TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 2, May 2015, pp. 185 ~ 19
0
DOI: 10.115
9
1
/telkomni
ka.
v
14i2.733
8
185
Re
cei
v
ed
Jan
uary 15, 201
5
;
Revi
sed Ap
ril 10, 2015; Accepted Ap
ril 24, 2015
Building Integrated Photovoltaic Market trend and its
Applications
M Tripath
y
*
1
,
P K Sadhu
2
Dep
a
rtment of Electrical E
ngi
neer
ing, Ind
i
an
School of Min
e
s, Dhan
ba
d-8
260
04, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: meetaran
i_tri
path
y
@r
ediffm
ail.com
1
, prad
i
p_sa
d
h
u
@
y
a
h
oo.co.in
2
A
b
st
r
a
ct
T
he deve
l
o
p
m
ent of BIPV techno
logy
and th
eir i
m
pl
e
m
e
n
ta
tion in c
onstruc
tion of bu
ild
in
g enve
l
o
p
provi
des an a
e
sthetica
l
, eco
n
o
m
ic
al an
d techn
i
cal
so
luti
on. T
h
is pap
er
presents the buil
d
i
ng env
el
op
e
prod
ucts, and
their
prop
erties.
BIPV prod
ucts for pitc
h
ed r
o
of, flat and
cur
v
ed ro
of, trans
pare
n
t an
d se
mi-
transpar
ent facades a
nd skyli
ghts have b
e
e
n
hig
h
li
ghte
d
i
n
the
p
a
p
e
r. The
pro
perties
of BIPV pr
od
u
c
ts
inclu
de s
o
lar c
e
ll effici
ency, o
pen circ
uit volt
age, a
nd sh
ort circuit curre
nt, max
i
mu
m p
o
w
er and fill fac
t
or.
F
e
w
successful w
o
rldw
ide ex
isting BIPV Projects w
i
th
different pro
duct categor
ies are
also listed i
n
a
tabul
ar for
m
.
T
he
maj
o
r co
n
s
ider
ations
for
a succ
essf
ul
proj
ect are
pro
per or
ient
ation
of BIPV mod
u
le,
suitab
le dista
n
c
e betw
een b
u
ildi
ngs, avo
i
d
a
n
ce sha
dow
effects and suita
b
le arc
h
itectur
a
l cons
ider
atio
ns
BIPV technol
o
g
y is a s
u
stain
abl
e an
d cost
effective
me
th
od a
nd th
e future of this tec
h
nol
ogy is
pro
m
isi
n
g
as it creates
z
e
ro ener
gy an
d z
e
r
o
e
m
issi
on
buil
d
i
ngs.
Ke
y
w
ord:
BIPV, BIPV test conditions, feed in tariff, m
a
rket trend
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
A large
glob
al emissio
n
of ca
rbon
di
oxide (CO2
) gas, a
r
e
p
u
shi
ng the
worl
d into
dang
ero
u
s
condition. Because of indu
strial re
voluti
ons, carb
on
emission fro
m
burni
ng fo
ssil
fuels ha
s gro
w
n expo
nenti
a
lly. By end
o
f
the year 203
0, the total emissi
on of CO2 is expe
cte
d
to
excee
d
10 bill
ion tons [1]. More
over, be
cau
s
e of
sha
r
p increa
se of
fossil fuel
pri
c
es an
d con
c
e
r
n
about glo
bal
warming, the
r
e is
a tren
d
of wide a
cceptan
ce for t
he po
we
r su
pply to con
s
i
der
more
an
d m
o
re
re
ne
wabl
e en
ergy
so
urces in
ma
ny part
s
of t
he
worl
d [2]. The E
u
ro
pe
an
commi
ssion
has set a
target of
achieving 2
0
%
of to
tal ene
rgy
bu
dget from
ren
e
wa
ble
so
urces
by the yea
r
202
0 [3]. T
h
is
will
stabi
lize th
e g
r
e
e
nhou
se
ga
s
emission
thu
s
red
u
cin
g
t
he
contri
bution
to glob
al warming. Amon
g
all the r
