I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
10
,
No
.
2
,
May
201
8
,
p
p
.
578
~5
8
6
I
SS
N:
2502
-
4752
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ee
cs
.
v
1
0
.
i2
.
p
p
578
-
5
8
6
578
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
Pal
m
Vein
P
a
t
ter
n Visua
l Int
erpre
tatio
n Using
La
pl
a
cia
n and
Frang
i
-
Ba
sed Fil
t
er
Z
a
ri
na
M
o
hd
No
h
*
1
,
Abdu
l R
a
h
m
a
n Ra
m
li
2
,
M
a
rsy
it
a
H
a
na
f
i
3
,
M
I
qb
a
l Sa
ripa
n
4
,
Ridza
Azr
i R
a
m
lee
5
1,
2,
3,
4
De
p
a
rt
m
e
n
t
of
Co
m
p
u
ter an
d
Co
m
m
u
n
ica
ti
o
n
S
y
ste
m
s E
n
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
P
u
tra M
a
lay
sia
,
4
3
4
0
0
UP
M
S
e
rd
a
n
g
,
S
e
lan
g
o
r,
M
a
lay
sia
1,
5
F
a
k
u
lt
i
Ke
ju
ru
tera
a
n
El
e
k
tro
n
i
k
d
a
n
Ke
ju
ru
tera
a
n
Ko
m
p
u
ter,
U
n
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
la
k
a
(U
T
e
M
),
Ha
n
g
T
u
a
h
Ja
y
a
,
7
5
4
5
0
Du
ria
n
T
u
n
g
g
a
l,
M
e
lak
a
,
M
a
la
y
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
15
,
2
0
1
7
R
ev
i
s
ed
J
an
2
1
,
2
0
1
8
A
cc
ep
ted
F
eb
11
,
2
0
1
8
De
tec
ti
o
n
o
f
p
a
lm
v
e
in
p
a
tt
e
rn
th
ro
u
g
h
im
a
g
e
p
ro
c
e
ss
in
g
tec
h
n
iq
u
e
s
is
a
n
o
p
e
n
p
ro
b
lem
a
s
p
e
rf
o
r
m
a
n
c
e
o
f
e
a
c
h
tec
h
n
iq
u
e
is
c
lo
se
ly
re
l
a
ted
to
th
e
sa
m
p
le
i
m
a
g
e
g
a
th
e
re
d
f
o
r
th
e
p
ro
c
e
ss
in
g
.
T
h
e
d
e
tec
ted
p
a
l
m
v
e
in
p
a
tt
e
rn
is
u
se
f
u
l
f
o
r
f
u
rth
e
r
a
n
a
ly
sis
in
b
io
m
e
tri
c
s
a
p
p
li
c
a
ti
o
n
a
n
d
m
e
d
ica
l
p
u
r
p
o
se
.
T
h
is
p
a
p
e
r
a
im
s
to
in
v
e
stig
a
te
th
e
a
p
p
li
c
a
ti
o
n
o
f
L
a
p
lac
ian
f
il
ter
a
n
d
F
ra
n
g
i
-
b
a
se
d
f
il
ter
in
d
e
tec
ti
n
g
v
e
in
p
a
tt
e
rn
c
o
n
tain
e
d
in
a
n
e
a
r
in
f
ra
re
d
i
ll
u
m
in
a
ted
p
a
lm
i
m
a
g
e
.
Bo
th
f
il
terin
g
tec
h
n
iq
u
e
s
a
re
a
p
p
li
e
d
in
d
e
p
e
n
d
e
n
tl
y
to
tw
o
p
a
l
m
im
a
g
e
d
a
tab
a
se
s
to
c
o
m
p
a
re
th
e
i
r
p
e
rf
o
rm
a
n
c
e
in
tran
sla
ti
n
g
v
e
in
p
a
tt
e
rn
i
n
th
e
im
a
g
e
v
isu
a
ll
y
.
T
h
ro
u
g
h
e
m
p
iri
c
a
l
stu
d
y
,
it
is
o
b
se
rv
e
d
th
a
t
L
a
p
lac
ian
f
il
ter
c
a
n
tran
sla
te
th
e
v
e
in
p
a
tt
e
rn
in
th
e
im
a
g
e
e
ff
e
c
ti
v
e
l
y
.
Bu
t
p
re
-
p
ro
c
e
ss
in
g
s
in
v
o
lv
e
d
b
e
f
o
re
th
e
a
p
p
li
c
a
ti
o
n
o
f
L
a
p
lac
ian
f
il
ter
n
e
e
d
to
b
e
p
e
rf
o
r
m
e
d
to
a
c
c
u
ra
tel
y
tran
sla
t
e
th
e
v
e
in
p
a
tt
e
rn
.
T
h
e
i
m
p
le
m
e
n
tatio
n
o
f
F
ra
n
g
i
-
b
a
se
d
f
il
ter,
w
h
il
e
si
m
p
li
fy
in
g
th
e
d
e
tec
ti
o
n
p
ro
c
e
ss
w
it
h
o
u
t
th
e
n
e
e
d
o
f
e
x
tra
p
re
-
p
ro
c
e
ss
in
g
,
re
su
lt
e
d
in
o
n
ly
c
e
rt
a
in
v
e
in
p
a
tt
e
rn
d
e
tec
ted
.
Us
in
g
p
ix
e
l
-
by
-
p
ix
e
l
o
b
jec
ti
v
e
a
ss
e
s
s
m
e
n
t,
t
h
e
ra
te
f
o
r
L
a
p
lac
ian
f
il
ter
in
d
e
tec
ti
n
g
v
e
in
p
a
tt
e
rn
a
re
g
e
n
e
ra
ll
y
m
o
re
th
a
n
8
5
%
c
o
m
p
a
re
d
to
F
ra
n
g
i
-
b
a
se
d
f
il
ter;
w
h
e
re
it
ra
n
g
e
s
f
ro
m
6
0
%
to
1
0
0
%
.
K
ey
w
o
r
d
s
:
Fra
n
g
i
-
b
ased
f
ilter
Im
ag
e
p
r
o
ce
s
s
i
n
g
L
ap
lacia
n
f
il
ter
Nea
r
in
f
r
ar
ed
p
al
m
i
m
ag
e
P
alm
v
ei
n
p
atter
n
d
etec
tio
n
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Z
ar
in
a
Mo
h
d
No
h
,
Fak
u
lti Ke
j
u
r
u
ter
aa
n
E
le
k
tr
o
n
i
k
d
an
Kej
u
r
u
ter
aa
n
Ko
m
p
u
ter
,
Un
i
v
er
s
iti T
ek
n
ik
al
Ma
la
y
s
ia
Me
lak
a
(
UT
eM
)
,
Han
g
T
u
ah
J
a
y
a,
7
5
4
5
0
Du
r
ian
T
u
n
g
g
al,
Me
la
k
a,
Ma
la
y
s
ia
.
E
m
ail: z
ar
i
n
a.
n
o
h
@
u
te
m
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
P
alm
i
m
ag
e
ca
p
t
u
r
ed
b
y
t
h
e
h
elp
o
f
n
ea
r
i
n
f
r
ar
ed
(
NI
R
)
illu
m
in
a
tio
n
co
n
tai
n
ed
p
al
m
v
e
in
p
atter
n
in
f
o
r
m
atio
n
w
h
ic
h
i
s
u
n
s
ee
n
th
r
o
u
g
h
d
ir
ec
t
h
u
m
a
n
v
i
s
u
a
l
izatio
n
.
T
h
e
v
ei
n
p
atter
n
ca
n
b
e
u
n
v
eiled
u
s
in
g
v
ar
io
u
s
co
m
b
i
n
atio
n
o
f
i
m
a
g
e
p
r
o
ce
s
s
in
g
tec
h
n
iq
u
es
[
1
]
,
d
ep
en
d
in
g
o
n
r
eq
u
ir
e
m
en
t
s
o
f
th
e
ex
tr
ac
tio
n
p
r
o
ce
s
s
.
Dir
ec
t
tr
an
s
latio
n
o
f
p
al
m
v
ein
p
atter
n
f
r
o
m
a
NI
R
p
al
m
i
m
a
g
e
is
u
s
ef
u
l
e
s
p
ec
iall
y
i
n
b
io
m
etr
ic
s
a
n
d
m
ed
ical
ap
p
licatio
n
.
I
n
b
io
m
etr
ics,
p
al
m
v
ei
n
p
atter
n
f
o
r
ea
ch
p
er
s
o
n
h
ad
b
ee
n
p
r
o
v
en
to
h
a
v
e
h
i
g
h
d
is
tin
ct
io
n
m
a
k
i
n
g
it
o
n
e
o
f
f
av
o
u
r
ab
le
m
o
d
alit
y
f
o
r
id
en
ti
f
icatio
n
[
2
]
,
[
3
]
.
I
n
m
ed
ica
l,
v
i
s
u
aliza
tio
n
o
f
v
ei
n
p
atter
n
is
u
s
ef
u
l
f
o
r
ea
s
e
o
f
v
e
n
ip
u
n
ct
u
r
e
p
r
o
ce
s
s
an
d
ed
u
ca
t
io
n
al
p
u
r
p
o
s
e
[
4
]
,
[
5
]
.
