
tion of pitch an
gle (
β
) an
d tip
spe
ed (
λ
), pitch a
ngle i
s
a
ngle of turbin
e blad
e wh
ereas tip
sp
eed
is the ratio of
rotational
sp
eed
and
win
d
sp
eed. T
he
po
wer
coefficie
n
t maximum
of (Cp) is
kn
own
a
s
the
li
mit of Betz.
The
power coeffici
ent is given b
y
[11],
1
035
.
0
08
.
0
1
1
3
i
(3)
The Cp
-
λ
ch
ara
c
teri
stics, for
different values of
the
pitch angl
e
β
, are ill
ust
r
ated in
Figure 3. The
powe
r
co
efficient is give
n by,
P
P
C
w
m
p
(4)
V
C
P
wind
p
m
S
3
2
.
,
(5)
Figure 3. Win
d
Turbi
ne MA
TLAB Model
The me
cha
n
i
c
al torq
ue is
given by,
P
T
m
m
(6)
Whe
r
e, Cp
= Performa
nce coeffici
ent of the turbine
,
ρ
= Air density, S = Turbine swept a
r
e,
Vwind =
Win
d
spe
ed,
λ
=
Tip Speed
Ra
tio,
β
= Blade Pitch Angle.
2.2. Modelling of PMSG
The voltage e
quation
s
of PMSG as sho
w
n in Figu
re
5 are given b
y
[12]:
i
L
L
i
L
v
L
i
q
r
d
q
d
d
d
d
d
p
R
dt
d
1
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Controlli
ng o
f
Standalone
PMSG WECS for Grid Co
m
patibility… (Shilpa Mishra
)
413
L
i
L
L
i
L
v
L
i
q
r
d
r
q
d
q
q
q
q
q
p
R
dt
d
1
(8)
The ele
c
trom
agneti
c
torqu
e
equatio
n is
given by:
i
i
L
L
T
q
d
q
d
iq
e
75
.
0
(9)
Whe
r
e, Lq =
q axis indu
ct
ance, L
d
= d Axis-ind
ucta
n
c
e, R =
Re
sist
ance of the stator windi
n
g
s
, i
q
=
q a
x
is cu
rr
en
t i
d
= d
axis
curre
n
t, v
q
=
q axis voltage
, v
d
= d axis v
o
ltage
ω
= Angular velocit
y
of
the roto
r,
λ
= Amplitude of
flux indu
ced,
p =
Nu
mbe
r
of pole
pairs.
The dyn
a
mi
c eq
uation
s a
r
e
given by:
T
T
m
e
r
r
F
J
dt
d
1
(10)
r
dt
d
(11)
Where, J
=
Inertia of rotor; F =
Fric
tion
of rotor;
θ
=
Rotor angle.
(a)
(b)
Figure 4. Modeling of PM
SG using M
a
thematical
Eq
uation
s
for (a
) Electromag
netic To
rqu
e
, (b)
Rotor Sp
eed
and Rotor An
gle
2.4. Mathem
atical Inv
e
rs
e Park and Clarke Tran
s
forms
A practi
cal g
enerator p
r
o
duces 3 p
h
a
s
e AC
po
we
r. For this re
a
s
on, the inve
rse Pa
rk
and
Cla
r
ke transfo
rm
s a
r
e
intro
d
u
c
ed
to imple
m
ent
the 3
pha
se
AC o
u
tput fro
m
the
gen
era
t
or
model. As Fi
gure
6
sho
w
s, the tran
sform fr
om the
stator axis
referen
c
e
fra
m
e (
α
,
β
) to the
rotating
refe
rence fra
m
e
(d-q
) i
s
calle
d the P
a
rk t
r
an
sform
(Te
x
as In
strum
e
nts 1
9
97
). T
h
e
Clarke tran
sform is the t
r
an
sform
a
tion
of
the 3-phase refe
ren
c
e fram
e to the 2- pha
se
orthog
onal
stator axis (
αβ
) [12].