ene
wabl
e reso
urce
s, sol
a
r
en
ergy i
s
the
most
abun
dant, ine
x
haustibl
e an
d clea
n on
e [4]. World’
s p
r
ese
n
t ene
rgy
requi
rem
ent is 15T
era
Wa
tt
i.e. 10
4
times smalle
r than
solar e
nergy incident
on
the planet. It is estimated
that the solar
energy re
cei
v
ed within le
ss tha
n
one
hour
woul
d b
e
sufficie
n
t to cover
one
year of wo
rld
’
s
energy b
udg
et [5]. Photov
oltaic te
ch
nol
ogy is o
ne of the elegant tech
nolo
g
ies
available for the
efficient use of solar p
o
wer [6]. Without any
environmental h
a
rm, this techn
o
logy pro
d
u
c
es
electri
c
al
po
wer
by con
v
erting solar irradi
an
ce
into dire
ct
electri
c
cu
rre
nt by using
semi
con
d
u
c
tors [7]. In future
scop
e fo
r PV appli
c
at
ion, there a
r
e four
majo
r factors
m
u
st be
con
s
id
ere
d
vi
z. cost
red
u
ct
ion, incre
a
se
of e
fficien
cy, BIPV applicat
ions and
sto
r
age
system
[8].
BIPV technol
ogy tran
sfo
r
ms b
u
ildin
g f
r
om
ene
rgy
con
s
um
er to
ene
rgy p
r
od
uce
r
[9]. In t
h
is
advan
ceme
nt, con
s
tru
c
tion
techn
o
logy i
s
requi
red to
be me
rge
d
wi
th BIPV technology
for bet
ter
perfo
rman
ce
[10]. Here, th
e photovoltai
c
mod
u
le
s be
come t
r
ue
co
nstru
c
tion
ele
m
ent se
rving
as
building
exteriors, such a
s
ro
of, facad
e
or
skylig
ht [11]. The BIPV also serves a
s
we
athe
r
prote
c
tion, th
ermal in
sul
a
tion, noi
se p
r
ot
ection
et
c
[12]. BIPV
s
e
mitrans
p
ar
e
n
t installation all
o
ws
some
of the li
ght for day li
ghting o
r
vie
w
ing.
R
oofto
p sol
a
r p
hoto
v
oltaic (PV)
systems i
s
gai
ning
popul
arity be
cau
s
e la
ck of grou
nd spa
c
e and la
rge
a
v
ailability of unused roof space. The BIPV
techn
o
logy
redu
ce
s the
t
o
tal buil
d
ing
material
c
o
st
s a
n
d
mou
n
t
i
ng
co
st
s,
sin
c
e B
I
P
V
s
do
not
requi
re
d b
r
a
c
kets
and
ra
ils [13]. BIPV system
ge
ner
ate
s
ele
c
tricity out of
sunli
ght with
no
pollution
s. Fo
r an
efficient
BIPV system, variou
s
f
a
ct
o
r
s m
u
st
be t
a
ken i
n
t
o
a
c
c
o
unt
su
ch
as
PV
module
temp
eratu
r
e, pa
rti
a
l sh
ado
win
g
,
installation
angle
and
ori
entation
s
etc.
BIPV installa
tion
is in
crea
sing
every yea
r
. T
he d
e
si
gne
rs
and
arch
ite
c
ts a
r
e
u
s
ing
BIPV prod
uct
s
with in
novative
method
s wh
erea
s; man
u
f
acture
rs co
ntinue to
create ne
w produ
cts to m
eet the market
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 185 – 190
186
requi
rem
ent. Some compa
n
ies,
su
ch a
s
Sanyo, S
c
ho
tt solar, Sha
r
p and Su
n-te
ch
a
r
e
wo
rki
n
g
on n
e
w BIPV prod
uct
s
fo
r f
a
ca
de,
skylig
hts a
nd
win
d
o
ws. Implem
entation
of F
eed-i
n
T
a
riff (FiT)
and othe
r g
o
vernm
ent suppo
rt sche
mes fo
r so
l
a
r en
ergy h
a
ve cau
s
e
d
wide a
c
cept
ance
throug
hout th
e worl
d.
