TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 81
1
4
~ 811
9
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.68
93
8114
Re
cei
v
ed
Jul
y
4, 2014; Re
vised Septem
ber
29, 20
14;
Accept
ed O
c
tober 17, 20
1
4
A Design and Analysis of Voltage Source Inver
ters for
Renewable Energy Applications
M. Murali*
1
, Arulmozhi
y
a
l
2
, P Sundara
moorth
y
3
1,3
Department of Electrical a
n
d
Electron
ics, Sona C
o
ll
eg
e of
T
e
chnol
og
y,
Salem,
T
a
milnadu-
635
00
1, India
2
Departme
n
t of Electrical En
gi
neer
ing, Peri
ya
r Mani
amma
i U
n
iversit
y
, Sal
e
m,
T
a
milnad
u-
635
00
1, India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: muralimu
n
ra
j
@
gmai
l.com
A
b
st
r
a
ct
T
he pa
per pr
o
poses
desi
gn
o
f
voltage s
ourc
e
inv
e
rt
ers for r
enew
ab
le
ener
gy ap
plic
atio
ns
such as
HEV. T
he w
i
nd and sol
a
r are
grow
ing e
ner
g
y
sources to
w
o
rld this so
urce
s to be convert
ed alter
nati
ng
one
for grid interfac
ing. Conv
entional
invert
ers ar
e electr
onic thy
r
istor which
has som
e
drawbacks. To im
pr
ove
its efficiency
a
nd p
e
rfor
manc
e MOSF
ET
based i
n
vert
ers
usin
g contro
lle
rs has b
een
d
e
sig
ned
usi
ng
PIC
control
l
ers. In t
h
is
proj
ect the
hardw
are
d
e
tai
l
s of
thr
ee
ph
a
s
es, 50
H
z
,
60
W
,
180
degr
ee
con
ductio
n
mod
e
of VSI outp
u
t w
a
vefor
m
s u
n
d
e
r
vario
u
s l
oad
c
ond
itions
w
e
re
prese
n
ted
an
d
discuss
ed. T
h
i
s
pap
er w
ill
be
a
signific
ant cont
ributes for forthco
m
i
ng dev
el
op
me
nt of Hybrid El
ectric
Vehicl
e (HEV). In w
h
ich Volta
g
e
source i
n
verter
s is operati
on i
s
perfo
rmed i
n
Sing
le PIC mic
r
ocontro
ller.
Ke
y
w
ord:
voltage so
urce i
n
v
e
rters, MOSF
ET
, PIC micr
oco
n
troll
e
r, hybird
electric ve
hicl
e
s
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The glob
al desi
r
e to re
duce the vehicl
e emi
s
si
ons a
nd im
prove fuel e
c
on
omy
accele
rated t
he develo
p
m
ent of Hybrid
Electri
c
Vehi
cle (HEV). Th
e
technol
ogy a
d
vancement
s in
the are
a
of e
l
ectri
c
drive
systems, batte
ry tech
n
o
logi
es, fuel cells
and the inte
rnal co
mbu
s
ti
on
engin
e
(ICE)
resulted in hi
ghly efficient HEV.
Electri
c
vehi
cle
(EV) is
a road
vehi
cle
that
empl
oys a
mo
de
rn ele
c
tri
c
propul
sion
system. It p
r
ovides emi
ssi
on free
urb
a
n
road
tran
sp
ortation. T
he
EVs a
r
e
cla
s
sified i
n
to th
ree
types
s
u
c
h
as
Battery EV
(BEV), Fuel
Cell EV
(FCEV) and HE
V [1]. The
HEV eliminates
the
disadvantages of
both pure EV
(BEV) and
convent
ional vehicl
e. The F
C
EVs are
still under
developm
ent and
th
ey
a
r
e co
stlier also. The HEV
u
s
e
s
two o
r
m
o
re ki
nd
s of
en
ergy
sou
r
ce
s
to
prop
el the
wh
eels an
d on
e
sho
u
ld
be el
e
c
tri
c
al e
n
e
r
gy
. Energy
so
urce
ca
n b
e
ga
s, natu
r
al
ga
s,
battery, ultra cap
a
cito
r, fly
whe
e
l, sola
r panel, et
c. HEV is a vehicle whic
h utilizes the multipl
e
sou
r
ces of propul
sion [2]. Simply the HEV consi
s
ts
of an internal
combu
s
tion
engin
e
and a
n
electri
c
moto
r. The importa
nt advantage
s of t
he HEV
are optimi
z
e
d
ope
rating e
fficiency of ICE
and lon
g
drivi
ng ran
ge.
