TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5211 ~ 52
1
6
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.588
5
5211
Re
cei
v
ed Fe
brua
ry 27, 20
13; Re
vised
Ma
rch 26, 20
14; Accepted
April 6, 2014
Red (SrCa)AlSiN
3
: E
u
2+
Nitride Phosphor Particle Size of
Phosphor Converted Warm White LEDs
Hui Yuen Pe
ng, Hsien Sh
iung H
w
a
n
g, Muthar
asu
Dev
a
rajan
Nan
o
Optoel
ec
tronics Res
ear
ch Lab
orator
y,
Schoo
l of
Ph
ys
ics, Universiti
Sains Ma
la
ysi
a
(USM),
118
00, Min
den
, Pulau Pin
a
n
g
, Mala
ysi
a
A
b
st
r
a
ct
Red (Sr
C
a)Al
S
i
N
3
: Eu
2+
n
i
trid
e p
hosp
hor w
i
t
h
differ
ent p
a
rti
c
le si
z
e
s w
e
re
character
i
z
e
d
base
d
o
n
physic
a
l a
nd
lu
mi
nesc
ent pr
o
perties, th
en
p
a
ckag
ed
into
C
h
ip-On-B
oard
(COB) W
a
rm W
h
ite L
i
g
h
t Emitting
Diod
e
(LED)
mo
du
les to inv
e
stigate the i
n
flue
nce
of parti
cle si
z
e
on p
a
ckagi
ng par
a
m
eters and o
p
ti
cal
output of the
COB LED dev
i
c
es. T
he
phos
phor p
a
rticle s
i
z
e
s
investi
gate
d
w
e
re 10
µ
m
,
12
µ
m
a
nd 1
4
µ
m
,
and
exp
e
ri
me
n
t
al data
in
dic
a
tes that the
e
m
i
ssion s
pec
tru
m
for the re
d p
h
o
sph
o
r w
i
th bi
gger
particl
e si
ze
is slig
htly red-
shifted co
mp
ar
e w
i
th the red phos
ph
or w
i
th sma
ller
particl
e si
z
e
. Besi
de
s that, COB LED
mo
du
les p
a
ck
age
d w
i
th smaller r
ed p
hos
phor p
a
rticl
e
requ
ired s
lig
htl
y
lesser a
m
ou
nts of phos
ph
or to
achi
eve sa
me
valu
e of Corre
l
a
ted C
o
lor T
e
mp
eratur
e
(CC
T
) range fro
m
350
0K to 36
00
K, w
h
ile en
han
cin
g
the o
p
tica
l o
u
t
put p
o
w
e
r. T
h
e av
era
ge
lu
me
n
outp
u
t a
nd th
e
avera
g
e
efficacy
of
COB LED
d
e
v
i
ces
packa
ge
d w
i
th 10
µ
m
phos
ph
o
r
had
an i
n
cre
m
e
n
t of 5.
07
%
and
9.55% r
e
spective
ly w
h
il
e 12
µ
m
ph
osp
hor
had a
n
incr
ement of 5.14% a
nd 9.79
% resp
ective
ly co
mpa
r
ed to the 14
µ
m
ph
osp
hor sa
mp
le.
Ke
y
w
ord:
red
nitrid
e phos
ph
or, phosp
hor p
a
rticle si
z
e
, p
a
ck
agi
ng efficie
n
cy, light extra
c
tion efficacy, LED
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
White Li
ght
Emitting Diod
e (LE
D
) te
ch
nology
is
cu
rrently re
pla
c
ing conventio
nal white
light sou
r
ce
s in lig
hting
appli
c
ation
s
due to
thei
r excell
ent p
r
ope
rtie
s of
high l
u
mino
u
s
efficiencies, customizable
spect
r
um
output, low power
consumpti
on, good reli
ab
ility, and long
lifetimes [1]. Gene
ral
whit
e LED li
ghtin
g is
cate
gori
z
ed ba
se
d on
Correl
ated
Color T
e
mp
era
t
ure
(CCT) into
th
ree
gen
eral
categ
o
rie
s
:
Cool
Wh
ite (CW), with a CCT ran
ge of
250
0K-4
000
K,
Neutral White (NW)
with
a CCT ran
g
e
of
4000K-5
0
00K and
Wa
rm White
(WW)
with a CCT
rang
e of 500
0K-65
00K [2].