P
r
ev
io
u
s
w
o
r
k
s
o
n
v
ei
n
p
att
er
n
m
o
s
tl
y
co
v
er
ed
th
e
e
x
tr
a
ctio
n
o
f
v
e
in
p
atter
n
ac
q
u
ir
ed
f
r
o
m
th
e
b
ac
k
-
of
-
h
a
n
d
[
6
]
,
[
7
]
,
f
in
g
er
s
an
d
w
r
is
t
ar
ea
[
8
]
,
f
o
r
b
io
m
etr
ic
m
atc
h
i
n
g
p
er
f
o
r
m
a
n
c
e
b
u
t
n
o
t
f
o
r
v
ei
n
v
is
u
aliza
t
io
n
p
u
r
p
o
s
e.
I
n
t
h
e
c
ase
o
f
b
ac
k
-
of
-
h
a
n
d
v
ei
n
p
att
er
n
ex
tr
ac
tio
n
,
a
g
r
o
u
p
o
f
i
m
a
g
e
p
r
o
ce
s
s
i
n
g
s
h
ad
b
ee
n
d
o
n
e
to
d
etec
t
t
h
e
v
ei
n
p
atter
n
w
h
ic
h
ar
e
g
r
a
y
le
v
el
n
o
r
m
aliza
tio
n
,
Ga
u
s
s
ian
an
d
m
e
d
ian
f
i
lter
i
n
g
(
n
o
i
s
e
r
ed
u
ctio
n
)
,
NiB
lack
m
et
h
o
d
(
s
eg
m
e
n
tatio
n
)
an
d
t
h
in
n
i
n
g
[
6
]
.
I
n
o
th
er
w
o
r
k
s
,
2
-
D
Gau
s
s
ian
f
ilter
h
ad
b
ee
n
u
s
ed
f
o
r
n
o
i
s
e
r
ed
u
ctio
n
,
i
n
ad
d
itio
n
to
i
m
a
g
e
n
o
r
m
aliz
atio
n
,
lo
ca
l
ad
ap
ti
v
e
t
h
r
es
h
o
ld
in
g
an
d
th
i
n
n
i
n
g
alg
o
r
ith
m
f
o
r
b
ac
k
-
of
-
h
a
n
d
v
e
in
p
atter
n
e
x
tr
ac
tio
n
[
9
]
.
Gau
s
s
ian
an
d
m
ed
ia
n
f
ilter
i
n
g
h
ad
also
b
ee
n
r
ep
o
r
ted
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
P
a
lm
V
ein
P
a
tter
n
V
is
u
a
l I
n
terp
r
eta
tio
n
Usi
n
g
La
p
la
cia
n
a
n
d
F
r
a
n
g
i
-
B
a
s
ed
F
ilter
(
Za
r
in
a
Mo
h
d
N
o
h
)
579
to
b
e
u
s
ed
f
o
r
b
ac
k
-
of
-
h
a
n
d
v
ein
ex
tr
ac
tio
n
in
o
th
er
w
o
r
k
s
,
in
ad
d
itio
n
to
s
eg
m
e
n
tatio
n
an
d
s
k
eleto
n
izatio
n
alg
o
r
ith
m
[
1
0
]
.
I
n
f
i
n
g
er
a
n
d
w
r
is
t
v
ei
n
ex
tr
ac
tio
n
,
t
h
r
ee
d
if
f
er
e
n
t
s
eg
m
e
n
tatio
n
ap
p
r
o
ac
h
t
h
at
ar
e
ac
ti
v
e
co
n
to
u
r
s
,
Ot
s
u
th
r
e
s
h
o
ld
i
n
g
a
n
d
Fra
n
g
i
-
b
ased
f
ilter
h
ad
b
e
en
tes
ted
in
a
w
o
r
k
t
h
at
co
m
p
ar
es
th
e
b
io
m
etr
i
c
m
atc
h
in
g
p
er
f
o
r
m
an
ce
[
8
]
.
I
n
w
r
i
s
t
v
ein
ex
tr
ac
tio
n
,
a
g
r
o
u
p
o
f
i
m
ag
e
p
r
e
-
p
r
o
ce
s
s
in
g
s
h
ad
b
ee
n
i
m
p
le
m
e
n
ted
to
d
etec
t
th
e
v
ein
p
atter
n
u
s
i
n
g
ad
ap
tiv
e
n
o
n
-
lo
ca
l
m
ea
n
s
,
n
o
n
lin
ea
r
d
if
f
u
s
io
n
alg
o
r
it
h
m
(
n
o
is
e
r
ed
u
ctio
n
a
n
d
ed
g
e
en
h
a
n
ce
m
en
t)
,
a
n
d
Fra
n
g
i
-
b
ased
f
ilter
[
1
1
]
.
No
n
e
o
f
th
e
m
e
n
tio
n
ed
w
o
r
k
s
ad
d
r
ess
ed
th
e
v
ei
n
p
atter
n
v
is
u
al
i
n
ter
p
r
etatio
n
d
ir
ec
tl
y
a
s
th
e
h
ig
h
li
g
h
t i
n
th
e
w
o
r
k
i
s
o
n
th
e
b
io
m
e
tr
ic
m
atc
h
i
n
g
p
er
f
o
r
m
a
n
ce
.
A
lt
h
o
u
g
h
th
er
e
ar
e
n
u
m
er
o
u
s
f
ilter
s
a
n
d
tech
n
iq
u
es
a
v
ailab
l
e
f
o
r
v
ein
p
atter
n
ex
tr
ac
tio
n
,
t
h
is
p
ap
er
co
m
p
ar
es
o
n
l
y
t
w
o
o
f
t
h
e
f
il
ter
in
g
m
e
th
o
d
s
t
h
at
ca
n
v
i
s
u
all
y
e
x
tr
ac
t
p
al
m
v
ei
n
p
atter
n
f
r
o
m
a
NI
R
p
al
m
i
m
a
g
e.
T
h
e
t
w
o
f
ilter
i
n
g
m
et
h
o
d
s
ar
e
L
ap
lacia
n
f
il
ter
[
1
2
]
an
d
Fra
n
g
i
-
b
ased
f
ilter
[
1
3
]
.
T
h
e
t
w
o
f
il
ter
s
ar
e
ch
o
s
en
b
ased
o
n
t
h
eir
d
if
f
er
e
n
ce
in
o
p
er
atio
n
,
i
n
w
h
ich
th
e
f
ir
s
t
o
n
e
ai
m
s
to
d
etec
t
ed
g
es
i
n
an
i
m
ag
e,
w
h
ile
th
e
latter
h
ad
b
ee
n
s
p
ec
i
f
icall
y
d
ev
el
o
p
ed
to
d
etec
t
v
ein
p
atter
n
in
m
ed
ical
-
r
elate
d
i
m
a
g
e
s
.
T
h
ese
t
w
o
f
ilter
s
ar
e
co
m
p
ar
ed
b
ec
au
s
e
o
f
its
ea
s
e
o
f
i
m
p
le
m
e
n
tatio
n
i
n
e
x
tr
ac
tin
g
v
ein
p
atter
n
,
b
esid
e
s
its
s
tr
aig
h
t
-
f
o
r
w
ar
d
o
p
er
atio
n
in
ex
tr
ac
tin
g
li
n
e
an
d
ed
g
es
in
an
i
m
a
g
e.
W
ith
t
h
e
ai
m
to
ex
tr
ac
t
p
al
m
v
ein
p
atter
n
v
is
u
all
y
,
th
e
ap
p
r
o
ac
h
in
ex
ec
u
t
in
g
b
o
th
f
ilt
er
in
g
tec
h
n
iq
u
es o
n
NI
R
p
al
m
i
m
ag
e
s
w
ill
b
e
d
e
m
o
n
s
tr
ated
i
n
th
i
s
p
ap
er
.
1
.
1
.
L
a
pla
cia
n F
ilte
r
L
ap
lacia
n
f
ilter
is
o
n
e
o
f
ed
g
e
d
etec
tio
n
p
r
o
ce
s
s
in
g
t
h
at
i
s
c
o
m
m
o
n
l
y
u
s
ed
f
o
r
i
m
ag
e
s
eg
m
en
tatio
n
.
I
t
d
etec
ts
ed
g
es
b
y
f
i
n
d
i
n
g
s
ec
o
n
d
-
o
r
d
er
d
er
iv
atio
n
o
f
a
n
i
m
a
g
e
f
u
n
ctio
n
[
1
4
]
.
E
d
g
es
i
n
an
i
m
a
g
e
w
i
ll
b
e
d
etec
ted
if
th
er
e
is
an
y
ex
tr
e
m
e
s
h
i
f
ts
b
et
w
ee
n
t
h
e
n
ei
g
h
b
o
u
r
in
g
p
i
x
el
v
al
u
es.