2. BIPV Products
2.1.
Definition o
f
Differ
e
n
t
Paramete
rs of
Building Inte
grate
d
Photov
o
l
taic Products
The prope
rtie
s of different
BIPV product
s
are d
e
fined
as follo
ws:
1)
Solar cell efficiency (
ce
l
l
): It is
the ratio of peak p
o
wer
ma
x
P
generated in a
solar
cell to the
radiatio
n
p
o
wer rea
c
hi
ng a
t
sola
r cell. Solar cell
efficien
cy
d
e
cre
a
se
s at
lo
we
r
in
solatio
n
and
at hig
her tempe
r
atu
r
e
s
.
ma
x
cel
l
P
EA
,
ma
x
P
is th
e
p
eak po
we
r
i
n
Watt (
W),
E
is the
input light irra
dian
ce in
2
/
Wa
t
t
m
and
A
is the surf
ace a
r
ea of th
e sola
r cell in
m
2.
2)
P
a
cki
ng
f
a
ct
o
r
(
PF
): It i
s
th
e ratio of
tota
l sol
a
r cell a
r
ea to
total m
odule
a
r
ea
in
cludi
ng th
e
frame a
r
ea.
PF
is
alway
s
les
s
than 1.
3)
Solar mo
dule
efficien
cy (
m
): It is the ratio of pea
k power of a
sola
r mo
dul
e to the
radiatio
n po
wer re
aching
across the to
tal module a
r
ea in
cludi
ng
the frame a
r
ea.
m
is
alway
s
less then
ce
l
l
,
mc
e
l
l
PF
4)
Open circuit voltage
(
oc
V
): It is the outp
u
t voltage of a sola
r cell or
solar mo
dule i
n
open
-
circuit co
nditi
on at a spe
c
if
ic irradia
n
ce (
E
) and cell temperature.
5)
Short ci
rcuit
current (
s
c
I
): It is
the c
u
rrent in a s
h
ort c
i
rcuit
solar
cell or solar module.
6) Peak
po
we
r
(
ma
x
)
P
: Maximum
output po
wer of a solar ce
ll or sola
r mo
dule at a spe
c
ific
insol
a
tion an
d sola
r cell te
mperature
max
m
ax
max
PV
I
7)
Fill Factor (
FF
):
ma
x
m
a
x
()
1
oc
sc
oc
sc
PV
I
FF
VI
VI
.
2.2.
Classific
a
tio
n
of BIPV Products and their Applica
t
ions
Based o
n
th
e function, th
e material
s u
s
ed a
nd their mecha
n
ical cha
r
a
c
teri
stics, BIPV
prod
uct
s
are cla
ssifie
d
into
five main categori
e
s [14]:
1)
Standard in-roof system
s
2) Semi-tra
nspa
rent
sy
stems
3)
Clad
ding syst
ems
4)
Solar tiles and shingles
5) Flexible
laminates
All the above produ
cts ex
cluding flexible
laminat
es in
volves sam
e
type of techn
o
logie
s
namely c-Si a
nd thin film. T
he flexible laminates
h
a
ve
only the thin
film technolo
g
y. Under all
the
above
cate
g
o
rie
s
, differe
nt types of P
V
appli
c
atio
n
s
a
r
e
integ
r
a
t
ed into
different pa
rts of t
he
building
syste
m
s. The different parts a
r
e:
roof,
external
building wall
s, semi
-tran
s
pare
n
t facad
e
s
,
sky
lig
ht
s an
d sha
d
ing
sy
st
e
m
s [
16]
.
Flat roof
s an
d pitch
ed r
oo
fs are i
deally
suited fo
r P
V
integratio
n. Usually
there is le
ss
sha
d
o
w
ing at
roof heig
h
t than at groun
d
level. Roof
s often provi
de a large, u
nused surfa
c
e
for
integratio
n. A
more el
ega
nt way to
int
egrate
PV i
s
to u
s
e
PV
Shingle
s
o
r
PV Tiles.
Th
e PV
module i
s
m
ounted li
ke
any shi
ngle
or tile a
nd t
he work
can
be carried
out by a roo
f
ing
contracto
r
.