Figure 5. Inverse Pa
rk Tra
n
s
form
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 410 – 4
1
7
414
As of Figure
6 illustration, assumes the
αβ
frame h
a
s an angle
θ
Fi
eld with the d
q
frame,
the inverse Park tran
sform
(dq -
αβ
) whi
c
h can be ex
pre
s
sed a
s
follows:
q
d
field
field
field
field
sin
sin
sin
cos
(12)
The mathem
atical inverse
Clarke
tran
sform is give
n as follo
ws:
2
3
2
1
2
3
2
1
0
1
V
V
V
c
b
a
(13)
3. Contr
o
lling of PMSG Wind Turbin
e
PMSG
win
d
turbine
is provided with Powe
r
Ele
c
tronic Co
ntrol wheth
e
r con
necte
d
to
grid, or o
pera
t
ed for battery chargi
ng through lo
ad.
The win
d
re
source is inte
rmittent, which
re
sult
s in the unstable PM
SG output. Howeve
r,
in orde
r for t
he syste
m
to reliably conn
ect to t
he po
wer
grid o
r
to
the load for
battery ch
arg
i
ng
purp
o
se, the
dc bu
s lin
k is req
u
ire
d
to be
stabl
e at con
s
ta
nt voltage. Based
on th
ese
requi
rem
ents,
the ac/d
c re
ctifie
r control
descri
bed i
n
this sectio
n. The amplitu
de
and fre
que
ncy
of the voltage
output from
a PMSG vary
for a
va
ria
b
l
e
speed
wi
nd
turbin
e
when
the wi
nd
sp
e
ed
cha
nge
s fro
m
time to ti
me, whil
e in
this
circum
st
ance the
gen
erato
r
po
we
r output
sho
u
l
d
be
stabili
zed. Th
e ac/d
c conv
erter
circuits
can b
e
cla
ssi
fied as un
con
t
rolled re
ctifie
r and controll
ed
rec
t
ifier c
i
rc
uits
[9-10].
Figure 6. Thyristo
r Re
ctifie
r Cont
rol Syst
em with Pulse Gene
rato
r
In Figure 6, controlle
r provides the de
si
r
ed voltage a
c
ro
ss co
nsta
nt RL load u
s
ing a 6
pulse ge
ne
ra
tor which u
s
es
RMS g
e
n
e
rated
voltag
e acro
ss
sta
t
or of PMSG
as
a
control
para
m
eter. S
ee Figu
re 8 al
so.
Figure 7. Pitch Angle Co
ntrol Model in M
A
TLAB with PI Control
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Controlli
ng o
f
Standalone
PMSG WECS for Grid Co
m
patibility… (Shilpa Mishra
)
415
From Fi
gure
7, when th
e wind tu
rbin
e rotor
spe
ed
wr1 i
s
lo
we
r than the rate
d roto
r
spe
ed
of wi
n
d
turbi
ne, the
error si
gnal
i
s
n
egativ
e an
d
pitch
a
ngle is kept at
its optimum
val
u
e.
Whe
n
the ro
tor sp
eed ex
cee
d
s the
ra
ted (he
r
e
for twice the rated roto
r speed
controll
er
actuate
s
), the
erro
r sig
nal i
s
po
sitive and
the pitc
h ang
le cha
nge
s to
a new value,
at a finite rate,
thereby
re
du
cing
[the effe
ctive
area of the
bla
de re
sulting
in
the
redu
ced
po
we
r outp
u
t. The
PI
controlle
r inp
u
ts are in p
e
r-unit.
4. Simulation Model
Figure 8
illu
strates the
co
mplete
simul
a
tion m
odel
o
f
the PMSG
wind
turbi
n
e
gene
rato
r
con
n
e
c
ted to con
s
tant RL load creat
ed i
n
MATLAB/
Simulink
with th
yristor b
a
sed
rectifie
r co
ntrol
and pitch co
n
t
rol unde
r the
conditio
n
of rated win
d
sp
eed an
d rate
d rotational
speed.
Figure 8. PMSG Based
WECS Simulation Model in
MATLAB
It consi
s
ts of
wind sp
eed
, wind turbin
e, dr
ive train
,
PMSG, Pitch an
gle co
ntrolle
r,
rectifie
r, dc l
i
nk
cap
a
cito
r and
co
nsta
nt
RL l
oad.
Figure 8 P
M
SG WT
Simulation M
o
del
Con
n
e
c
ted to RL Load Sh
owin
g Pitch Control and
Powe
r Electronic Conve
r
ter Co
ntrol. At the
gene
rato
r sid
e
, the re
ctifier circuit con
s
ists of 6 pa
ssiv
e
thyristo
rs. F
o
r this type of
conve
r
ter, th
e
curre
n
t from the wind turbi
ne gene
rato
r can only flow
towards the l
oad, i.e. one way power flo
w
s
from the gen
erato
r
to the load/gri
d
[10].