T
h
e
s
ec
o
n
d
-
o
r
d
er
d
er
iv
ativ
e
f
o
r
L
ap
lacia
n
f
il
ter
is
ca
lcu
lated
b
y
eq
u
atio
n
(
1
)
as f
o
llo
w
s
:
L
I
(
x
,
y
)
=
∂
2
I
∂
2
x
+
∂
2
I
∂
2
y
(
1
)
W
h
e
r
e
:
L
I
(
x
,
y
)
=
L
a
p
l
a
c
i
a
n
v
a
l
u
e
o
f
a
p
i
x
e
l
a
t
l
o
c
a
t
i
o
n
(
x
,
y
)
i
n
i
mag
e
I
I
=
I
n
p
u
t
i
mag
e
1
.
2
.
F
r
a
ng
i
-
ba
s
ed
F
ilte
r
Fra
n
g
i
-
b
ased
f
ilter
o
r
al
s
o
k
n
o
w
n
as
Fra
n
g
i
v
es
s
el
n
ess
f
ilte
r
,
is
o
r
ig
i
n
all
y
d
esi
g
n
ed
f
o
r
f
il
ter
in
g
v
ei
n
p
atter
n
in
t
w
o
-
d
i
m
en
s
io
n
al
X
-
r
a
y
m
ed
ical
i
m
a
g
es
a
n
d
t
h
r
ee
-
d
i
m
en
s
io
n
a
l
v
o
l
u
m
e
tr
ic
m
ag
n
etic
r
e
s
o
n
a
n
ce
an
g
io
g
r
ap
h
y
i
m
a
g
es
[
1
5
]
.
I
t
i
s
d
er
iv
ed
f
r
o
m
ei
g
en
v
al
u
es
o
f
Hess
ia
n
m
a
tr
ix
an
a
l
y
s
is
i
n
m
ea
s
u
r
in
g
th
e
lo
ca
l
o
r
ien
tatio
n
to
in
ter
p
r
et
v
ascu
l
ar
g
eo
m
e
tr
ic
p
r
o
p
e
r
ties
o
f
an
i
m
a
g
e
as
in
eq
u
atio
n
(
2
)
[
1
5
]
.
Fra
n
g
i
-
b
ased
f
ilter
is
in
itiall
y
d
ev
elo
p
ed
f
o
r
v
ei
n
p
atter
n
t
h
at
ap
p
ea
r
as
b
r
ig
h
t
s
tr
u
ct
u
r
e
in
d
ar
k
b
ac
k
g
r
o
u
n
d
.
Deta
ils
f
o
r
ea
c
h
p
ar
am
eter
i
n
eq
u
atio
n
(
2
)
ar
e
as
d
is
cu
s
s
ed
in
it
s
i
m
p
le
m
e
n
tatio
n
f
o
r
f
o
r
ea
r
m
v
a
s
c
u
lar
p
atter
n
r
ec
o
g
n
itio
n
p
u
r
p
o
s
e
[
1
3
]
.
F
I
(
s
)
=
{
0
,
if
λ
2
<
0
e
x
p
(
ℛ
ℬ
2
2β
2
)
(
1
−
e
x
p
(
−
2
2
c
2
)
)
,
o
t
he
r
wi
se
(
2
)
W
h
e
r
e
:
F
I
(
s)
=
F
r
a
n
g
i
-
b
a
se
d
me
a
s
u
r
e
o
f
v
e
ssel
-
l
i
k
e
f
e
a
t
u
r
e
s i
n
i
mag
e
I
ℛ
ℬ
=
λ
1
λ
2
,
e
i
g
e
n
v
a
l
u
e
s /
b
l
o
b
n
e
ss me
a
su
r
e
i
n
t
w
o
-
d
i
me
n
si
o
n
a
l
i
mag
e
=
se
c
o
n
d
-
o
r
d
e
r
st
r
u
c
t
u
r
e
n
e
ss o
f
H
e
ssi
a
n
mat
r
i
x
n
o
r
m
β
,
c
=
t
h
r
e
sh
o
l
d
s fo
r
f
i
l
t
e
r
se
n
si
t
i
v
i
t
y
c
o
n
t
r
o
l
2.
I
M
AG
E
F
I
L
T
E
RIN
G
I
M
P
L
E
M
E
NT
AT
I
O
N
A
to
tal
o
f
2
4
0
0
NI
R
p
al
m
i
m
ag
es
ar
e
u
s
ed
f
o
r
th
e
f
i
lter
in
g
i
m
p
le
m
en
tatio
n
e
x
ec
u
ted
b
y
Op
en
C
V
-
P
y
t
h
o
n
e
n
v
ir
o
n
m
en
t
[
1
6
]
.
B
o
t
h
f
ilter
in
g
p
r
o
ce
s
s
ar
e
i
m
p
le
m
en
ted
o
n
t
w
o
NI
R
p
al
m
i
m
ag
e
d
atab
ases
th
at
ar
e
o
b
tain
ed
f
r
o
m
th
e
C
h
in
e
s
e
A
c
ad
em
y
o
f
Scien
ce
s
’
I
n
s
ti
tu
te
o
f
A
u
to
m
atio
n
(
C
A
SI
A
)
[
1
7
]
a
n
d
th
e
Ho
n
g
Ko
n
g
P
o
ly
tec
h
n
ic
U
n
i
v
er
s
it
y
(
P
o
l
y
U)
[
1
8
]
.
T
h
e
t
w
o
d
atab
ases
i
n
f
o
r
m
at
io
n
ar
e
as d
etailed
in
T
ab
le
1
.
T
ab
le
1
.
Deta
il o
f
P
alm
I
m
a
g
e
Data
b
ases
Used
f
o
r
Fil
ter
i
n
g
De
m
o
n
s
tr
atio
n
.
D
a
t
a
b
a
se
N
u
mb
e
r
o
f
S
u
b
j
e
c
t
s
H
a
n
d
/
S
e
ssi
o
n
N
u
mb
e
r
o
f
S
a
m
p
l
e
s
T
o
t
a
l
I
mag
e
s
C
A
S
I
A
1
0
0
R
i
g
h
t
-
h
a
n
d
6
6
0
0
L
e
f
t
-
h
a
n
d
6
6
0
0
P
o
l
y
U
1
0
0
F
i
r
st
-
se
ssi
o
n
6
6
0
0
S
e
c
o
n
d
-
se
ssi
o
n
6
6
0
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
May
2018
:
5
7
8
–
5
8
6
580
L
ap
lacia
n
f
ilter
in
g
i
s
p
er
f
o
r
m
ed
f
o
llo
w
i
n
g
t
h
e
ex
ec
u
tio
n
o
f
a
s
et
o
f
i
m
a
g
e
p
r
e
-
p
r
o
ce
s
s
i
n
g
s
as
illu
s
tr
ated
in
Fi
g
u
r
e
1
.
T
h
is
i
s
b
ec
au
s
e,
d
ir
ec
t
i
m
p
le
m
en
tat
io
n
o
f
L
ap
lacia
n
f
ilter
o
n
r
a
w
p
al
m
i
m
a
g
es
w
i
ll
r
ev
ea
l
ex
tr
a
in
f
o
r
m
atio
n
i
n
t
h
e
i
m
a
g
e
s
u
c
h
as
p
al
m
p
r
in
t,
p
al
m
li
n
es
an
d
p
al
m
cr
ea
s
es
b
esid
es
t
h
e
p
al
m
v
ei
n
p
atter
n
.
T
h
e
i
m
ag
e
p
r
e
-
p
r
o
ce
s
s
i
n
g
s
w
i
ll
e
n
s
u
r
e
t
h
at
o
n
l
y
p
al
m
v
ei
n
p
atter
n
w
i
ll
b
e
h
i
g
h
lig
h
ted
i
n
t
h
e
p
al
m
i
m
a
g
e.
T
h
e
i
m
a
g
e
p
r
e
-
p
r
o
ce
s
s
in
g
s
s
h
o
w
n
i
n
F
ig
u
r
e
1
ar
e
ex
tr
ac
tio
n
o
f
R
e
g
io
n
-
of
-
I
n
ter
est
(
R
OI
)
,
C
o
n
tr
ast
L
i
m
ited
A
d
ap
ti
v
e
Hi
s
to
g
r
a
m
E
q
u
aliza
tio
n
(
C
L
A
HE
)
,
b
ilat
er
al
f
il
ter
an
d
m
o
r
p
h
o
lo
g
ical
d
ilatio
n
o
p
er
atio
n
.
E
ac
h
o
f
t
h
ese
p
r
e
-
p
r
o
ce
s
s
i
n
g
h
as
it
s
o
w
n
p
ar
a
m
eter
s
th
a
t
r
eq
u
ir
es
ad
j
u
s
t
m
e
n
t
to
e
n
s
u
r
e
its
ap
p
licab
ilit
y
i
n
en
h
a
n
ci
n
g
t
h
e
i
m
a
g
e
co
n
tr
ast
an
d
r
ed
u
cin
g
n
o
is
e
f
o
r
th
e
i
m
p
le
m
e
n
tatio
n
o
f
L
ap
lacia
n
f
ilter
later
o
n
.
Fig
u
r
e
1
.
L
ap
lacia
n
F
ilter
in
g
I
m
p
le
m
e
n
tat
io
n
Step
s
On
t
h
e
o
th
er
h
an
d
,
Fra
n
g
i
-
b
ased
f
ilter
i
s
ex
ec
u
ted
o
n
r
a
w
p
al
m
i
m
ag
e
s
d
ir
ec
tl
y
a
f
te
r
an
R
OI
ex
tr
ac
tio
n
p
r
o
ce
s
s
a
s
s
h
o
w
n
in
Fig
u
r
e
2
.