Fl
at roof
s have
the adva
n
ta
ge of g
ood
a
c
cessibility,
e
a
sy in
stallatio
n
and
provid
e a
free ch
oice for
the orie
ntation of the PV uni
ts. The added
wei
ght of the PV
array on th
e roof
must be
con
s
idere
d
, as the
uplifting force of the wind,
which ca
n bl
ow
the mod
u
l
e
s a
w
ay.
Semi-tra
nspa
rent gla
s
s m
odule
s
mai
n
l
y
us
ed fo
r a
e
stheti
c
al re
aso
n
s. Thi
s
module
prote
c
ts th
e sun light
s to b
u
ilding
su
rfaces a
nd
inte
rio
r
s. Th
e requi
red light p
a
ssi
ng through
th
e
desi
r
ed
stru
ct
ure
s
can be
cu
stomized b
y
dim
ensio
ns and adju
s
te
d the numb
e
r and sp
aci
n
g
of
cell
s in the ca
se of crystalline sili
con
tec
hnol
ogy. For thin-fil
m, the transpare
n
cy
can
be
controlled
by
ch
angi
ng th
e man
u
factu
r
ing p
r
o
c
e
ss.
More tran
spare
n
t the
module, l
e
ss the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Building Integ
r
ated Photo
v
oltaic Ma
rket
trend an
d its Applicatio
ns
(M Tripath
y
)
187
energy efficie
n
cy of BIPV module. Sem
i
transpa
rent
BIPV modules of differe
nt shap
e can
be
use
d
as
sha
d
i
ng eleme
n
ts
above wi
ndo
ws o
r
a
s
part
of overhea
d g
l
azin
g stru
ctu
r
es.
PV panel
s a
r
e inte
grate
d
into buil
d
in
g wall
s
as
a
stan
dard
claddin
g
ele
m
ent. The
clad
ding
void
help
s
to m
a
intain inte
rn
al tempe
r
atu
r
e
of the
buildin
g by
co
ntrolli
ng
sola
r
gain
i
n
the sum
m
er
and by en
co
uragi
ng the t
herm
a
l sta
ck effect whi
c
h
helps to
dra
w
air th
rou
g
h
the
building
spa
c
es. Thi
s
way the ene
rgy de
mand of the b
u
ilding
can b
e
redu
ce
d.
Solar
tile
s a
nd shin
gle
s
are de
sign
ed
to
in
te
rlace
with
co
nven
tional roofing
tiles
or
clad
ding mat
e
rial
s. Sometimes la
rge
r
tiles are us
ed i
n
whol
e roof
or wall. Thi
n
panel
s are al
so
use
d
in stan
dard
roofing
system
s. The
import
ant ca
tegorie
s of the application
where PV tiles
and
shi
ngle
s
are u
s
e
d
a
r
e pitched
roo
f
s. No
rma
lly
PV roof tile
s
with m
ono
or poly
cry
s
talli
ne
sola
r cell
s a
r
e use
d
wit
h
t
he cla
s
sic
a
l r
oof
t
iles.
Flexible lami
nates
are
attach
ed to the
roofi
ng
syste
m
, which p
r
o
v
ides
spe
c
ific feature
s
.
Ho
wever, th
e
rigid
sta
nda
rd PV mod
u
le
s d
on’t give t
he
similar fea
t
ures.
Flexibl
e
lamin
a
tes can
be u
s
ed
effectively in flat and curve
d
ro
ofs. Th
i
s
give
s adva
n
tage
s like li
ght wei
ght PV syste
m
,
efficient u
nde
r
wind
load
a
nd
rack mou
n
ting
system
can
be
avoid
ed
sin
c
e thi
s
ca
n b
e
di
re
ctly
paste
d to th
e
roofin
g m
a
terial. Fl
exible
PV laminate
s
offers th
e
benefits of th
e waterp
ro
ofing
membrane
s
with the adva
n
tage
s of con
v
er
ting sol
a
r
energy to electri
c
al po
we
r.