Phosp
h
o
r
co
nverted LE
D (pc-LE
D) ut
ilizing a
wav
e
length d
o
wn conve
r
ting
yellow
pho
sph
o
r a
n
d
blue G
a
In
N/Ga
N LED
chip lig
ht so
urce is th
e most commo
n method
used in
gene
rating g
e
neral illumi
na
tion white light. This method has g
ood
conve
r
si
on ef
ficien
cie
s
and
is
easi
e
r to
cust
omize
an
d m
anufa
c
ture
co
mpared to
other
method
s
of gen
eratin
g
white li
ght from
LEDs [4]. In o
r
de
r to lower
CCT val
u
e
s
a
nd obtain
goo
d Colo
r
Rend
ering In
dex (CRI)
ratin
g
s v
i
a
pc-LED,
red
pho
sph
o
r i
s
u
s
ually mixe
d
with yello
w
p
hospho
r to
in
cre
a
se the
re
d light
sp
ect
r
u
m
of the genera
t
ed white light
[1, 3].
The optical p
e
rform
a
n
c
e in
a pc-WW LE
D is
directly influen
ced by pho
sph
o
r con
v
ersio
n
efficien
cy an
d
amou
nt of
p
hoton
ab
sorption lo
ss in
sid
e
the
pa
ckag
e. Emitted lig
ht of the
p
c
-L
ED
tends to follo
w a diffused
pattern d
ue to scatteri
n
g
a
nd refle
c
tion
of light by phosp
hor
parti
cl
es,
with a sig
n
ificant po
rtion
of chip ligh
t
sour
ce di
rected b
a
ck t
o
wa
rd
s the
poorly reflect
i
ve
GaInN/G
a
N b
l
ue LED chi
p
[5]. This sig
n
ificantly
affects the Light Extracti
on Efficien
cy (LEE) of
the p
c
-LE
D
p
a
ckag
e an
d p
r
eviou
s
studi
es
have
re
p
o
r
ted that
app
roximately 60
% of the emit
ted
light can
rem
a
in trap
ped i
n
sid
e
a poo
rl
y design
ed p
c
-LE
D
pa
cka
ge [6]. An influential facto
r
of
back scatte
ring in a pc-L
ED packa
ge
is the si
ze o
f
the phosp
h
or pa
rticle
s [7]. LEE can be
improve
d
by optimizin
g the particl
e si
zes of r
ed ph
osp
hor. Othe
r than that, the lumine
sce
n
ce
prop
ertie
s
an
d total amount of red and
yello
w pho
sphors re
qui
re
d to obtain the desi
r
e
d
CCT
rang
e outp
u
t of a pc-WW
LED is
also significa
ntly
influen
ced by th
e red
pho
sp
h
o
r pa
rticle
si
ze
[8].
The first
stag
e of thi
s
stud
y investigate
s
the
co
rrel
a
tion b
e
twe
en
p
hospho
r lu
mi
nesce
nt
prop
ertie
s
a
n
d
cry
s
talline
structu
r
e
with red ph
os
pho
r particl
e
si
ze. The
phy
sical prop
ertie
s
(i.
e
.,
surfa
c
e m
o
rp
hology imag
e
s
) an
d lumin
e
s
cen
c
e pr
ope
rties (i.e., excitation and e
m
issi
on spe
c
tra)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5211 – 52
16
5212
of the red (SrCa
)
AlSiN3:
Eu
2+
nitride phosp
h
o
r
s
were experi
m
entally determin
ed. For the
se
con
d
pa
rt of this stu
d
y, pho
sph
o
r
sa
mples
wi
th di
fferent pa
rticl
e
si
ze
s were
packa
ged i
n
to
simila
r COB
LED pa
ckag
es to examin
e their
pa
cka
g
ing efficie
n
cy and effects on the optical
perfo
rman
ce
of the COB L
E
D device.
2. Experiment
Metho
d
2.1.