Re
ctifiers,
inverters, a
nd
d
c
/dc conve
r
te
rs
are u
s
e
d
i
n
HEV
s
[3]. T
he p
o
wer
ele
c
troni
cs
components
not only improve
the overall system reli
ability but also
reduce the
cost, size, etc. In
addition to
p
o
we
r el
ectro
n
ics, the te
chnolo
g
y of th
e ele
c
tri
c
mo
tor play
s a
major
rol
e
in
the
vehicle’
s dyn
a
mics a
nd t
he type
of
power
co
nve
r
ter fo
r
cont
rolling the
ve
hicle
ope
rati
ng
cha
r
a
c
teri
stics [4]. The tran
sisto
r
i
z
ed
inverter is used in th
e HEVs. Compa
r
ed to
the
thyristori
ze
d i
n
verter it h
a
s some
speci
a
l advantag
es
in the area of
size, wei
ght, co
st, efficien
cy
and co
mmuta
tion. The VSI provide
s
necessary po
we
r supply to electri
c
motor from the energ
y
stora
ge
syste
m
. The el
ect
r
ic moto
r o
r
traction
mo
tor provide
s
ele
c
tric
p
r
op
ulsi
o
n
in HEVs
[5
].
No
wad
a
ys M
O
SFET ba
se
d VSI is used
in HEVs. F
u
el cell ve
hicl
e
s
(F
CV)
use
hydrog
en a
s
f
uel
to produ
ce el
ectri
c
ity; therefor
e they are basi
c
ally e
m
issi
on fr
e
e
. When
conn
ected to ele
c
tric
power g
r
id
(V
2G), the F
C
V
can
provid
e
electr
i
c
ity for
emergen
cy p
o
we
r ba
ckup
durin
g a p
o
wer
outage
[6]. Due to
hydrog
en p
r
od
ucti
o
n
,
storage,
an
d the te
ch
nical limit
ation
s
of fuel
cell
s a
t
the
pre
s
ent time,
FCVs a
r
e n
o
t
available to the gene
ra
l p
ublic yet. HE
Vs are li
kely to domin
ate the
advan
ced
pro
pulsi
on i
n
co
ming yea
r
s.
Hybrid
Te
ch
n
o
logie
s
ca
n b
e
u
s
ed
for al
most
all
kind
s of
fuels a
nd e
n
g
i
nes [8]. Th
erefore, it is
not
a tr
an
sition t
e
ch
nolo
g
y. Figure
1 expl
ai
ns the
ro
ad m
ap
of hybrid tech
nologi
es an
d
curre
n
t status.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Desig
n
and
Analysi
s of Voltage Sou
r
ce In
vert
ers for Ren
e
wable
Energ
y
… (M. Murali)
8115
Figure 1. Roa
d
map of hybrid techn
o
logy
Single-pha
se
VSIs a
r
e
used p
r
ima
r
ily f
o
r l
o
w po
we
r ra
nge
ap
plications,
whil
e
thre
e-
pha
se VSIs
cover b
o
th me
dium an
d hig
h
po
wer
ra
ng
e appli
c
atio
n
s
. Figu
re 2
shows the
Three-
Phase Volta
g
e
Source Invert
er
Circuit Schem
atic [3].
Switche
s
in a
n
y of the three legs of the in
verter
cann
ot be swit
che
d
off simultan
eou
sly
due to thi
s
resultin
g in th
e voltage
s b
e
ing d
epe
nd
ent on th
e re
spe
c
tive line
curre
n
t's
pola
r
ity.
States 7 an
d
8 pro
d
u
c
e
zero A
C
line
voltages,
wh
i
c
h result in
AC line
curre
n
ts free
wh
eel
ing
throug
h eithe
r
the uppe
r or the lower compo
nent
s. Howeve
r, the line voltages for
state
s
1
throug
h 6 pro
duce an AC line voltage co
nsi
s
ting of t
he discrete val
ues of Vi, 0 or –Vi. For three-
pha
se SPWM
,
three mo
dul
ating si
gnal
s
that are
1
20
degree
s out
of pha
se
with
one a
nothe
r
are
use
d
in orde
r to generate
pha
se loa
d
voltage
s.
PWM is gen
erated with a
sin
g
le ca
rri
er
si
gnal,
the norm
a
lize
d
carrie
r freq
uen
cy, mf, ne
eds to be a
combinatio
n of three. That the magnitu
de
of
the pha
se voltages
same,
whi
c
h is out o
f
phase
with each other by
degre
e
s 1
2
0
.