2.3. BIPV
Market
Trend
Figure 1. BIPV Market: Global Installa
tio
n
Cap
a
city Fore
ca
sted Till
2020 in
MW
[15]
Table 1. The
comp
etitive structu
r
e
of the
BIPV Market (Solar Bu
zz)
PV Module
Man
u
fac
t
urer
Cou
n
tr
y
%
of
Market s
h
a
r
e
Suntech China
9.2
Y
i
ngli Gre
en Ene
r
g
y
Ene
r
g
y
China
7.6
Canadian Solar
Canada
7.6
Trina Solar
China
6.9
Sharp Solar
Japan
6.0
Solar fun
China
5.4
First Solar
USA
5.3
Jabil Circuit
USA
4.2
Solar World
USA
4.1
Sun Po
w
e
r
USA
3.6
LDK China
3.4
San
y
o Electric
USA
3.3
REC Nor
w
a
y
3.0
K
y
ocera
Japan
3.0
JA Solar
China
2.8
Jinko Solar
China
2.6
Ningbo Solar Ele
c
tric
China
2.5
Renesola China
2.1
Others
-
17.4
There is a h
uge pote
n
tial of the BIPV
market
in all over the wo
rl
d. Howeve
r, there is
establi
s
h
ed
market in mo
st of the co
un
tries in
Eu
ro
p
e
i.e. Germ
an
y, Spain, Fra
n
ce, Swit
ze
rl
and
and Italy. Many govern
m
ents in ab
ove cou
n
trie
s
are
sub
s
idi
z
i
ng the BIPV technol
ogy b
y
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
BI
P
V
I
n
stallation
BIPV
Installa
ti
on
in
(
MW)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 185 – 190
188
impleme
n
ting
Feed in T
a
rif
f
(FiT) sy
ste
m
. This con
c
ept allows
sh
elling ba
ck ex
ce
ssive p
o
we
r to
the
g
r
id at
a
highe
r pri
c
e
t
han
th
e grid
price of
the
electri
c
ity.
World
w
ide
g
r
o
w
th rate of
B
I
PV
durin
g last se
ven years i
s
approxim
atel
y 50% of installed ca
pa
city in every year. There i
s
more
than 1300 M
W
of installati
on till date. The future BI
PV market g
r
o
w
th is shown in Figure 1 till the
year 2
020. BI
PV installatio
n
in
2020
is
expecte
d to
gro
w
with a
g
r
owth
rate of
30% till 20
20
in
each yea
r
. T
he exp
e
cte
d
install
a
tion i
s
m
o
re
than
800
0M
W by
end
of yea
r
202
0. Ta
ble
1
pre
s
ent
s the
overall bu
sin
e
ss of PV module
s
by di
fferent compa
n
i
e
s. It is observed that there is
no leadi
ng P
V
Module m
anufa
c
ture
r i
n
the wo
rld.
More
over the
manufa
c
ture
r like Su
n te
ch
occupi
es the
PV market on
ly 9.2%.