Red pho
sph
o
r samples
prepar
ation
and char
acteriza
t
ion
The se
pa
rati
on of red (SrCa)AlSi
N
3
: Eu
2+
phosp
hor particle
s
into
different size rang
es
with unifo
rm
size dist
ributi
on wa
s d
one
throug
h re
p
e
titive filtering with differe
nt sieve si
ze
s. In
this expe
rim
ent, three re
d (SrCa)AlSi
N
3
: Eu
2+
phosph
or
sampl
e
s
with different parti
cle
size
distrib
u
tion
s were filtered
and label
ed a
c
cordi
ngly as
Red
-
S, whe
r
e
S is the majority particle
si
ze
within the
p
hospho
r
sa
mple. Sca
n
n
i
ng Ele
c
tron
Microsco
pe
(SEM)
(Hit
achi S
-
45
0) wa
s
employed
to
obtain
the
morp
holo
g
y image. T
he excitation an
d
emi
ssi
on spe
c
tra
of
b
o
th
phos
p
hor
samples
were meas
ured by a fluores
cence s
p
ec
tromet
er (SPEX fluoroMAX-2).
2.2. LED Samples Prepa
r
ation
Fifteen COB
pc-WW LED
module
s
with
similar bl
ue
LED InGa
N
semi
con
d
u
c
tor dice
from Epi
s
tar Co
ordi
nate
(pe
a
k wavelength
45
2.5nm; do
min
ant wavelen
g
th 45
1.98n
m),
sub
s
trate
s
a
nd drivin
g ci
rcuit configu
r
a
t
ion we
re
fab
r
icate
d
with f
i
ve units all
o
cated fo
r ea
ch
pho
sph
o
r
sa
mple. The
total wei
ght, con
c
entration
an
d wei
ght ratio
of yellow
alu
m
inate p
h
o
s
p
hor
and re
d (SrCa)AlSiN
3
: Eu
2+
phosp
hor m
i
xture on the LED modul
es were tun
ed with epoxy re
sin
to generate warm white em
issi
on with th
e CCT
ran
ge
betwe
en 35
0
0
K to 3600K.
2.3. Optical Propertie
s M
easur
e
ment
Optical p
e
rfo
r
mance pa
ram
e
ters
of total lumi
nou
s flux (lm), effica
cy (lm/W) and
CCT (K)
were me
asu
r
ed
usin
g t
he Th
erm
a
l
and
Radi
o
m
etric/Photo
m
etric Ch
aracteri
zatio
n
LED
(TERALE
D
) system
from Mentor Gra
p
h
ics.
In
th
is
study, the dri
v
ing cu
rre
nt of LED mod
u
les
wa
s set at 0.7A and all me
asu
r
em
ents
we
re ca
rri
ed
out at room tempe
r
ature.
3. Resul
t
s
and
Discus
s
ion
3.1. Red Pho
s
phor Sampl
es Cha
r
ac
ter
i
zation
Figure 2(a), (b), and
(c) ill
ustrate
s
th
e
SEM surfa
c
e
morp
holo
g
y image
s of Re
d-10
μ
m,
Red
-
12
μ
m and Red
-
1
4
μ
m resp
ectivel
y
. Variations in particl
es si
ze we
re ob
served. Un
der the
same
visual
magnification
, the p
h
o
s
ph
o
r
p
a
rticl
e
s of
Red
-
10
μ
m a
r
e ob
se
rved
to
be
the
sm
all
e
st,
followe
d by Red-1
2
μ
m an
d
Red-14
μ
m.
(a)
(b)
(c
)
Figure 2. SEM image
s of
(a) Re
d-10µm,
(b) Red-12
μ
m and (c)
Re
d-14µ
m pho
sphor
sam
p
le
s
The
excitatio
n
spe
c
trum
o
f
the red
(SrCa)AlSi
N
3
: Eu
2+
pho
sph
o
r
sa
mple
s i
s
sho
w
n
i
n
Figure 3(a). T
hese ph
osph
or sampl
e
s
h
a
ve a wi
de ex
citation b
and
from 30
0nm t
o
550
nm, whi
c
h
corre
s
p
ond
s
to the o
u
tput
emi
ssio
n
sp
ectru
m
of
blu
e
GaIn
N/Ga
N LE
D from
450nm
to
47
0nm
[9]. Figure 3(a) illu
strate
s the excitation spe
c
trum
of phosph
o
r
sam
p
les
where
Red
-
10
µm
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Red (S
rCa)Al
SiN
3
:Eu
2+
Nitride Phospho
r Particle Size
of Phosph
or… (Hui Yu
en
Peng)
5213
sampl
e
emits the highest
excitation out
put in
tensity, followed by
Red-12µm
and Re
d-14µm
sampl
e
s. Fi
g
u
re
3(b
)
sho
w
s t
he emi
s
sion
sp
ect
r
u
m
of the p
h
osp
hor samp
les at
455
n
m
excitation. Th
e pea
k emi
ssion waveleng
th of Red
-
10
µm, Red
-
12µ
m, Red
-
14µ
m sam
p
le
s were
620nm,
624
nm, and
62
9nm
re
spe
c
ti
vely. This
compa
r
ison in
dicate
s
sam
p
les with
bi
gger
pho
sph
o
r pa
rticles ten
d
to red shift their output sp
ectrum.