The maximum
pha
se volta
g
e
am
plitude
i
n
the
linea
r
region
in
whi
c
h ma
le
ss th
an o
r
equ
al t
o
on
e, is
v
pha
se
=
v
i
/
2
. The ma
ximum obtai
n
able li
ne volt
age
amplitud
e is
V
ab1
= v
ab
•
√
3 /
2 w
h
ich
is
on
ly wa
y to
control the lo
ad voltage is
by chan
ging t
he input DC voltage to mini
mum level.
Figure 2. Three-Ph
ase Voltage Sour
ce I
n
verter
Circui
t Schematic
2. Fabricated
V
S
I
The fabri
c
ate
d
VSI is desi
gned
with PIC 167F
877A
controlle
r whi
c
h control
s
th
e seri
es
of opto-co
upl
er a
nd
sh
ow
informatio
n t
h
rou
gh
LC
D
the tran
si
stor IRFP 2
50
si
gnal
s i
s
ap
pli
e
d
throug
h
cont
roller’
s o
p
to-couple
r
a
c
ts a
s
solid
state
relay
contai
n
s
a
ph
otodio
de o
p
to-i
sola
tor
whi
c
h
drive
s
a po
we
r
swit
ch, u
s
u
a
lly a
compl
e
me
nta
r
y pai
r of MI
SFETs. Slotted o
p
tical
switch
contai
ns a so
urce of light and a se
nsor and optic
al
chann
el are in
open, allowi
ng modul
atio
n of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8114 – 81
19
8116
light by external obj
ect
s
o
b
stru
ct
ing
the
path of lig
ht or reflectin
g
li
ght into the
sensor. Th
e P
I
C
micro cont
roll
er ha
s
b
een
very succe
s
sful in 8-
bit microcontrollers. The main ad
vantage is th
at
Microchip Te
chn
o
logy ha
s continu
o
u
s
ly upgr
ade
d the device
architecture an
d
added
nee
d
ed
perip
he
rals to the mi
cro
c
ontrolle
r to
suit cu
stome
r
s'
req
u
ire
m
e
n
ts. It ha
s t
he featu
r
e
s
l
i
ke
internal A
D
C and midra
n
g
e
architectu
res. The
M
C
T
2
E has featu
r
es 5
300 V
R
MS isolation
test
voltage and I
nput-o
utput couplin
g ca
pa
citan
c
e <
0.5
pF. In Figure 3 sho
w
s the experim
ent
al
setup
of VSI. It consi
s
ts
of 6V, 10Ah Lead A
c
id
B
a
ttery unit p
o
we
r ci
rcuit (IRFP250 Po
wer
MOSFETs),
PIC 16F8
77A
microcontroll
er, MCT2
E o
p
to-coupl
ers,
DC volta
ge
regulato
r
, 20
0
W
,
250V b
a
lan
c
ed three
ph
ase
lamp
lo
ad. The
ph
ase
voltage
wavefo
rm
s, pha
se
cu
rrent
waveforms, li
ne voltage waveform
s an
d line cu
rre
nt waveform
s unde
r variou
s load conditi
ons
are
ca
pture
d
with the
hel
p of digital
st
orag
e o
s
cillo
scope. T
he
magnitud
e
of
the firin
g
pu
lse
s
immediately
after PIC 16F
877A micro
c
ontrolle
r, t
he
magnitud
e
of
the firing pul
se
s after M
C
T2E
Opto-cou
ple
r
, magnitude of
the phase vo
ltages a
nd lin
e voltages a
r
e measured.
Figure 3. Pro
posed Syste
m
diagram
3.
Experiment Resul
t
s
The p
r
op
ose
d
sy
stems was te
sted
exp
e
rime
nta
lly in
ord
e
r to
eval
uate the
perf
o
rma
n
ce
of the p
r
op
osed fab
r
icated
VSI in und
er different
gat
e
pul
se and
load con
d
ition
s
An analy
s
is
of
the influen
ce
of the M
C
T2
E is o
p
to-cou
pler
in
the
co
ntrolled
outp
u
t
curre
n
t is
be
yond the
sco
p
e
of the this
wo
rk.G
ate Pulse
s
Ge
ne
rated
Usi
ng PIC
16
F877A. Th
e i
ndividual
gat
e pul
se
s for
six
power MOS
F
ETs a
r
e ge
nerate
d
with
10ms
ON
perio
d an
d 10ms
OFF
perio
d u
s
ing
PIC
16F87
7A.