Table 2. List
of Major BIPV proje
c
ts wit
h
different ph
otovoltaic categori
e
s [17]
PV
categ
ories
Project n
a
me
Project l
o
cati
o
n
Latit
ude
/
longi
tu
de
Year of
establi
sh
men
t
Capaci
t
y
o
f
the pr
ojec
t
Roof -top
integration
Black River
Par
k
commercial Roof Top
Solar Project
Cape To
wn, Sou
t
h
Africa
35
˚
55’ S
18
˚
22’ E
2014
1.2
MW
p
Roof- top
integration
Solar PV plant, Punjab
Amritsar, Punjab,
India
31
˚
37’N
74
˚
55’ E
2014
7.52
MW
p
Roof- top
integration
Centro In
grosso
Sviluppo
compano in Nola
Nola-Naples, Ital
y
40
˚
55’ 33
.96” N
14
˚
31’
38.64” E
2013
20.252
MW
p
Roof- top
integration
Riverside Rene
wable
Energ
y
-Holt logistics
Refrigerat
ed w
a
r
ehouse
Gloucester Cit
y
,
Ne
w
Jerse
y
39
˚
53’
29.67” N
75
˚
7’ 0.12”
W
2012
9
MW
p
Roof- top
integration
Avidan Energ
y
S
o
lution
Edison , Ne
w
Jer
s
ey
, USA
40
˚
30’14.4
”
N
74
˚
20’
57.84” W
2011
4.26
MW
p
Roof- top
integration
Good
yea
r
Dunlo
p
logistic centre
Philipps burg,
G
e
r
m
any
49
˚
13’
59.88” N
8
˚
27’E
2011
7.4
MW
p
Roof -top
integration
To
y
s
“
R
” Us
distribution centre
Flanders, Ne
w
Jer
s
ey
, USA
40
˚
50’52”
N
74
˚
42’ 34”
W
2011
5.38
MW
p
Roof- top
integration
Boeing 787 assembly
building, South Carolina
North C
harleston
S.C, USA
32
˚
58’
28.52” N
80
˚
4’ 8.99”
W
2011
2.6
MW
p
Roof -top
integration
Shanghai No. 1/
2
Metro ope
ration
Co. Ltd
Hongqiao Rail
w
a
y
station, Shangha
i,
China
31
˚
12’N
121
˚
30’ E
2010
6.68
MW
p
Roof- top
integration
FedEx
Wood bridge, Ne
w
Jer
s
ey
, USA
40
˚
33’
38.88” N
74
˚
17’
33.36” W
2010
2.42 M
W
p
Roof- top
integration
GSA Bean F
eder
al Centre
Indianapolis,
Indiana, USA
39
˚
47’
27.6” N
86
˚
8’ 52.8”
W
2010
2.012 M
W
p
3.
Architec
tura
l Design of BIPV Module Mounting Structur
es
Important a
s
pect
s
of designing BIPV
Modul
e Mo
u
n
ting Structu
r
es (MMS) a
r
e site
con
d
ition
s
su
ch a
s
win
d
speed, rain fal
l
and te
mpe
r
ature. Vari
ou
s mod
u
le mo
unting st
ru
ctu
r
es
made u
p
of d
i
fferent mate
rial e.g. galva
nize
d iro
n
, al
uminum
stru
ctures etc
are
use
d
in different
BIPV proje
c
t [18]. The
p
a
ram
ount
co
mpone
nts in
BIPV MMS are ve
rtical
col
u
mn
s,
ra
fters,
purlin
e, brackets, m
ounti
ng
clips,
ca
b
l
e ca
rri
ers et
c. Fo
r a l
a
rg
er life time
o
f
BIPV system,
corro
s
io
n in
mounting
structures i
s
av
oided
by
follo
wing
galva
nization. Th
e
standa
rd
thickn
ess
fo
llo
w
e
d
in ga
lva
n
i
za
tio
n
o
f
s
t
ru
c
t
ur
e is
10
0-
1
2
0
mic
r
on
s
.
Ho
w
e
ve
r
,
fo
r c
o
ld
fo
r
m
e
d
s
t
ee
l
th
e
galvani
zation
thickne
ss
can
be redu
ce
d to 80 micron
s.
Strength and
durability are
major a
s
pe
ct
s
for de
sig
n
ing
the st
ru
ctural co
mpo
nen
ts of
MMS.
Tubula
r
se
ction may
be a
good
optio
n
for
better
conn
ectivity among the st
ruct
ural
comp
one
nts [
19].
Galvani
zed ‘Z’ sectio
n
purlin
e is
used
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Building Integ
r
ated Photo
v
oltaic Ma
rket
trend an
d its Applicatio
ns
(M Tripath
y
)
189
for carrie
rs
DC ca
ble
s
f
o
r avoi
ding
corro
s
io
n. T
h
is h
e
lp
s to
have a
n
in
tegrated
wi
ri
ng
manag
eme
n
t
system. Fi
gu
re 1
(
a) &
(b) shows th
e
diff
erent
type of
purlin
e a
nd th
e cable
sy
ste
m
.
For p
r
oviding
BIPV support
ed col
u
mn wit
h
vertical adj
usted a
ngle i
s
sh
own in Figure 1
(
c).