(a)
(b)
Figure 3. (a)
Excitation sp
ectru
m
and (b) Em
ission
spectrum of Red-1
0
µm an
d
Red-12µm
The lu
mine
scent prope
rtie
s of
red
nitri
de
(S
rCa)AlS
i
N
3
: Eu
2+
pho
sph
o
r i
s
attributed to
the ele
c
tro
n
tran
sition
bet
wee
n
4f
7
gro
und
state to
4f
6
5d
1
excite
d state
of the
free Eu
2+
ion, a
s
sho
w
n by th
e schemati
c
i
llustratio
n
of a config
urati
onal coordin
a
te model in
Figure 4
(
a
)
[10].
The la
belled
black
cu
rves rep
r
e
s
ent th
e ene
rgy lev
e
l of the
4f
7
grou
nd state
and
th
e
4f
6
5d
1
excited
state. The equilibri
um po
sitions
of the two st
ates are di
ffer from each other because of
the sp
atial di
stributio
n of the ele
c
tro
n
o
r
bitals. T
he a
rro
w fro
m
A to B indicates the excitatio
n
or
optical
absorption of blue
(or viol
et) lig
ht, facilitating the transition from the
4f
7
configu
r
atio
n to
the
4f
6
5d
1
co
nfiguratio
n. T
h
is in
he
rent
prop
erty of
p
hospho
r i
s
shown by the
broa
d ex
citation
band fro
m
UV to blue region in Figu
re 3(a
)
. Non
-
radiative relax
a
tion then o
c
curs from the
positio
n B to
the equili
briu
m po
sition C,
followe
d
by red light emi
s
sion i
n
the
ra
nge of 6
00n
m to
610nm from
positio
n C to
D. Finally a
nother
non
-r
a
d
iative relaxa
tion returns t
he ele
c
tro
n
fro
m
positio
n D to
A and ideally
the cycle
will
repe
at
until the LED di
e source
stop
s the emi
ssi
on
o
f
blue light for
Eu
2+
ion excitation [11].
Figure 4. Sch
e
matic Illust
ration of (a)
co
nfigur
atio
nal
coo
r
din
a
te m
odel for excit
a
tion by blue
light and (b
) configurational
coordi
nate m
odel for the p
a
th from the re-ab
s
o
r
ptio
n of the light
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
250
300
350
400
450
500
550
600
Intensity
(a.u.)
Wavelength
(nm)
Red
‐
10µm
Red
‐
12µm
Red
‐
14µm
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
450
500
550
600
650
7
00
750
800
850
Intensity
(a.u.)
Wavelength
(nm)
Red
‐
10µm
Red
‐
12µm
Red
‐
14µm
620nm
624nm
629nm
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5211 – 52
16
5214
Ho
wever, a n
u
mbe
r
of ele
c
tron
s in g
r
o
und st
ate
re
main at D wit
hout falling b
a
ck to A,
due to the
a
m
bient the
r
m
a
l ene
rgy. Op
tical re
-a
bs
orption can b
o
o
s
t ele
c
tron
s from po
sition
D to
C with a
ce
rt
ain proba
bility due to the
wide a
b
sorp
tion band
witd
th of phosph
or
.