Th
e
Figu
re 4 sh
ows
the gate pulses
of
the
MOSFETs 1,
2 an
d 3. In
Fi
gure
5 th
e g
a
t
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Desig
n
and
Analysi
s of Voltage Sou
r
ce In
vert
ers for Ren
e
wable
Energ
y
… (M. Murali)
8117
pulses of the
MOSFETs 4,
5 a
n
d
6. Th
e
pha
se
shift b
e
twee
n the
tri
ggeri
ng
of th
e two
adj
ace
n
t
MOSFETs
is 60
o
(3.33 m
s
). Ea
ch MO
SFET con
d
u
c
ts for
10 m
s
a
s
sh
own in the gate p
u
lse
wav
e
for
m
s.
Figure 4. Gate pulses of M
O
SFETS 1, 2 and 3
Figure 5. Gate pulses of M
O
SFETs 4, 5
and 6
4. No
Load
Res
u
lts
Whe
n
no-l
o
a
d
conditio
n
the fabricated voltage
so
urce
inverter line
voltage wave
form as
sho
w
n fig.6. The no loa
d
output voltage waveform is a qua
si-sq
u
a
re wave. It
has a cond
uction
perio
d of 12
0
0
(6.6m
s
) a
nd a de
ad b
and of 60
0
(3.33ms). The
theoreti
c
al study of the 180
0
con
d
u
c
tion m
ode of the Voltage Source Inverter
is thus reali
z
ed
throug
h the hard
w
a
r
e set
up
unde
r no loa
d
conditio
n
.
Figure 6. No l
oad line volta
ge wavefo
rm
Whe
n
fabri
c
ated voltage
sou
r
ce inve
rter
conn
ecte
d unde
r loa
d
ed co
ndition
s in two
load
s unde
r star an
d delta load co
nditi
ons in
Star conne
cted the
obse
r
ved ph
ase voltage
and
pha
se curren
t waveform
s of the VSI fo
r star
co
n
n
e
c
ted load are sho
w
n in Fig
u
re 7. From the
waveforms it
is seen
that the ph
ase vol
t
age an
d ph
a
s
e
cu
rre
nt are six
step
wa
veforms. Ea
ch
step
ha
s a
time pe
rio
d
of
60
0
(3.33m
s).
It gives
outp
u
t for the
enti
r
e 1
8
0
0
(10m
s) du
ration.
T
h
e
observed li
ne
voltage an
d l
i
ne current
waveform
s
of the VSI for st
ar
conn
ecte
d
load a
r
e
sho
w
n
in Figu
re 7. F
r
om the
wave
forms it i
s
se
en that
the li
n
e
voltage i
s
a
qua
si squa
re
wave. It ha
s
a
con
d
u
c
tion p
e
riod
of 12
0
0
(6.6m
s
)
and
a dea
d ba
nd
of 60
0
(3.3
3m
s). But the li
n
e
cu
rrent is a
six
step wave. T
he pha
se current and line
current wav
e
form
s are
si
milar. Thu
s
the experim
e
n
tal
results match the theoretical s
t
udy of the 180
0
cond
u
c
tion
mode
of
the VSI u
nde
r
star
co
nne
ct
ed
load.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8114 – 81
19
8118
Figure 7. Phase voltage a
n
d
pha
se curre
n
t
waveforms fo
r star
con
n
e
c
ted load
Figure 7. Line
voltage and l
i
ne cu
rrent
waveforms fo
r star
con
n
e
c
ted load
The o
b
se
rve
d
pha
se volt
age a
nd p
h
a
se
cu
rrent
waveforms
o
f
the VSI for delta
con
n
e
c
ted lo
ad are
sho
w
n in Figure 8
.
From t
he waveform
s it is seen that the phase voltage
and ph
ase Current are qu
asi-sq
ua
re waves. The
wa
veforms h
a
ve
a con
d
u
c
tion
perio
d of 12
0
0
(6.6m
s
)
a
nd a
dead ban
d of
60
0
(3.3
3m
s). Th
e ob
se
rved line volta
ge and li
ne
current wavefo
rms
of the VSI are sh
own in Fi
gure
9.
From
the wavefo
rm
s it is
see
n
th
at the line vol
t
age is
a qu
a
s
i-
squ
a
re
wave
. But the line cu
rre
nt is
a six step
wave. Each
step ha
s a tim
e
peri
od of
60
0
(3.33m
s). Th
e pha
se volta
ge and lin
e voltage waveform
s are
simi
lar.