T
h
is
is
b
ec
a
u
s
e,
ad
d
itio
n
al
i
m
a
g
e
p
r
e
-
p
r
o
ce
s
s
i
n
g
s
as
in
Fi
g
u
r
e
1
w
il
l
d
is
to
r
t
th
e
ex
tr
ac
tio
n
o
f
v
ei
n
p
atter
n
b
y
t
h
e
ap
p
licatio
n
o
f
Fra
n
g
i
-
b
ased
f
ilter
later
o
n
.
B
esid
es,
d
er
iv
atio
n
o
f
Fra
n
g
i
-
b
ased
f
il
ter
is
m
o
ti
v
at
ed
b
y
th
e
i
n
ten
t
io
n
to
e
x
tr
ac
t
v
ein
p
atter
n
f
r
o
m
m
ed
ical
i
m
ag
es.
I
t
s
d
er
iv
at
io
n
h
ad
alr
ea
d
y
in
c
lu
d
ed
th
e
i
m
ag
e
co
n
tr
ast
a
n
d
n
o
i
s
e
r
ed
u
ctio
n
tec
h
n
iq
u
es
in
t
h
e
f
o
r
m
u
la.
He
n
ce
,
th
e
i
m
p
le
m
en
ta
tio
n
s
tep
s
f
o
r
Fra
n
g
i
-
b
ased
f
ilter
i
n
e
x
tr
ac
tin
g
p
al
m
v
ei
n
p
atter
n
h
ad
b
ee
n
r
ed
u
ce
d
to
th
e
p
r
o
ce
s
s
es
as
illu
s
tr
ated
in
Fig
u
r
e
2
.
I
n
ter
m
s
o
f
co
m
p
u
tatio
n
al
co
s
t,
Fra
n
g
i
-
b
a
s
ed
f
ilter
is
ec
o
n
o
m
ical
t
h
a
n
L
ap
lacia
n
f
il
ter
i
m
p
le
m
en
tatio
n
as it d
o
es n
o
t r
eq
u
ir
e
ex
tr
a
i
m
ag
e
p
r
e
-
p
r
o
ce
s
s
in
g
s
.
Fig
u
r
e
2
.
Fra
n
g
i
-
b
ased
Fil
ter
in
g
I
m
p
le
m
en
tatio
n
S
tep
s
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
Ou
tco
m
e
s
o
f
t
h
e
i
m
ag
e
f
ilter
i
n
g
ar
e
as
d
e
m
o
n
s
tr
ated
i
n
Sec
tio
n
3
.
1
.
Sectio
n
3
.
2
d
is
c
u
s
s
e
s
th
e
r
es
u
lts
o
f
f
ilter
i
n
g
i
m
p
le
m
en
ta
tio
n
b
y
co
m
p
ar
in
g
th
e
r
ate
o
f
s
i
m
ilar
it
y
th
r
o
u
g
h
p
ix
el
-
by
-
p
ix
el
d
et
ec
tio
n
o
f
p
al
m
v
ei
n
p
atter
n
d
etec
ted
.
3
.
1
.
F
ilte
ring
Dem
o
n
s
t
ra
t
io
n
T
h
e
i
m
p
le
m
e
n
tat
io
n
o
f
f
ilter
i
n
g
p
r
o
ce
s
s
es
r
es
u
lted
in
s
a
m
p
le
o
u
tco
m
e
s
a
s
co
m
p
iled
i
n
F
ig
u
r
e
s
3
-
6
.
T
h
e
r
a
w
p
al
m
i
m
a
g
es
i
n
b
o
t
h
Fig
u
r
es
3
an
d
4
ar
e
c
h
o
s
e
n
f
r
o
m
th
e
s
a
m
e
s
u
b
j
ec
t
to
co
m
p
ar
e
th
e
tr
an
s
lated
v
ein
p
atter
n
a
f
ter
th
e
f
il
ter
in
g
p
r
o
ce
s
s
.
I
t
ca
n
b
e
s
ee
n
t
h
at
b
o
th
f
i
lter
in
g
p
r
o
ce
s
s
ar
e
ab
le
t
o
d
etec
t
p
alm
v
ei
n
p
atter
n
v
is
u
all
y
f
r
o
m
t
h
e
C
ASI
A’
s
NI
R
p
al
m
i
m
a
g
e,
b
u
t
th
e
d
if
f
er
en
ce
l
ies
i
n
th
e
t
y
p
es
o
f
v
ei
n
p
atter
n
ex
tr
ac
ted
.
W
h
ile
m
o
s
t
v
ei
n
p
atter
n
is
d
etec
ted
t
h
r
o
u
g
h
L
a
p
lacia
n
f
ilter
,
Fra
n
g
i
-
b
ased
f
i
lter
m
o
s
tl
y
d
etec
t
lar
g
e
-
s
ized
v
ei
n
p
atter
n
i
n
th
e
i
m
a
g
e.
R
e
g
i
o
n
-
of
-
I
n
t
e
r
e
st
Ex
t
r
a
c
t
i
o
n
C
o
n
t
r
a
st
L
i
mi
t
e
d
A
d
a
p
t
i
v
e
H
i
st
o
g
r
a
m
Eq
u
a
l
i
z
a
t
i
o
n
B
i
l
a
t
e
r
a
l
F
i
l
t
e
r
M
o
r
p
h
o
l
o
g
i
c
a
l
D
i
l
a
t
i
o
n
O
p
e
r
a
t
i
o
n
L
a
p
l
a
c
i
a
n
F
i
l
t
e
r
R
a
w
p
a
l
m
i
mag
e
f
r
o
m d
a
t
a
b
a
se
P
a
l
m v
e
i
n
p
a
t
t
e
r
n
i
mag
e
(
t
r
a
n
sl
a
t
e
d
v
i
s
u
a
l
l
y
)
I
mag
e
p
re
-
p
r
o
c
e
ssi
n
g
R
e
g
i
o
n
-
of
-
I
n
t
e
r
e
st
Ex
t
r
a
c
t
i
o
n
F
r
a
n
g
i
-
b
a
se
d
F
i
l
t
e
r
R
a
w
p
a
l
m
i
mag
e
f
r
o
m d
a
t
a
b
a
se
P
a
l
m v
e
i
n
p
a
t
t
e
r
n
i
mag
e
(
t
r
a
n
sl
a
t
e
d
v
i
s
u
a
l
l
y
)
I
mag
e
p
re
-
p
r
o
c
e
ssi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
P
a
lm
V
ein
P
a
tter
n
V
is
u
a
l I
n
terp
r
eta
tio
n
Usi
n
g
La
p
la
cia
n
a
n
d
F
r
a
n
g
i
-
B
a
s
ed
F
ilter
(
Za
r
in
a
Mo
h
d
N
o
h
)
581
(
a)
R
an
d
o
m
Sa
m
p
le
1
(
b
)
R
an
d
o
m
Sa
m
p
l
e
2
(
c)
R
an
d
o
m
Sa
m
p
le
3
(
d
)
R
an
d
o
m
Sa
m
p
le
4
Fig
u
r
e
3
.
P
alm
Im
a
g
e
f
r
o
m
C
ASI
A
Da
tab
ase
B
ef
o
r
e
an
d
Af
ter
th
e
Im
p
le
m
en
ta
tio
n
o
f
L
ap
l
ac
ian
Fi
lter
(
a)
R
an
d
o
m
S
a
m
p
le
1
(
b
)
R
an
d
o
m
Sa
m
p
le
2
(
c)
R
an
d
o
m
Sa
m
p
le
3
(
d
)
R
an
d
o
m
S
a
m
p
le
4
Fig
u
r
e
4
.
P
alm
I
m
a
g
e
f
r
o
m
C
ASI
A
D
a
tab
ase
B
ef
o
r
e
an
d
A
f
ter
th
e
I
m
p
le
m
en
ta
tio
n
o
f
Fra
n
g
i
-
b
ased
F
ilter
Ob
s
er
v
i
n
g
th
e
tr
an
s
lated
v
ei
n
p
atter
n
f
r
o
m
P
o
l
y
U
’
s
NI
R
p
al
m
i
m
ag
e
i
n
Fi
g
u
r
e
5
an
d
6
,
its
p
er
f
o
r
m
a
n
ce
i
s
as
s
p
o
tted
in
C
A
SI
A
d
ata
b
ase.
Mo
s
t
v
ei
n
p
atter
n
in
Fi
g
u
r
e
5
ca
n
b
e
d
etec
ted
v
is
u
all
y
b
y
L
ap
lacia
n
f
ilter
i
m
p
le
m
en
ta
tio
n
,
w
h
ile
Fra
n
g
i
-
b
ased
f
ilter
m
o
s
tl
y
d
etec
t
lar
g
e
-
s
ized
v
ein
p
atter
n
in
t
h
e
i
m
ag
e
(
Fig
u
r
e
6
)
.