Figu
re 4
(
b)
sho
w
s the schematic illu
st
ration of a co
nfiguratio
nal
coo
r
din
a
te m
odel for the e
nergy level p
a
th
for the re
-ab
s
orption a
nd e
m
issi
on of lig
ht by
phosp
h
o
r pa
rticle
s u
nder th
e influ
ence of thermal
energy. The
electron
s at
energy le
vel
C a
r
e ex
cited
from p
o
sitio
n
D via
phot
on re-a
bsorpt
ion,
and p
r
om
ote
d
to po
sition
E by thermal
ene
rgy influ
ences. T
he e
m
issi
on
wave
length relea
s
ed
from
relaxatio
n
of level
E t
o
F i
s
l
ong
er
than
re
laxatio
n
from
C to
D a
s
th
e diffe
ren
c
e
s
b
e
twe
e
n
the en
ergy l
e
vels i
s
smalle
r; a p
hoton
with less e
n
e
r
g
y
is relea
s
e
d
and th
e cau
s
e the e
m
issio
n
light red
-
shifted [11]. LED module
s
pa
ckage
d with
bigge
r re
d ph
osp
hor
sam
p
l
e
whi
c
h cau
s
in
g
more
backscattering or trapping of light have
higher probability of
photon re-absorption
in
postio
n
D [12]. Therefore
,
the light e
m
itted
by th
e LED modu
les pa
ckage
d
with bigge
r re
d
pho
sph
o
r
sa
mple ha
s lon
ger
wavele
ng
th and mo
re
shifted to the
red
colo
r. This explai
ns t
he
red
-
shift phen
omeno
m occurred for big
g
e
r re
d pho
sp
hor sampl
e
a
s
sh
own in Figure 3
(
b
)
.
3.2. LED Samples Optic
a
l Properties
Table 1. LED
Module
s
Pa
ckagi
ng Para
meter for
Red
-
10µm, Red-1
2
µm and Red
-
14µm
Packaging para
m
eter
Red-10µm
Red-12µm
Red-14µm
Weight ratio
Red-S
phosph
or : Y
e
llo
w
phosphor
1.2 : 1.0
1.7 : 1.0
2.0 : 1.0
Total phosphor
w
e
ight
0.0940g
0.0950g
0.0960g
Phosphor conce
n
tration
8.5% phosph
or 9
1
.5%
epoxy resin
8.5% phosph
or 9
1
.5%
epoxy resin
8.5% phosph
or 9
1
.5%
epoxy resin
The three of
pho
sph
o
r
sa
mples we
re
p
a
ckag
ed into
fifteen LED
module
s
a
ccordin
g to
the packa
gin
g
para
m
eter
as tabul
ated in Table
1. T
o
attain CCT
range from 3500K to 36
00K,
the wei
ght ratio of Red-10µm
sampl
e
used i
s
1.
2 times high
er tha
n
the
weig
ht of yel
l
o
w
pho
sph
o
r, wh
ile the Red-1
2
µm and Re
d
-
14µm
sampl
e
s u
s
ed were
1.7 and 2 times hig
her t
han
the wei
ght of
yellow p
h
o
s
phor
re
sp
ecti
vely. The total wei
ght of
Red
10µm
sample a
nd y
e
llow
pho
sph
o
r
req
u
ired fo
r p
h
o
s
ph
or p
a
cka
g
i
ng were
0.0
010g l
e
sse
r
than the total
weig
ht of Red-
12µm
sam
p
l
e
an
d yello
w pho
sp
hor,
a
nd 0.0
020g
l
e
sser than
the total
weig
ht of Red-14
µm
sampl
e
and
yellow pho
sp
hor. Thi
s
indi
cate
s that re
d phospho
r with finer pa
rticle si
ze sa
mple
allows th
e u
s
age
of le
ss p
hospho
r
whil
e still
ac
hievi
ng the
re
qui
red
CCT
rang
es fo
r a
p
c
-WW
LED pa
ckag
e. This info
rmation i
s
valuabl
e for
white p
c
-LE
D
man
u
fact
ure
s
to red
u
ce
manufa
c
turi
n
g
co
sts by re
duci
ng ph
osp
hor am
ount u
s
ed.