Figure 8. Phase voltage ¤t for delt
a
c
o
nn
ec
te
d
Figure 9. Line
voltage ¤t for delta
c
o
nn
ec
te
d
5. Conclu
sion
In this work fabri
c
ated volt
age source i
n
ve
rters is in
trodu
ced. Th
en ne
w co
ntroller is
desi
gne
d usi
ng PIC16
7
F8
77A with a
d
vantage of
st
atic de
sign
and
low po
we
r co
nsum
ption. With
introdu
ction
MCT2E opto
-
co
uple
r
ha
rmonics ha
s been re
du
ce
d
from re
sult
s
u
nde
r No
l
oad
con
d
ition an
d
loaded
con
d
i
t
ion. The re
sults und
er
sta
r
and d
e
lta lo
aded
con
d
itio
n is very stab
le
whi
c
h mot
o
r l
oad
s can b
e
con
n
e
c
ted to
Hybri
d
Elect
r
ic Ve
hicl
e is the eme
r
gin
g
tech
nolo
g
y for
pre
s
ent a
nd
future ge
ne
ration. Develo
ped voltage
sou
r
ce invert
er is
suita
b
le
for all type of
electri
c
motor drive
s
in va
ri
ous ro
ad l
oad
s u
s
e
d
in
HE
Vs. Co
nverte
r play
s vital role in
HEVs the
prop
osed fab
r
icate
d
voltag
e sou
r
ce inverters w
ill be
significa
nt one. With the more stri
ng
ent
regul
ation
s
o
n
emissio
n
s and fuel
e
c
on
omy,
glo
bal warmi
ng,
and
con
s
traints o
n
en
ergy
resou
r
ces, th
e ele
c
tric,
hybrid, an
d fuel
cell vehi
cle
s
have attra
c
te
d more an
d
more
attentio
n by
automa
k
e
r
s, govern
m
ent
s.
Referen
ces
[1]
Ali Emad
i, et
al. T
opolog
ic
al ov
ervie
w
of
h
y
brid
el
ectri
c
and fu
el ce
ll veh
i
cu
lar p
o
w
e
r s
y
stem
architectur
e
s a
nd confi
gur
atio
ns.
IEEE Trans. on Vehicular
Technology
. 2
005; 54(
3): 763
-770.
[2] CC
Ch
an.
T
h
e
state of the ar
t of electric a
n
d
hybri
d
ve
hicl
es.
Proceedings of the
IEEE. 2002; 90(
2):
247-
275.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Desig
n
and
Analysi
s of Voltage Sou
r
ce In
vert
ers for Ren
e
wable
Energ
y
… (M. Murali)
8119
[3] CC
Chan.
T
h
e
state of th
e art
of e
l
ectric, hy
brid,
and
fue
l
c
e
ll v
e
h
i
cles
. Proc. of the IEEE, vol. 95, no.
4, April 20
07, p
p
.704-
71
8.
[4] Iqbal
H
u
ssai
n
.
Electric an
d Hy
brid Ve
hicl
e: Desig
n
F
und
amentals.
Editi
on,
CRC Press. 2003.
[5]
KT
Chau, CC Cha
n
.
Emergi
n
g
en
ergy-effici
ent techn
o
lo
gi
es for hybri
d
el
ectric vehic
l
es
.
Procee
din
g
s
of the IEEE. 2007; 95(4): 8
21-
835.
[6]
Ali Emadi
et al.
Pow
e
r el
ectronics
an
d
mot
o
r driv
es i
n
e
l
ectric, hybri
d
electric, a
nd
p
l
ug-i
n
hy
bri
d
electric ve
hicl
e
s
. IEEE
Trans. on Industri
a
l El
ectronics. 55(
6
)
.
[7]
J Castell´
o, J Esp´
ı
, R Garc´
ı
a-Gil, SA Gon
z
´alez. A robu
st predict
ive c
u
rrent contro
l for three-p
has
e
grid-connected inverters.
IEEE Trans. Ind. E
l
ectron
., 200
9; 56(6): 19
93
–20
04.
[8]
J Espi, J Castello, R Garcia-
G
il, G
Garcera
,
E
F
i
gueres. A
n
ada
ptive rob
u
st
predictiv
e current contro
l
for three-ph
ase
grid-co
nnecte
d inverters.
IEEE Trans. Ind.
Electron.,
20
11
; 58(8): 353
7 –
354
6.
[9]
IEEE Standar
ds Board, IEEE Std 1547 S
t
andar
d for
Intercon
nectin
g
Distribut
ed
Re
sources
w
i
t
h
Electric Po
w
e
r S
y
stems, IEEE Std. 1547. 200
3.
Evaluation Warning : The document was created with Spire.PDF for Python.