Figure 1(a
)
. Mounting
whi
p
attache
d
to Z-
se
ction pu
rlin
Figure 1(b
)
. C-
sectio
n pu
rlin to accom
m
odate
cabl
e
Figure 1(c). B
I
PV supporte
d colum
n
with
vertical adju
s
tment
4. Conclu
sion
Followi
ng
are
the
co
ncl
u
si
ons d
r
a
w
n f
r
om th
e
pr
es
en
t
e
x
te
n
s
ive r
e
vie
w
w
o
rk
o
n
BIPV
prod
uct
s
and
their tech
nolo
g
y.
1)
BIPV systems ca
n be in
st
alled ove
r
all
area
s
of buil
d
ing envel
op.
Most preferred pla
c
e for
the pla
c
em
en
t of sol
a
r mod
u
le i
s
roof top
due
to
am
ple
of solar irradi
ance. However, the
r
e
i
s
large fa
ca
de
surfa
c
e
of a
building fo
r i
n
tegratin
g so
lar mo
dule
s
. Thin-film
sola
r mod
u
le is
flexible an
d
can b
e
pl
aced
in any
uneve
n
pa
rts of
the
building
surfa
c
e. Cu
rtain wall
is
an
othe
r
option in BIPV technolo
g
y, which is
fast
est gro
w
in
g market se
gm
ent.
2)
Building d
e
si
gner mu
st be
convin
ce
d th
at PV
system
s a
r
e alte
rnati
v
e solutio
n
in
com
pari
s
o
n
with oth
e
r
co
nstru
c
tion
m
a
terial. PV m
anufa
c
ture
r
a
nd the
buildi
ng d
e
sig
n
e
r
sho
u
ld
wo
rk
together fo
r d
e
veloping n
e
w
pro
d
u
c
ts fo
r buildin
g inte
gration, which can g
ene
ra
te electri
c
ity
as well as
ca
n repla
c
e oth
e
r co
nst
r
u
c
tio
n
material.
3)
Many g
o
vern
ments have
i
n
trodu
ce
d F
e
ed in
Ta
riffs
(FiT) for
sub
s
idi
z
ing
BIPV tech
nolo
g
y.
FiTs
system
has m
ade
BIPV technol
ogy more
po
pular
and
accepte
d
in wo
rldwi
de. The
results
sho
w
that BIPV tech
nolo
g
y shall be
sust
ainabl
e and
co
st effective in future as
resea
r
ch co
ntinue
s to offer che
ape
r and
more effici
ent
system.
Referen
ces
[1]
Enkvist, Per-A
nders, Je
ns D
i
n
kel, a
nd
Ch
arl
e
s Li
n. Impac
t
of the fin
anci
a
l
crisis o
n
carb
o
n
eco
nomics:
Versio
n 2.1 of the gl
ob
al gre
e
nho
use g
a
s ab
at
ement cost curve. McKinse
y
& Comp
an
y.
201
0.
[2]
WT
RG econo
mics. Oil price histor
y
an
d an
al
ysis. 20
08. See als
o
:<
http:
// w
w
w
.
w
t
rg.c
om/price.htm>.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 185 – 190
190
[3]
Europ
e
a
n
com
m
ission, C
o
m
m
unic
a
tion fro
m
the co
mmiss
ion to th
e Eur
o
pea
n p
a
rli
a
me
nt, the Co
unci
l
,
the Euro
pe
an
Econom
ic an
d
social
commit
t
ee an
d
the c
o
mmittee of th
e reg
i
ons-
20
20 b
y
20
2
0
Europ
e
’s clim
a
t
e chang
e op
p
o
rtunit
y
. Com (
200
8) 30 fin
a
l.
[4]
Parid
a
, Bhub
a
nes
w
a
ri, S. Ini
y
an, Rank
o Goi
c
. A
revie
w
of solar p
hotov
olt
a
ic techn
o
l
ogi
e
s
.
Renew
abl
e
and susta
i
n
abl
e ener
gy revie
w
s.
2011; 15(3
)
: 1625-1
6
3
6
.
[5]
Le
w
i
s, N
a
than
S. Po
w
e
rin
g
the pla
net.