B
o
th
Fig
u
r
e
s
5
an
d
6
u
s
e
th
e
s
a
m
e
r
a
w
p
al
m
i
m
ag
e
f
r
o
m
P
o
l
y
U
d
atab
ase
to
co
m
p
ar
e
t
h
e
f
ilter
s
’
ab
ilit
y
i
n
tr
an
s
lati
n
g
t
h
e
v
e
in
p
atter
n
v
i
s
u
a
ll
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
May
2018
:
5
7
8
–
5
8
6
582
(
a)
R
an
d
o
m
Sa
m
p
le
1
(
b
)
R
an
d
o
m
Sa
m
p
le
2
(
c)
R
an
d
o
m
Sa
m
p
le
3
(
d
)
R
an
d
o
m
Sa
m
p
le
4
Fig
u
r
e
5
.
P
alm
Im
a
g
e
f
r
o
m
P
o
l
y
U
Da
tab
ase
B
ef
o
r
e
an
d
A
f
te
r
th
e
I
m
p
le
m
e
n
tat
io
n
o
f
L
ap
la
cian
Fi
lter
(
a)
R
an
d
o
m
S
a
m
p
le
1
(
b
)
R
an
d
o
m
Sa
m
p
le
2
(
c)
R
an
d
o
m
Sa
m
p
le
3
(
d
)
R
an
d
o
m
Sa
m
p
le
4
Fig
u
r
e
6
.
P
alm
I
m
a
g
e
f
r
o
m
P
o
l
y
U
Data
b
ase
B
ef
o
r
e
an
d
A
f
te
r
th
e
I
m
p
le
m
e
n
tat
io
n
o
f
Fra
n
g
i
-
b
ased
Fil
ter
3
.
2
.
Dis
cu
s
s
io
n a
nd
Ana
ly
s
i
s
T
o
f
u
r
th
er
ill
u
s
tr
ates
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
b
o
th
f
ilter
i
n
g
tech
n
iq
u
e
s
in
d
etec
ti
n
g
p
al
m
v
ei
n
p
atter
n
,
a
p
ix
el
-
by
-
p
i
x
el
co
m
p
ar
i
s
o
n
o
f
t
h
e
d
etec
ted
v
ei
n
p
atter
n
i
s
d
o
n
e
w
i
th
a
r
e
f
er
en
ce
p
al
m
v
ein
p
atter
n
i
m
ag
e
s
.
T
h
e
p
ix
e
l
-
by
-
p
i
x
el
co
m
p
ar
is
o
n
i
s
ch
o
s
en
as
t
h
e
as
s
es
s
m
e
n
t
m
et
h
o
d
to
ch
ec
k
if
t
h
e
s
a
m
e
v
ei
n
p
atter
n
h
ad
b
ee
n
ex
tr
ac
ted
e
v
er
y
ti
m
e
t
h
e
f
il
te
r
in
g
tec
h
n
iq
u
es
ar
e
i
m
p
le
m
e
n
ted
o
n
t
h
e
v
ei
n
i
m
a
g
e.
T
h
e
r
ef
er
en
ce
p
al
m
v
e
in
p
atter
n
f
o
r
ea
ch
s
u
b
j
ec
t
(
1
0
0
s
u
b
j
ec
ts
)
is
co
n
s
tr
u
c
ted
b
y
a
v
er
ag
in
g
th
e
d
etec
ted
p
al
m
v
ei
n
p
atter
n
i
m
a
g
e
(
s
i
x
s
a
m
p
les
p
er
s
u
b
j
ec
t)
u
s
i
n
g
ea
ch
f
il
ter
in
g
tech
n
iq
u
e.
T
h
e
co
m
p
ar
i
s
o
n
r
ate
ar
e
as
p
r
esen
ted
in
Fig
u
r
es
7
-
1
0
f
o
r
th
e
s
ix
s
a
m
p
les
o
f
ea
c
h
s
u
b
j
ec
t.
W
h
ile
t
h
e
s
i
m
ilar
it
y
r
ate
f
o
r
v
ei
n
p
atter
n
e
x
tr
ac
ted
b
y
L
ap
lacia
n
f
il
ter
r
an
g
es
ar
o
u
n
d
9
0
-
9
7
%
f
o
r
C
A
SI
A
d
atab
ase
(
Fig
u
r
e
7
)
,
th
e
s
i
m
ila
r
it
y
r
ate
f
o
r
Fra
n
g
i
-
b
ased
f
il
t
er
ed
im
a
g
e
r
an
g
e
s
ar
o
u
n
d
7
0
-
9
7
% (
Fig
u
r
e
8
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
P
a
lm
V
ein
P
a
tter
n
V
is
u
a
l I
n
terp
r
eta
tio
n
Usi
n
g
La
p
la
cia
n
a
n
d
F
r
a
n
g
i
-
B
a
s
ed
F
ilter
(
Za
r
in
a
Mo
h
d
N
o
h
)
583
(
a)
(
b
)
Fig
u
r
e
7
.
R
ate
o
f
Si
m
ilar
it
y
f
o
r
P
ix
el
-
by
-
P
ix
el
Dete
ct
io
n
o
f
C
A
SI
A
Data
b
ase
Af
ter
I
m
p
le
m
en
tatio
n
o
f
L
ap
lacia
n
Fil
ter
f
o
r
(
a)
R
ig
h
t
-
Han
d
P
al
m
,
an
d
(
b
)
L
ef
t
-
Ha
n
d
P
alm
(
a)
(
b
)
Fig
u
r
e
8
.
R
ate
o
f
Si
m
ilar
it
y
f
o
r
P
ix
el
-
by
-
P
ix
el
Dete
ct
io
n
o
f
C
A
SI
A
Data
b
ase
Af
ter
I
m
p
le
m
en
tatio
n
o
f
Fra
n
g
i
-
B
ased
Fi
lter
f
o
r
(
a)
R
ig
h
t
-
Han
d
P
al
m
,
a
n
d
(
b
)
L
ef
t
-
H
an
d
P
alm
T
h
e
s
i
m
ilar
it
y
r
ate
f
o
r
P
o
l
y
U
d
atab
ase
r
an
g
es
ar
o
u
n
d
8
5
-
9
5
%
f
o
r
L
ap
lacia
n
f
i
lter
ed
i
m
a
g
e
(
Fig
u
r
e
9
)
,
w
h
ile
f
o
r
Fra
n
g
i
-
b
ased
f
il
t
er
ed
im
a
g
e;
th
e
s
i
m
ilar
it
y
r
ate
is
ar
o
u
n
d
6
0
-
1
0
0
%
(
Fig
u
r
e
1
0
)
.
I
f
th
e
av
er
ag
e
o
f
s
i
m
ilar
it
y
r
ate
is
o
b
s
er
v
ed
,
th
e
r
esu
lt
is
as
tab
u
lated
in
T
ab
le
2
.
Fro
m
th
e
av
er
a
g
e
s
i
m
ilar
it
y
r
ate
co
m
p
iled
i
n
T
ab
le
2
,
th
e
L
ap
lacia
n
f
i
lter
h
as
h
i
g
h
er
ab
ilit
y
to
ac
cu
r
atel
y
d
etec
t
th
e
s
a
m
e
v
ei
n
p
atter
n
th
a
n
Fra
n
g
i
-
b
a
s
ed
f
ilter
.
B
u
t
i
n
tr
an
s
lati
n
g
th
e
v
ein
p
atter
n
v
is
u
all
y
,
b
o
th
f
ilte
r
in
g
tec
h
n
iq
u
es
ca
n
d
etec
t
t
h
e
v
ei
n
p
atter
n
i
n
th
e
NI
R
p
al
m
i
m
ag
e
i
n
it
s
o
w
n
w
a
y
.
(
a)
(
b
)
Fig
u
r
e
9
.
R
ate
o
f
Si
m
ilar
it
y
f
o
r
P
ix
el
-
by
-
P
ix
el
Dete
ct
io
n
o
f
P
o
ly
u
Data
b
ase
Af
ter
I
m
p
le
m
en
tatio
n
o
f
L
ap
lacia
n
Fil
ter
f
o
r
(
a)
First
-
S
ess
io
n
P
al
m
,
a
n
d
(
b
)
Seco
n
d
-
S
ess
io
n
P
al
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
May
2018
:
5
7
8
–
5
8
6
584
(
a)
(
b
)
Fig
u
r
e
10
.
R
ate
o
f
Si
m
ilar
it
y
f
o
r
P
ix
el
-
by
-
P
i
x
el
Dete
ctio
n
o
f
P
o
ly
u
Da
tab
ase
A
f
ter
I
m
p
le
m
en
tatio
n
o
f
Fra
n
g
i
-
B
ased
Fil
ter
f
o
r
(
a)
First
-
Se
s
s
i
o
n
P
alm
,
a
n
d
(
b
)
Seco
n
d
-
Ses
s
i
o
n
P
alm
T
ab
le
2
.