5. Simulation Resul
t
s an
d Analy
s
is
Propo
se
d
si
mulation
mo
del h
a
s PM
SG wi
nd tu
rbine
with
rat
ed
cap
a
city
of 8.5KW.
Output of
win
d
turbine
is conne
cted
to
RL l
oad
vi
a th
yristor rectifie
r, IGBT b
o
o
s
t co
nverte
r
circuit
and
dc lin
k capa
citor
de
si
gned
such th
at it wo
uld
give co
nsta
nt
output voltag
e a
c
ro
ss lo
a
d
at
325 Volts. Propo
sed mo
de
l is simulate
d
for con
s
t
ant
wind
spe
ed i
nput of 12m/
s
whi
c
h i
s
rat
e
d
wind
spe
ed for win
d
turbi
n
e system u
n
d
e
r co
nsi
d
e
r
ati
on.
Here obj
ectiv
e
is to a
c
hiev
e co
nsta
nt d
c
lin
k outp
u
t voltage at 31
5 volts (d
esi
r
ed) a
nd
better po
we
r
smoothi
ng
with lea
s
t fluctu
ations
acro
ss
load in
su
ch
a way that it woul
d be flexi
b
le
to extend the
desi
gn for
grid co
nne
cted
PMSG
wind gene
ration sy
stem
havin
g con
s
tant
volt
age
and freq
uen
cy.
Figure 9. Win
d
Speed at 1
2
m/s (Rated
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 410 – 4
1
7
416
CASE 1 - At wind
speed
= 12 m/s
(rated) as show
n i
n
Figure 10 below.
Here si
mulation
results a
r
e sh
own for o
u
tpu
t
voltage acro
ss lo
ad with p
r
opo
se
d mod
e
l.
Figure 10. Voltage Output
across
RL Lo
ad at Con
s
ta
nt Wind Spee
d
It is observe
d from above
result
s, that magni
tud
e
of voltage outp
u
t is con
s
tant
at 310
volts with alm
o
st no fluctu
a
t
ions.
CASE
2 -
At varying wind speed (multi
stepped
si
gnal
wave) as
shown below f
r
om12m/
s
to 7m/s.
Due
to ch
ang
e i
n
win
d
spe
e
d
from
12m/
s
to 7
m
/s
su
ddenly
(ste
p-cha
nge
) volt
age
output acro
ss RL load
cha
nge
s from 31
5 volts to
aro
und 30
0 volts su
dde
nly at 3 se
cond
an
d
then stabili
ze
s at aro
und 3
00 volts.
Figure 11. Wi
nd Speed
Ch
angin
g
at 3 Seco
nd
Fi
gure 12. Ou
tput Voltage across RL Lo
ad at
Varying Wi
nd
Speed
6. Simulation Data
PMSG wind g
enerator p
o
wer ratin
g
is ta
ken
a
s
8.5K
W at rated
wi
nd sp
eed of 1
2
m/s.
Table 1. Sho
w
ing Simul
a
tion Data
Stator direct a
x
is Inductance
(Ld)
0.0082Mh
Stator quad
ratu
re axis
Inductance (Lq)
0.0082mH
Cout
1
microfarad
Load resistance, R
10 ohm
Load Inductance,
L
50mH
Maximum outpu
t
po
w
e
r
po
w
e
r
0.8 pu of Rat
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Controlli
ng o
f
Standalone
PMSG WECS for Grid Co
m
patibility… (Shilpa Mishra
)
417
7. Conclusio
n
This
pap
er p
r
ese
n
ts a
pe
rforma
nce of v
a
riabl
e
spee
d
PMSG ba
se
d win
d
turbin
e wh
en
wind e
nergy system is
conne
ct
ed to
RL loa
d
via boo
st conve
r
ter and dio
d
e
rectifie
r. For
con
s
tant a
s
well a
s
ch
an
ging wi
nd sp
eed it maintai
n
s the setting
voltage to almost con
s
tan
t
a
t
310V, whi
c
h is very near t
o
desi
r
ed voltage acro
ss
RL load. Also output is sm
o
o
th having le
ast
amount of flu
c
tuation
s
whi
c
h is
highly
need
ed for
g
r
id compatibil
ity. Hence thi
s
arran
gem
e
n
t
provide
s
win
d
turbi
ne g
e
n
e
rato
r control
and th
e DC
bus volta
ge
stabilizatio
n. It is thu
s
p
r
ov
ed
that the prop
ose
d
PMSG wind turbine
desi
gn c
an b
e
extended fo
r con
s
tant g
r
i
d
con
n
e
c
tion.