MRS bull
e
tin.
2
007;
32(1
0
): 808-
82
0
.
[6]
Strong, Steven
. Buildi
ng int
e
g
r
ated ph
otovo
l
taics (bi
p
v).
W
hole b
u
il
din
g
de
sign g
u
id
e.
201
0.
[7]
Rod
e
, Joha
nn
es, F
abien Cr
assard. T
he evoluti
on of
bui
l
d
in
g integr
ated
photovo
l
taics
(BIPV) in the
German an
d F
r
ench tech
no
log
i
cal in
nov
atio
n s
y
stems for sol
a
r cells. 20
07.
[8]
Rau
gei, Marco,
Paolo F
r
a
n
kl. Life c
y
cle im
pa
cts and co
sts o
f
photovo
l
taic s
y
stem
s: curre
n
t
state of the
art and future o
u
tlooks.
Ener
g
y
.
2009; 34(
3): 392-
399.
[9]
Prasad, D
eo,
Mark Sno
w
.
Desig
n
i
ng w
i
th solar
pow
er
: a source b
ook for bu
il
di
ng int
egrate
d
photov
olta
ics (BiPV)
. Routle
d
ge. 201
4.
[10]
Pagl
iaro, Mari
o, Rosari
a Ciri
m
inn
a
, Giovan
ni Palm
is
an
o. BIPV: merging
t
he photov
olt
a
ic
w
i
th th
e
constructio
n
in
dustr
y
.
Pro
g
res
s
in Photovo
l
tai
cs: Research a
nd App
licati
ons
2010; 1
8
(1): 6
1
-72.
[11]
Peng, Ch
an
gh
ai, Ying Hu
an
g, Z
h
ishen W
u
. Buildi
ng-i
n
teg
r
ated ph
otovo
l
taics (BIPV) in architectur
a
l
desi
gn in C
h
i
n
a.
Energy a
nd
Buil
din
g
s.
201
1;
43(12): 3
592
-359
8.
[12] Photovo
l
taic.
h
ttp://en.
w
i
ki
pe
d
i
a.or
g/
w
i
ki/photovoltaics#cite_note-jac-0.
[13]
Neu
w
a
l
d J. All
you ne
ed t
o
kno
w
Ab
out
Build
i
ng Inte
grated Ph
otov
oltaic-
part 2, roof consu
i
t,
http://
w
w
w
.
ro
otconsu
l
t.co.uk/a
rticles/ka
lzi
p2.
htm (accessed
Novem
ber 9, 2
011).
[14]
F
r
aile D, Des
potou E,
Lato
u
r M, Slusaz T
,
W
e
iss I, C
anev
a S,
Hel
m
P, Goodal J, F
i
ntikakis N,
Schel
leke
ns E.
PV
Diffusion
in the Buil
din
g
Sector. Europe
an Ph
otov
oltaic Ind
u
str
y
Associatio
n
,
Sunris
e Project
.
2008.
[15]
Frost & Sulliva
n
.
Europe
an b
u
ild
in
g inte
grat
ed ph
otovo
l
taic
market
. Re
por
t. 2008.
[16]
Buil
din
g
Integr
ated Phot
ovolt
a
ic:
A ne
w
des
i
gn op
portu
nit
y
for architects.
[17]
List of
photov
oltaic
installation.
2014. http
://en.
w
i
kipedia.or
g/
w
i
k
i
/
List_of_r
ooftop
_ph
otovo
l
taic_
i
nstall
ations.
[18]
X
u
JC, Liu CF, Hou GQ. Analysis structure of inst
allation component
w
h
ich co
mbined w
i
t
h
architecture
(BIPV).
Solar Energy
5
. 20
09:
61-6
2
.
[19]
Eiffert, Patrin
a, Gregor
y
J
Kiss.
Buil
din
g
-
integr
ated
ph
otovolta
ic
des
igns
for c
o
mmercial
a
n
d
institutio
nal str
u
ctures:
a sour
cebo
ok for architects. DIANE Publ
ishi
ng. 20
00.
Evaluation Warning : The document was created with Spire.PDF for Python.