A
v
er
ag
e
R
ate
o
f
Si
m
i
lar
it
y
P
er
ce
n
tag
e
f
o
r
P
ix
el
-
by
-
P
ix
el
Dete
ctio
n
f
o
r
B
o
th
Fil
ter
in
g
T
ec
h
n
iq
u
es
D
a
t
a
b
a
se
H
a
n
d
/
S
e
ssi
o
n
F
i
l
t
e
r
i
n
g
Te
c
h
n
i
q
u
e
A
v
e
r
a
g
e
R
a
t
e
o
f
S
i
mi
l
a
r
D
e
t
e
c
t
i
o
n
(
%
)
C
A
S
I
A
R
i
g
h
t
-
h
a
n
d
L
a
p
l
a
c
i
a
n
F
r
a
n
g
i
-
b
a
se
d
95
89
L
e
f
t
-
h
a
n
d
L
a
p
l
a
c
i
a
n
F
r
a
n
g
i
-
b
a
se
d
96
89
P
o
l
y
U
F
i
r
st
-
se
ssi
o
n
L
a
p
l
a
c
i
a
n
F
r
a
n
g
i
-
b
a
se
d
90
80
S
e
c
o
n
d
-
se
ssi
o
n
L
a
p
l
a
c
i
a
n
F
r
a
n
g
i
-
b
a
se
d
91
80
4.
CO
NCLU
SI
O
N
B
ased
o
n
o
u
tco
m
e
s
co
m
p
iled
in
Sect
io
n
3
,
b
o
th
f
ilter
i
n
g
tec
h
n
iq
u
es
h
a
v
e
t
h
e
ab
ilit
y
to
d
e
tect
p
al
m
v
ein
p
atter
n
f
r
o
m
a
NI
R
p
al
m
i
m
a
g
e,
b
u
t
th
e
d
if
f
er
en
ce
lies
i
n
t
h
e
t
y
p
e
o
f
v
e
in
p
atte
r
n
d
etec
ted
.
W
h
ile
L
ap
lacia
n
f
ilter
d
etec
t
v
ei
n
p
a
tter
n
co
n
tr
ib
u
ted
b
y
a
ll
v
ei
n
s
izes,
Fra
n
g
i
-
b
ased
f
ilter
d
etec
ts
o
n
l
y
lar
g
e
-
s
ized
v
ein
a
n
d
h
ig
h
l
y
a
f
f
ec
ted
b
y
t
h
e
ill
u
m
in
a
tio
n
er
r
o
r
ac
q
u
ir
ed
in
th
e
r
a
w
p
al
m
i
m
ag
e.
E
v
en
s
o
,
th
e
i
m
p
le
m
en
ta
tio
n
o
f
L
ap
lacia
n
f
ilter
r
eq
u
ir
ed
ad
d
itio
n
al
i
m
ag
e
p
r
e
-
p
r
o
ce
s
s
in
g
s
to
b
e
ex
ec
u
te
d
o
n
th
e
r
a
w
p
al
m
i
m
a
g
e.
W
ith
th
e
i
m
ag
e
p
r
e
-
p
r
o
ce
s
s
in
g
s
,
o
n
l
y
t
h
en
th
e
L
ap
lacia
n
f
ilter
ca
n
ac
c
u
r
atel
y
d
et
ec
ts
v
e
in
p
atter
n
i
n
th
e
i
m
ag
e.
I
n
co
n
tr
ast,
Fra
n
g
i
-
b
ased
f
i
lter
i
m
p
le
m
e
n
tatio
n
d
o
es
n
o
t
n
ee
d
ad
d
itio
n
al
p
r
e
-
p
r
o
ce
s
s
in
g
s
to
d
etec
t
p
al
m
v
ei
n
p
atter
n
i
n
a
NI
R
p
a
l
m
i
m
a
g
e.
B
u
t
th
e
d
etec
tio
n
o
f
v
ei
n
p
atter
n
i
n
Fra
n
g
i
-
b
ased
f
ilter
ed
i
m
a
g
e
ar
e
af
f
ec
ted
b
y
i
llu
m
i
n
atio
n
r
ad
ia
ted
d
u
r
in
g
t
h
e
ac
q
u
is
itio
n
p
r
o
ce
s
s
.
U
n
ev
e
n
ill
u
m
in
at
io
n
i
n
t
h
e
ac
q
u
ir
ed
i
m
a
g
e
w
il
l g
i
v
e
i
n
ac
cu
r
ate
e
x
tr
ac
tio
n
o
f
v
ei
n
p
atter
n
in
t
h
e
Fra
n
g
i
-
b
ased
f
ilter
ed
i
m
a
g
e.
Dep
en
d
in
g
o
n
ap
p
licatio
n
,
b
o
th
f
i
lter
in
g
tec
h
n
iq
u
es
h
a
v
e
th
eir
o
w
n
s
tr
en
g
t
h
s
a
n
d
d
is
ad
v
an
ta
g
es.
T
r
an
s
lated
v
ein
p
atter
n
b
y
L
ap
lacia
n
f
il
ter
is
m
o
r
e
f
a
v
o
u
r
ab
le
f
o
r
b
io
m
etr
ic
ap
p
licatio
n
s
i
n
ce
it
is
r
ich
i
n
in
f
o
r
m
atio
n
t
h
at
ca
n
b
e
u
s
ed
as
m
atc
h
i
n
g
f
ea
t
u
r
es.
I
n
ar
ea
s
w
h
er
e
th
e
v
is
u
aliza
tio
n
o
f
v
e
in
p
atter
n
is
m
o
r
e
i
m
p
o
r
tan
t,
Fra
n
g
i
-
b
a
s
ed
f
il
ter
ed
i
m
ag
e
is
j
u
s
t
as
s
u
f
f
ic
ien
t.
P
er
h
ap
s
th
e
i
m
p
le
m
en
ta
tio
n
o
f
Fra
n
g
i
-
b
ased
f
ilte
r
ca
n
b
e
f
u
r
t
h
er
i
m
p
r
o
v
ed
s
o
th
at
th
e
d
etec
ted
v
ei
n
p
atter
n
is
o
f
th
e
s
a
m
e
s
ize
as
its
o
r
ig
i
n
al
v
ei
n
p
atter
n
lo
ca
lized
in
th
e
r
a
w
p
al
m
i
m
a
g
e.
I
m
p
r
o
v
e
m
e
n
t
m
a
y
in
c
lu
d
e
s
i
m
p
le
m
en
ta
tio
n
o
f
n
ec
e
s
s
ar
y
p
r
e
-
p
r
o
ce
s
s
i
n
g
o
r
p
o
s
t
-
p
r
o
ce
s
s
in
g
th
at
ca
n
p
r
es
er
v
e
t
h
e
v
ein
p
atter
n
s
ize
d
et
ec
ted
b
y
t
h
e
f
ilter
i
n
g
tech
n
iq
u
e.
Ot
h
er
t
h
an
th
a
t,
i
m
a
g
e
a
cq
u
i
s
itio
n
d
ev
ice
a
n
d
its
p
r
o
ce
s
s
ca
n
b
e
f
u
r
t
h
er
en
h
a
n
ce
d
,
s
u
ch
th
at
it
ca
n
ca
p
tu
r
e
v
ei
n
p
atter
n
in
f
o
r
m
atio
n
ac
cu
r
atel
y
w
it
h
o
u
t
in
ter
f
er
en
ce
f
r
o
m
t
h
e
ill
u
m
i
n
atio
n
u
s
ed
o
r
o
th
er
n
o
is
es
d
u
r
in
g
t
h
e
ac
q
u
i
s
itio
n
p
r
o
ce
s
s
.
W
ith
th
at,
it
is
h
o
p
ed
th
at
th
e
f
in
d
in
g
s
p
r
esen
ted
in
th
i
s
p
ap
er
ca
n
g
iv
e
s
o
m
e
g
u
id
elin
e
s
an
d
id
ea
s
f
o
r
r
esear
ch
er
s
w
it
h
t
h
e
s
a
m
e
in
ter
ests
to
d
ec
id
e
th
e
ap
p
r
o
p
r
iate
f
il
ter
in
g
tec
h
n
iq
u
es
f
o
r
t
h
eir
in
ten
d
ed
v
e
in
p
atter
n
ap
p
licatio
n
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
Ou
r
d
ee
p
est
ap
p
r
ec
iatio
n
to
t
h
e
Mi
n
is
tr
y
o
f
Hig
h
er
E
d
u
ca
t
io
n
Ma
la
y
s
ia,
U
n
i
v
er
s
iti
P
u
tr
a
Ma
la
y
s
ia
(
UP
M)
an
d
Un
iv
er
s
iti
T
ek
n
i
k
al
Ma
la
y
s
ia
Me
la
k
a
(
UT
eM
)
f
o
r
all
th
e
f
ac
ilit
ies
an
d
s
u
p
p
o
r
t
g
iv
e
n
d
u
r
in
g
th
e
d
u
r
atio
n
o
f
t
h
is
s
tu
d
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
P
a
lm
V
ein
P
a
tter
n
V
is
u
a
l I
n
terp
r
eta
tio
n
Usi
n
g
La
p
la
cia
n
a
n
d
F
r
a
n
g
i
-
B
a
s
ed
F
ilter
(
Za
r
in
a
Mo
h
d
N
o
h
)
585
RE
F
E
R
E
NC
E
S
[1
]
M
.
A
.
A
h
m
e
d
,
H.
M
.
Eb
ie
d
,
E
.
M
.
El
-
H
o
rb
a
ty
,
A
.
M
.