Referen
ces
[1]
SM Muy
e
en, Junji T
a
mura Toshiaki Mur
a
ta.
Stability A
u
g
m
e
n
tatio
n
of
Grid-con
necte
d Wind Far
m
.
Book, Sprin
ger
-USA. 2009.
[2] Malcom
Barnes.
Practical
V
a
ria
b
le
Sp
eed
Drives
a
n
d
P
o
w
e
r Electro
n
i
c
s
. Book, N
e
w
n
ess
Press,
Elsevi
er, Oxfor
d
, Burlin
gton. 2
003.
[3] Boldea
I.
Variable Speed Generators.
Han
d
b
ook, T
a
ylor an
d F
r
ancis Grou
p LLC. 20
06.
[4]
Ackerman
n
T
h
omas. W
i
nd Po
w
e
r in Po
w
e
r S
y
stems, 2n
d Editio
n. Boo
k
, John W
ile
y and Sons,
Engl
and. 2
012.
[5]
O Carlson, J H
y
l
a
n
der, K T
h
o
r
borg.
Survey
of Variab
le Sp
eed Oper
atio
n of W
i
nd T
u
rbin
es.
Europe
a
n
Unio
n W
i
nd En
erg
y
Co
nferen
ce, Goetebor
g, S
w
e
d
e
n
. 199
6
.
[6]
D Greni
er, LA
Dessa
int, Y
Bonn
assie
u
x
,
B Lep
iufl
e. Experime
n
tal
No
nlin
ear T
o
rqu
e
Contro
l of a
Perman
ent Ma
gnet S
y
nc
hro
n
ous Motor
Usi
ng Sa
lie
nc
y.
IEEE Transactions on Industrial Electronics
.
199
7; 44(5): 68
0-68
7.
[7]
Mei, B Pal. M
oda
l Ana
l
ysis
of Grid
-Con
ne
cted Do
ubl
y F
ed In
d
u
ctio
n Gener
ators.
IEEE Transaction
Energy C
onver
sion.
20
07; 22(
3): 728–
73
6.
[8]
R Pena, JC Cl
are, GM Asher.
Doubly fed i
nducti
on g
ener
ator usin
g bac
k-to-back PW
M converter
s
and its a
p
p
lic
ation to v
a
ria
b
le-s
pee
d w
i
n
d
-en
e
rgy g
e
n
e
r
ation
. IEEE Proceeding Electrical Po
w
e
r
Appl
icatio
ns. 1
996; 14
3(3).
[9]
SM Mu
y
e
en, R
i
on T
a
kahash
i
,
T
o
shiaki Mura
ta, Junji T
a
mura. A Variabl
e Spee
d W
i
nd T
u
rbin
e Contro
l
Strateg
y
to Me
et W
i
nd F
a
rm
Grid Co
de R
e
q
u
ireme
n
ts.
IEEE Transactions
on Power Sys
t
em
s
. 2
010
;
25(1): 33
1 – 34
0.
[10]
Miller
E Mul
j
a
d
i, DS Zi
nger.
A vari
abl
e s
pee
d
w
i
nd
tur
b
in
e p
o
w
e
r
co
ntrol.
IEEE Trans. Energy
Conv
ersio
n
. 19
97; 12: 18
1–1
8
7
.
[11]
Ekana
ya
ke JB,
Holds
w
o
r
th
L,
W
u
X, Jenk
ins
N. D
y
namic m
ode
lli
ng
of D
o
u
b
l
y
F
ed In
ducti
on g
ener
ato
r
w
i
nd tur
b
in
es.
IEEE Transaction on Power S
ystem
s
. 20
03; 18(2): 80
3-8
0
9
.
[12]
H Pol
i
n
der, F
F
Avan
der
Pij
l
,
P T
a
vner. Com
paris
on
of Dir
e
c
t- Drive
an
d
Geared
Gen
e
rator C
once
p
ts
for W
i
nd T
u
rbines.
IEEE Transaction Energy
Convers
i
on
. 2
006; 21(
3): 543
–55
0.
Evaluation Warning : The document was created with Spire.PDF for Python.