Figure 5. Optical Perfo
r
ma
nce of LED M
odule
s
Packa
ged with
Red
-
10µm, Red-1
2
µm and Red
-
14µm
388.60
368.88
351.49
88.17
83.64
79.54
75
80
85
90
95
100
250
270
290
310
330
350
370
390
Red
‐
10µm
R
ed
‐
12µm
R
ed
‐
14µm
Avg
Efficacy
(lm/W)
Avg
Lumen
(lm)
∆
lm
∆
lm
5.07%
∆
lm/W
5.14%
∆
lm/W
9.79%
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Red (S
rCa)Al
SiN
3
:Eu
2+
Nitride Phospho
r Particle Size
of Phosph
or… (Hui Yu
en
Peng)
5215
Figure 5
disp
lays the m
e
a
s
ured
optical
perfo
rma
n
ce
of the fifteen
COB
LED m
odule
s
installed with
Red-10
μ
m, Red-12
μ
m a
nd
Red
-
14
μ
m pho
sp
ho
r
sampl
e
s.
T
h
e me
as
ur
e
d
lume
n
outputs of th
ese
LED mo
dule
s
whi
c
h
driven
at 0.
7
A
dire
ct
curre
n
t are
38
8.60
lm for
Re
d-1
0
μ
m
sampl
e
, 368.
88lm for
Re
d-12
μ
m sam
p
le an
d 35
1.49lm for
Re
d-14
μ
m sam
p
le. Percent
age
cal
c
ulatio
ns
sho
w
that the Red
-
10
μ
m sampl
e
is 5.
07% and 9.5
5
% highe
r than LED mo
d
u
les
packa
ged with
Red
-
12
μ
m and Red-14
μ
m sampl
e
s
re
spe
c
t
i
v
e
ly
.
The mea
s
u
r
e
m
ent
s al
so
s
how
s
that the LED module
s
pa
ckage
d with Red
-
10
μ
m sample ha
d the highe
st e
fficacy value
at
88.17lm/W, while LED
p
a
c
kage
d
with Red
-
12
μ
m a
nd Red-140
μ
m sam
p
le
s w
e
re m
e
a
s
ur
e
d
t
o
be 83.64l
m/W an
d 79.54l
m/W, whi
c
h i
s
5.14% an
d
9.79% lower t
han the effica
cy value of Red-
10
μ
m
sam
p
l
e
. Fro
m
the
s
e results,
we
co
ncl
ude
th
at a p
c
-WW
LED
packa
g
ed
with fine
r re
d
pho
sph
o
r sa
mple ha
s a b
e
tter LEE to generate WW l
i
ght with high
er bri
ghtne
ss and effica
cy.
Based
on
the
Mie
scatterin
g
theo
ry, an
g
u
lar dist
ributi
on a
nd i
n
ten
s
ity distrib
u
tion
of light
scattered
by pho
sph
o
r pa
rticles
signifi
cantly depe
n
d
s
on ph
ospho
r parti
cle
s
si
ze. Mie scattering
descri
b
e
s
the
elasti
c scatt
e
ring
of light
by sp
heres
with relative scattering partic
le
s
i
z
e
,
α
≥
1,
whe
r
e
α
i
s
th
e ratio
of
parti
cle
si
ze to
wa
velength
of th
e in
cide
nt ligh
t
[13]. Red
ph
osp
hor sampl
e
with big
ger
p
a
rticle
si
ze h
a
ve more ba
ckscattered li
ght in a
sp
re
ad out p
a
ttern due to
a la
rge
r
surfa
c
e a
r
e
a
. This increa
ses the tra
ppin
g
effi
cien
cy of COB LED module
s
the
as mo
re ph
oton
s
are eithe
r
tra
pped o
r
dire
cted back toward
s the LED chip an
d refl
ector a
s
sho
w
n in Figu
re
6
[12]. Besides that, these back-tran
smitted light
may also reci
rcula
t
e betwee
n
the pho
spho
r a
n
d
the reflecto
r
of the LE
D,
cau
s
in
g the
region
w
here
light ci
rculate
to have
a
relatively high
er
temperature [
5
]. High o
perating tempe
r
ature
s
in
LE
D devi
c
e
s
no
t only accele
rates th
e ep
o
x
y
degradatio
n, it also affects
LEE of the COB LED mod
u
les.