S
a
lem
,
“
A
n
a
l
y
sis
o
f
P
a
lm
V
e
in
P
a
tt
e
r
n
Re
c
o
g
n
it
i
o
n
A
l
g
o
rit
h
m
s a
n
d
S
y
ste
m
s,”
J
o
u
rn
a
l
o
f
B
io
-
M
e
d
ica
l
In
f
o
rm
a
ti
c
s
a
n
d
E
-
He
a
lt
h
,
v
o
l.
1
,
n
o
.
1
,
p
p
.
1
0
–
1
4
,
2
0
1
3
.
[2
]
J.
-
C.
L
e
e
,
“
A
No
v
e
l
Bio
m
e
tri
c
S
y
ste
m
B
a
se
d
o
n
P
a
lm
V
e
in
Im
a
g
e
,
”
Pa
tt
e
rn
Rec
o
g
n
i
t
io
n
L
e
tt
e
rs
,
v
o
l.
3
3
,
n
o
.
1
2
,
p
p
.
1
5
2
0
–
1
5
2
8
,
S
e
p
.
2
0
1
2
.
[3
]
R.
K.
M
,
G
.
De
e
p
ik
a
,
M
.
Krish
n
a
n
,
B
.
Ka
rth
ik
e
y
a
n
,
“
A
n
Op
e
n
S
o
u
rc
e
Co
n
tac
t
-
F
re
e
P
a
lm
V
e
in
Re
c
o
g
n
it
i
o
n
S
y
st
e
m
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Ad
v
a
n
c
e
s in
A
p
p
l
ied
S
c
ie
n
c
e
s (
IJ
AA
S
),
v
o
l.
6
,
n
o
.
4
,
p
p
.
3
1
9
–
3
2
4
,
2
0
1
7
.
[4
]
S
.
Ju
ric,
B.
Zalik
,
“
A
n
In
n
o
v
a
ti
v
e
A
p
p
ro
a
c
h
to
Ne
a
r
-
In
f
ra
re
d
S
p
e
c
tro
sc
o
p
y
Us
in
g
a
S
tan
d
a
rd
M
o
b
i
le De
v
ic
e
a
n
d
Its
Cli
n
ica
l
A
p
p
li
c
a
ti
o
n
in
T
h
e
Re
a
l
-
T
i
m
e
V
isu
a
li
z
a
ti
o
n
o
f
P
e
ri
p
h
e
ra
l
V
e
in
s,”
BM
C
M
e
d
ica
l
In
f
o
rm
a
ti
c
s
a
n
d
De
c
is
io
n
M
a
k
in
g
,
v
o
l.
1
4
,
n
o
.
1
0
0
,
p
p
.
1
–
9
,
2
0
1
4
.
[5
]
K.
I.
A
h
m
e
d
,
M
.
H.
Ha
b
a
e
b
i,
M
.
R.
Isla
m
,
“
En
h
a
n
c
e
d
V
e
i
n
De
tec
ti
o
n
f
ro
m
V
id
e
o
S
e
q
u
e
n
c
e
s
,
”
In
d
o
n
e
s
ia
n
J
o
u
rn
a
l
o
f
El
e
c
tr
ica
l
En
g
in
e
e
rin
g
a
n
d
Co
mp
u
ter
S
c
ien
c
e
(
IJ
EE
C
S
)
,
v
o
l
.
8
,
n
o
.
2
,
p
p
.
4
2
0
–
4
2
7
,
2
0
1
7
.
[6
]
W
.
W
u
_
a
,
F
.
L
u
,
G
.
Ch
e
n
g
,
C.
S
h
i,
“
A
Vei
n
B
a
se
d
Bi
o
me
tric
Exp
e
rime
n
t
a
n
d
S
o
me
Ne
w
De
v
e
lo
p
me
n
ts,”
i
n
2
0
1
2
T
h
ird
G
lo
b
a
l
Co
n
g
re
ss
o
n
I
n
telli
g
e
n
t
S
y
ste
m
s,
2
0
1
2
,
p
p
.
1
3
1
–
1
3
5
.
[7
]
Z.
Ho
n
a
rp
is
h
e
h
,
K.
F
a
e
z
,
“
A
n
E
ff
icie
n
t
Do
rsa
l
H
a
n
d
V
e
in
Re
c
o
g
n
it
io
n
b
a
se
d
o
n
F
iref
ly
A
lg
o
rit
h
m
,
”
In
t
e
rn
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
tr
ica
l
a
n
d
C
o
mp
u
t
er
En
g
i
n
e
e
rin
g
(
IJ
ECE
)
,
v
o
l.
3
,
n
o
.
1
,
p
p
.
3
0
–
4
1
,
2
0
1
3
.
[8
]
A
.
P
f
lu
g
,
D.
Ha
rtu
n
g
,
C.
Bu
sc
h
,
“
F
e
a
tu
re
Ex
trac
ti
o
n
F
r
o
m
V
e
in
Im
a
g
e
s
Us
in
g
S
p
a
ti
a
l
I
n
f
o
rm
a
ti
o
n
a
n
d
Ch
a
i
n
Co
d
e
s,”
In
f
o
rm
a
ti
o
n
S
e
c
u
r
ity
T
e
c
h
n
ica
l
Rep
o
rt
,
v
o
l
.
1
7
,
n
o
.
1
–
2
,
p
p
.
2
6
–
3
5
,
F
e
b
.
2
0
1
2
.
[9
]
L
.
W
a
n
g
,
G
.
L
e
e
d
h
a
m
,
S.
-
Y.
Ch
o
,
“
In
f
ra
re
d
Im
a
g
in
g
o
f
H
a
n
d
V
e
in
P
a
tt
e
r
n
s
f
o
r
Bio
m
e
tri
c
P
u
rp
o
se
s,”
IET
Co
mp
u
t
er
V
is
io
n
,
v
o
l.
1
,
n
o
.
3
,
p
p
.
1
1
3
–
1
2
2
,
De
c
.
2
0
0
7
.
[1
0
]
M
.
S
o
n
i,
S
.
G
u
p
ta,
M
.
S
.
Ra
o
,
P
.
G
u
p
ta,
“
An
Ef
fi
c
ien
t
Vei
n
Pa
tt
e
rn
-
Ba
se
d
Re
c
o
g
n
it
i
o
n
S
y
ste
m,
”
2
0
1
0
F
o
u
rt
h
In
t
e
rn
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Em
e
r
g
in
g
S
e
c
u
r
ity
In
f
o
r
m
a
ti
o
n
,
S
y
st
e
m
s a
n
d
T
e
c
h
n
o
l
o
g
ies
,
p
p
.
2
3
4
–
2
3
9
,
Ju
l
.
2
0
1
0
.
[1
1
]
D.
Ha
rtu
n
g
,
M
.
A
.
Olse
n
,
H.
Xu
,
C.
Bu
sc
h
,
“
S
p
e
c
tra
l
M
in
u
ti
a
e
fo
r
Vein
Pa
tt
e
rn
Rec
o
g
n
it
io
n
,
”
2
0
1
1
In
t
e
rn
a
ti
o
n
a
l
J
o
in
t
C
o
n
f
e
re
n
c
e
o
n
Bi
o
m
e
tri
c
s
(I
JCB
)
,
p
p
.
1
–
7
,
Oc
t.
2
0
1
1
.
[1
2
]
R.
D.
P
ra
sa
n
n
a
,
P
.
Ne
e
lam
e
g
a
m
,
S
.
S
riram
,
N.
Ra
ju
,
“
En
h
a
n
c
e
m
e
n
t
o
f
V
e
in
P
a
t
tern
s
in
Ha
n
d
Im
a
g
e
f
o
r
Bio
m
e
tri
c
a
n
d
Bio
m
e
d
ica
l
A
p
p
li
c
a
ti
o
n
u
si
n
g
V
a
rio
u
s
Im
a
g
e
En
h
a
n
c
e
m
e
n
t
Tec
h
n
iq
u
e
s,”
Pro
c
e
d
ia
En
g
in
e
e
rin
g
,
v
o
l.
3
8
,
p
p
.
1
1
7
4
–
1
1
8
5
,
2
0
1
2
.
[1
3
]
A
.
S
h
a
h
z
a
d
,
C.
M
.
G
o
h
,
N.
M
.
S
a
a
d
,
N.
Walter,
A
.
S
.
M
a
li
k
,
F
.
M
e
riau
d
e
a
u
,
“
S
u
b
c
u
ta
n
e
o
u
s
Vein
s
De
tec
ti
o
n
a
n
d
Ba
c
k
p
ro
jec
ti
o
n
M
e
th
o
d
Us
in
g
Fr
a
n
g
i
Ves
se
ln
e
ss
Fi
lt
e
r,”
in
2
0
1
5
IEE
E
S
y
m
p
o
siu
m
o
n
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
s
&
In
d
u
strial
E
lec
tro
n
ics
(IS
CA
IE)
,
2
0
1
5
,
p
p
.
6
5
–
6
8
.
[1
4
]
R.
L
a
g
a
n
iere
,
Op
e
n
CV
2
C
o
m
p
u
t
e
r
V
isio
n
A
p
p
li
c
a
ti
o
n
P
ro
g
ra
m
m
i
n
g
Co
o
k
b
o
o
k
.