Figure 6. Sca
ttering of Excitation Blue Light by a Small Size, Mediu
m
Size and L
a
rge Si
ze
Particle [14]
Apart from p
r
oviding a le
ss o
b
st
ru
ctive pat
hway for blue ex
citation light to radiate
outwa
rd
s, sm
aller p
h
o
s
ph
or sampl
e
s
a
l
so p
r
ovide
a
highe
r surfa
c
e to volum
e
ratio for
better
light abso
r
pti
on and wavel
ength conversion in a ph
o
s
ph
or layer.
Therefore, th
e intensity of ligh
t
emitted from
a device
with small
e
r p
h
o
sp
hor
parti
cles is
high
er as ob
se
rved
in Figure 3(a)
,
allowin
g
sm
aller pho
sp
hor
sizes to obtai
n the same o
p
tical pe
rform
ance with less total amou
nt
of phospho
r.
4. Conclu
sion
Red (S
rCa)Al
SiN
3
: Eu
2+
nitride ph
ospho
r with differen
t
part
i
cle si
ze
s we
re c
har
a
c
t
e
ri
zed
in term
s of p
h
ysical a
n
d
lumine
scent
p
r
ope
rtie
s.
Th
e effect
of
re
d ph
ospho
r
p
a
rticle
sizes
on
light extracti
on efficien
cy
and co
st e
ffica
cy of COB LED m
odule
s
pa
ckaged
were also
investigate
d
in this p
ape
r. Mea
s
u
r
em
ents i
ndi
cate
that the
e
m
issi
on
spe
c
trum
of
big
ger
pho
sph
o
r
sa
mple
wa
s red
shifted
com
p
ared
to small
e
r p
h
o
s
ph
or
sampl
e
. Packaging
efficien
cy
for small
e
r ph
osp
hor p
a
rti
c
l
e
sampl
e
in COB LED mod
u
les
were also enha
nced b
y
the decre
ase
of total pho
sphor weight.
The ave
r
a
g
e
lumen
outp
u
t and
the a
v
erage
effica
cy of
COB L
E
D
module
s
pa
ckag
ed
with 1
0
µm ph
osph
or h
ad a
n
in
cre
m
ent of
5
.
07% and
9.55% re
sp
ecti
vely
while 12µ
m phospho
r had
an increme
n
t of 5.14% and
9.79% resp
ectively comp
are with 1
4
µm
pho
sph
o
r. Th
is is due to l
e
ss ba
ck-sca
ttering and
a
b
so
rption lo
ss of the light within the LED
packa
ge. Thi
s
study con
c
l
ude
s that the
effica
cy of a
COB
LED m
odule
wa
s
en
han
ced
with t
he
decrea
s
e of p
hospho
r pa
rticle si
ze.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5211 – 52
16
5216
Referen
ces
[1]
F
J
Qian, RL F
u
, Simeo A
gat
hop
oul
os,
XG Gu, XF
Son
g
. S
y
nt
hesis
and
lumin
e
sce
nce
prop
erties of
a
broa
d-ba
nd r
ed p
hosp
hor
Ca3Si
2
O7: Eu
2+
for
w
a
r
m
w
h
ite l
i
gh
t-emitting di
o
des.
Jour
n
a
l
Lu
mi
nesce
nce
.
2012; 1
32: 71
–75.
[2]
HS H
w
a
n
g
, A Permai, M
D
e
vara
jan. P
h
o
s
phor
Co
ncent
ration Effects
on th
e T
hermal a
nd O
p
tic
a
l
Performanc
e o
f
Cool a
nd W
a
rm W
h
ite Sing
l
e
Chi
p
LED
S
. 4th Asia S
y
mp
osium o
n
Qua
l
i
t
y
Electro
n
i
c
Design. IEEE.
2012.
[3]
Brilliant Mix
Professional Whit
e
for General
Lighting, Retriev
ed on 15
Nov 2012, http://ledlight.osram-
os.com/
w
p
-
co
n
t
ent/uplo
ads/2
009/1
0
/Brill
ia
nt_Mi
x
_Pr
o
fessi
ona
l_W
h
ite
_
for
_
Gener
al_
L
i
g
h
t
ing.pdf
[4]
HC C
h
e
n
, KJ
Che
n
, CH
Wa
ng, C
C
L
i
n, C
C
Ye
h, HH
T
s
ail, MH
Sh
ih,
HC Ku
o, T
C
Lu.
A Nove
l
Ran
doml
y
T
e
xtured Phos
ph
o
r
Structure for
High
l
y
Effici
ent
W
h
ite Light-E
mitting Dio
des.
Nanosc
a
l
e
Rese
arch Lette
rs 2012.
Spri
ng
er Open Jour
n
a
l. 201
2.
[5] N
Narendran.
Improve
d
P
e
rforma
nce
W
h
i
t
e LED.
F
i
fth
Internatio
na
l C
onfere
n
ce
on
Soli
d Stat
e
Lig
h
ting. Proc
e
edi
ngs of SPIE
5941, Bel
l
i
ngh
am. 2005; 4
5
-5
0.
[6]
K Yama
da, Y I
m
ai, K Ishi
i. Op
tical sim
u
lati
on
of li
ght so
urce
devic
es com
p
o
s
ed of
bl
ue
LE
Ds an
d YAG
phos
ph
or.
Jour
nal L
i
ght Vis. E
n
viro
n.
200
3; 27(2): 70–
74.
[7]
Basics of
Atmosph
e
ric Ra
dia
t
ion, Retri
e
ved o
n
18 Nov 20
12
,
http://caos.iisc.ernet.in/p
ub/summer_school/
a
tmospheric
_radiation/ra
diation.pdf.
[8]
Z
L
T
ang, F
Z
hang, Z
T
Z
hang
, CY Huan
g, YH Lin. L
u
min
e
s
c
ent pro
perties
of SrAl2O4: Eu, D
y
mater
i
a
l
prep
ared
b
y
th
e gel meth
od.
Journ
a
l of the
Europ
e
a
n
Cera
mic Soc
i
ety
. 20
00; 20: 21
29-2
132.
[9]
Micha
e
l R Kra
m
es. W
a
velen
g
th Conv
ersi
o
n
for Produci
n
g W
h
ite Lig
h
t F
r
om High Po
w
e
r Blu
e
LED.
U.S. Patent 20
10/02
89
044 A
1
. 2010; 18.
[10]
YS Hu
a, W
D
Z
hua
ng, HQ
Ye,
SS
Z
h
a
ng, Y
F
ang,
XW
H
u
a
ng. Pre
par
atio
n a
nd
lumi
nesc
ent pr
op
erties
of (Ca
1-
x,Srx)S
:
Eu2+
red-em
itting
p
hosp
hor
for
w
h
ite LE
D.
Journa
l of
Lu
mi
nesce
nce.
200
5: 111
;
139
–1
45.
[11]
Ken S
a
kuma,
Naoto
Hir
osaki
,
RJ
Xie.
Red
-
sh
ift of emiss
i
on
w
a
v
e
le
ngt
h ca
used
b
y
r
eabs
orpti
o
n
mecha
n
ism of euro
p
ium
activ
a
ted Ca-a-S
iAl
O
N
ceramic
p
hosp
hors.
J
our
nal
of
Lu
mi
nes
cence
. 20
07
;
126: 84
3-8
52.
[12]
Nguy
en T
he T
r
an, JP Y
ou, F
r
ank G S
h
i, Senior
M
e
mber, IEEE. Effect of Phosphor P
a
rticle Siz
e
on
Lumi
nous Effi
cac
y
of Ph
os
phor-C
onv
erte
d W
h
ite LE
D.
Journ
a
l
of Li
ghtw
a
ve T
e
ch
nol
ogy
. 2
009
;
27(2
2
).
[13]
Lig
h
t Scattering
T
heor
y
,
Retriev
ed o
n
12
Nov
201
2.
http://ex
p
ha.com/sean/UF/July
2
010%20Bac
k
up/Ac
ademic/
Loser
%20B
ias
ed%20Diagnos
ti
cs/Ray
l
eigh
%20
and
%2
0Mi
e
%2
0Li
ght%
2
0
S
cattering.p
d
f
[14]
Basic Princ
i
ples of Flow
Cy
tometr
y
,
Retrie
v
e
d on 26 Oct 2012. http://flow
.c
sc.mrc.ac.uk/?page_id=852
Evaluation Warning : The document was created with Spire.PDF for Python.