P
a
c
k
t
P
u
b
li
s
h
in
g
,
2
0
1
1
.
[1
5
]
A
.
F
.
F
ra
n
g
i,
W
.
J.
Nie
ss
e
n
,
K.
L
.
V
in
c
k
e
n
,
M
.
A
.
V
ierg
e
v
e
r,
“
M
u
lt
isc
a
le
Ves
se
l
En
h
a
n
c
e
me
n
t
Fi
lt
e
rin
g
,
”
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
M
e
d
ica
l
Im
a
g
e
Co
m
p
u
ti
n
g
&
Co
m
p
u
ter
-
A
ss
i
ste
d
In
terv
e
n
ti
o
n
.
S
p
rin
g
e
r
Be
rli
n
He
id
e
lb
e
rg
,
p
p
.
1
3
0
–
1
3
7
,
1
9
9
8
.
[1
6
]
Op
e
n
CV De
v
e
lo
p
m
e
n
t
T
e
a
m
,
“
O
p
e
n
C
V
Do
c
u
m
e
n
tatio
n
,
”
2
0
1
5
.
[On
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
:/
/
d
o
c
s.o
p
e
n
c
v
.
o
rg
/.
[1
7
]
CA
S
I
A
,
“
C
A
S
I
A
-
MS
-
P
a
lm
p
rin
t
V
1
,
”
2
0
1
4
.
[
O
n
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
:/
/
b
io
m
e
tri
c
s.id
e
a
lt
e
st.o
rg
.
[1
8
]
P
o
ly
U,
“
P
o
ly
U
M
u
lt
is
p
e
c
tral
P
a
lm
p
rin
t
Da
tab
a
se
,
”
2
0
1
4
.
[
O
n
li
n
e
].
A
v
a
il
a
b
le:
h
tt
p
:
//
ww
w
.
c
o
m
p
.
p
o
ly
u
.
e
d
u
.
h
k
/~
b
io
m
e
tri
c
s/M
u
lt
isp
e
c
tral
P
a
lm
p
rin
t/
M
S
P
.
h
tm
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
May
2018
:
5
7
8
–
5
8
6
586
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Zarin
a
M
o
h
d
No
h
re
c
e
iv
e
d
h
e
r
M
En
g
d
e
g
re
e
in
e
lec
tri
c
a
l
f
ro
m
th
e
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
la
y
sia
(U
T
M
)
in
2
0
0
9
a
n
d
sin
c
e
th
e
n
h
a
s
b
e
e
n
a
tt
a
c
h
e
d
t
o
t
h
e
Un
iv
e
rsiti
T
e
k
n
ik
a
l
M
a
la
y
sia
M
e
lak
a
(U
T
e
M
).
S
h
e
is
c
u
rre
n
tl
y
a
P
h
.
D
c
a
n
d
i
d
a
te
a
t
th
e
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
in
th
e
Un
iv
e
rsiti
P
u
tra
M
a
lay
sia
(UP
M
)
.
He
r
m
a
in
re
se
a
rc
h
in
tere
sts
a
re
in
t
h
e
f
ield
o
f
c
o
m
p
u
ter
a
n
d
e
m
b
e
d
d
e
d
sy
ste
m
e
n
g
in
e
e
rin
g
.
A
b
d
u
l
R
a
h
m
a
n
Ra
m
li
re
c
e
i
v
e
d
h
is
P
h
.
D
f
ro
m
th
e
Un
iv
e
rsity
o
f
Bra
d
f
o
rd
,
UK
in
1
9
9
5
.
He
is
c
u
rre
n
tl
y
a
n
As
so
c
iate
P
ro
f
e
ss
o
r
a
t
th
e
De
p
a
rt
m
e
n
t
o
f
Co
m
p
u
ter
a
n
d
Co
m
m
u
n
ica
ti
o
n
S
y
ste
m
s
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
P
u
tra
M
a
lay
sia
(UP
M
)
.
He
w
a
s
th
e
He
a
d
o
f
In
telli
g
e
n
t
S
y
ste
m
a
n
d
Ro
b
o
ti
c
L
a
b
o
ra
to
ry
(IS
R
L
)
a
t
th
e
In
stit
u
te
o
f
A
d
v
a
n
c
e
d
T
e
c
h
n
o
lo
g
y
,
UP
M
f
ro
m
2
0
0
2
t
o
2
0
1
1
.
T
o
d
a
te,
h
e
h
a
s
m
o
re
th
a
n
2
0
0
jo
u
rn
a
ls
a
n
d
c
o
n
f
e
re
n
c
e
p
a
p
e
rs
p
u
b
li
sh
e
d
.
His
re
se
a
rc
h
i
n
tere
sts
in
c
lu
d
e
e
m
b
e
d
d
e
d
a
n
d
re
a
l
-
ti
m
e
s
y
ste
m
,
i
m
a
g
e
p
ro
c
e
ss
in
g
a
n
d
m
u
lt
i
m
e
d
ia s
y
ste
m
.
M
a
rs
y
it
a
Ha
n
a
f
i
re
c
e
iv
e
d
h
e
r
P
h
.
D
f
ro
m
th
e
I
m
p
e
rial
Co
ll
e
g
e
Lo
n
d
o
n
i
n
2
0
1
2
.
S
h
e
h
a
s
b
e
e
n
e
m
p
lo
y
e
d
b
y
th
e
Un
iv
e
rsiti
P
u
tra
M
a
la
y
sia
(UP
M
)
sin
c
e
2
0
0
0
a
n
d
is
c
u
rre
n
tl
y
a
S
e
n
io
r
L
e
c
tu
re
r
a
t
th
e
De
p
a
rt
m
e
n
t
o
f
Co
m
p
u
ter
a
n
d
Co
m
m
u
n
ica
ti
o
n
S
y
ste
m
s
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
U
P
M
.
He
r
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
d
ig
it
a
l
im
a
g
e
p
ro
c
e
ss
in
g
,
p
a
tt
e
rn
re
c
o
g
n
it
i
o
n
,
se
c
u
rit
y
a
n
d
b
io
m
e
tri
c
.
M
.
Iq
b
a
l
S
a
rip
a
n
re
c
e
iv
e
d
h
is
P
h
.
D
f
ro
m
th
e
Un
iv
e
rsit
y
o
f
S
u
rre
y
,
UK
in
th
e
a
re
a
o
f
i
m
a
g
e
p
ro
c
e
ss
in
g
.
He
is
c
u
r
re
n
tl
y
a
P
r
o
f
e
ss
o
r
a
t
th
e
De
p
a
rtm
e
n
t
o
f
Co
m
p
u
ter
a
n
d
Co
m
m
u
n
ica
ti
o
n
S
y
st
e
m
s
En
g
in
e
e
rin
g
,
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
U
n
iv
e
rsiti
P
u
tra
M
a
la
y
sia
(UP
M
).
He
is
a
ls
o
a
m
e
m
b
e
r
o
f
th
e
IEE
E
a
n
d
th
e
In
st
it
u
te
o
f
P
h
y
sic
s
UK
.
His
r
e
se
a
r
c
h
a
re
a
is
in
im
a
g
e
p
ro
c
e
ss
in
g
,
p
a
rti
c
u
larly
in
m
e
d
ica
l
i
m
a
g
in
g
.
R
id
z
a
A
z
ri
Ra
m
lee
re
c
e
iv
e
d
h
is
M
a
ste
r
(2
0
0
8
)
in
T
e
lec
o
m
m
u
n
ica
ti
o
n
a
n
d
I
n
f
o
rm
a
ti
o
n
En
g
in
e
e
rin
g
f
ro
m
th
e
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
A
R
A
(Ui
T
M
)
a
n
d
BEn
g
(2
0
0
0
)
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
th
e
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
A
R
A
(Ui
T
M
),
M
a
la
y
sia
.
H
e
is
a
lso
a
c
o
o
p
e
ra
te
m
e
m
b
e
r
o
f
In
stit
u
te
o
f
En
g
i
n
e
e
r
M
a
lay
sia
(IE
M
)
,
g
ra
d
u
a
te
m
e
m
b
e
r
o
f
IEE
E
a
n
d
P
r
o
f
e
ss
io
n
a
l
En
g
in
e
e
r
g
ra
n
ted
b
y
Bo
a
rd
o
f
En
g
in
e
e
rin
g
M
a
la
y
sia
(BEM
)
i
n
2
0
1
2
.
He
is
c
u
rre
n
tl
y
p
u
rsu
i
n
g
h
is
P
h
.
D
a
t
th
e
Un
iv
e
rsiti
P
u
tra
M
a
la
y
sia
(UP
M
)
in
th
e
f
ield
o
f
Co
m
m
u
n
ica
ti
o
n
a
n
d
Ne
tw
o
rk
En
g
in
e
e
rin
g
.
His
re
se
a
r
c
h
in
tere
sts
a
re
in
th
e
a
re
a
o
f
i
m
a
g
e
p
r
o
c
e
ss
in
g
,
in
d
u
strial
e
lec
tro
n
ic
in
stru
m
e
n
tatio
n
a
n
d
e
lec
tro
n
ic
e
m
b
e
d
d
e
d
sy
ste
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.