Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 85
9
~
86
6
ISSN: 2502-4752,
DOI: 10.
11591/ij
eecs.v10
.i3.pp859-866
8
59
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Enhanced Fertigation Control
S
y
s
t
em T
o
wards
Hi
gher Wat
e
r
Saving I
rri
gation
Muh
a
mm
ad
Khairie I
d
h
a
m Ab
d
Rahm
an,
Moh
a
m
a
d
Shu
kri Z
a
inal Abidin,
S
a
linda Buyamin
,
Mohd Sai
f
ul Az
imi
Mahm
ud
Control
and Mechatronics Depar
tment
, Faculty
of
Electr
i
cal
Engin
eerin
g
,
Univ
ersiti Teknologi Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 15, 2018
Rev
i
sed
Mar
20
, 20
18
Accepted
Mar 31, 2018
W
a
ter sav
i
ng in
agricu
lture
is
inc
r
easingl
y
im
port
a
nt du
e to
cr
iti
c
a
l
issues of
water and
cl
im
at
ic cr
is
is
. Th
e foc
u
s
of agricul
t
ura
l
res
ear
ches
now
ada
y
s
is
to
minimize the
water consumption and
at the
sam
e
tim
e increasing th
e
agricu
ltura
l
yie
l
d. This paper pr
e
s
ents the thre
e-t
y
pes of au
tom
a
ti
c fertig
at
ion
controll
er for ir
rigation s
y
stem
with
differen
t
application too
l
s. A weather
station
,
soil m
o
isture and tim
er
based s
y
stem
were used to de
te
rm
ine th
e
volume of water
supply
needed
b
y
plants to calculat
e an accurate irrigation
operation timin
g. The exper
i
ment wa
s conducted b
y
supply
i
n
g
water for
capsicum annum
test
crop lo
cated in
a greenhouse.
The p
l
ant water demand
param
e
ter
was
c
a
lcu
l
at
ed and
co
m
p
ared for e
ach
appli
c
a
tion
tool
s
and th
e
best application
tool was chosen to
be implemented in controlling th
e
irrigation s
y
stem
.
K
eyw
ords
:
Ir
ri
gat
i
o
n c
ont
r
o
l
l
e
r
So
il m
o
istu
re
Tim
e
r
Weathe
r station
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
oham
a
d S
h
u
k
ri
Zai
n
al
A
b
i
d
i
n
C
ont
r
o
l
a
n
d
M
echat
r
oni
cs
De
part
m
e
nt
,
Facu
lty of Electri
cal Engineering,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia.
U
T
M Jo
hor
Bhar
u,
8
131
0 U
T
M Sku
d
a
i
,
Jo
ho
r
Em
a
il: sh
u
k
ri@fk
e
.u
tm
.
m
y
1.
INTRODUCTION
Dri
p
irrig
a
tion syste
m
is in
creasing
l
y wid
e
sp
read
am
o
ng th
e ind
i
v
i
du
al farm
ers and
ag
ricu
ltu
ral
industries.
Thi
s
is beca
use the syste
m
can gene
rate hi
g
h
e
r rev
e
nu
es and ab
le to
in
crease crop
p
r
od
u
c
tiv
ity
significa
ntly [1]-[3]. T
h
e
drip irri
gation a
l
so
known as
site-specific m
i
cro-i
rrigati
on
syste
m
becaus
e
the
m
i
xt
ure of
wat
e
r an
d n
u
t
r
i
e
nt
s or fe
rt
i
g
at
i
o
n
can be su
p
p
l
i
e
d di
rect
l
y
i
n
t
o
cro
p
r
oot
zo
ne
t
hus a
b
l
e
t
o
de
crease
wat
e
r l
o
ss
fr
o
m
evaporat
i
o
n,
ru
n
of
f a
n
d
d
eep
perc
ol
at
i
o
n [
4
]
-
[
6]
.
The
am
ount
o
f
fe
rt
i
g
at
i
o
n
su
p
p
l
i
e
d t
o
t
h
e
crop
is
v
e
ry im
p
o
r
tan
t
b
ecau
s
e
p
r
ob
lem
will arise if
no
t
co
n
t
ro
lled efficien
tly. Sup
p
l
y
i
n
g
ex
cessi
v
e
resou
r
ce
will lead
to
wastag
e of en
erg
y
and
n
u
t
rient. Th
e ex
cessi
v
e
n
u
t
rition
al
so
will p
o
llu
te su
rro
und
ing
area and
u
n
d
e
rgroun
d water. Th
ese
w
ill in
crease
produ
ctio
n cost and affect t
h
e env
i
ron
m
en
t.
The
pr
obl
em
can be
res
o
l
v
e
d
by
su
ppl
y
i
n
g
t
h
e res
o
urce
only when t
h
e pl
ants
nee
d
it, with an exact
am
ount
.
The
p
l
ant
m
i
ght
nee
d
di
ffe
rent
am
ou
nt
of
wat
e
r
du
ri
n
g
t
h
e
pl
a
n
t
gr
owt
h
st
age
si
nce t
h
ey
e
x
p
e
ri
ence
di
ffe
re
nt
m
i
cro cl
im
at
e and
wat
e
r l
o
s
s
dai
l
y
[3]
,
[
7
]
.
I
n
gene
ral
,
dri
p
i
rri
gat
i
o
n sy
st
e
m
i
s
cont
rol
l
e
d usi
ng
t
i
m
e
r where t
h
e sc
hed
u
l
e
i
s
base
d o
n
hi
st
ori
cal
dat
a
a
n
d fa
rm
ers experience.
A
lternativ
ely, th
e irrig
a
tio
n
co
n
t
ro
ller can u
tilize d
a
ta fro
m
so
il
m
o
istu
re co
nd
ition o
r
referen
c
e ev
ap
o
t
ran
s
p
i
ratio
n
[8
]-[9
]
.
Th
ese
m
e
thods m
i
ght be able to dete
rm
ine
the irrigation am
ount and tim
e accurately
because it
is based on the
plant
wat
e
r
dem
a
nd.
The
c
o
n
v
e
n
t
i
o
nal
sy
st
em
can be
i
m
prove
d
and
t
h
e
co
st
of
farm
m
a
nagem
e
nt
can
be
reduc
e
d
whe
n
a preci
si
on i
r
ri
gat
i
o
n sy
st
em
i
s
bei
ng appl
i
e
d
.
He
nce
,
wat
e
r fo
r i
rri
gat
i
on ca
n be deci
de
d by
t
h
e
farm
er
by
cal
cul
a
t
i
ng
t
h
e wat
e
r re
q
u
i
rem
e
nt
[10]
, [
11]
. T
h
e soi
l
m
o
i
s
t
u
re con
d
i
t
i
on can
be m
e
asure
d
by
usi
n
g soi
l
m
o
istu
re sen
s
or to
m
easu
r
e cu
rren
t so
il water con
t
en
t and d
e
term
in
e th
e irrig
a
tion
b
a
sed
on
th
e m
o
istu
re
defi
ci
t
[
12]
. F
o
r
refe
renc
e e
v
ap
ot
ra
ns
pi
rat
i
o
n
,
ET
o weat
h
e
r st
at
i
on
dat
a
suc
h
as t
e
m
p
erat
ure
,
h
u
m
i
di
t
y
, net
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
85
9 – 86
6
86
0
so
lar
rad
i
ation an
d wi
n
d
sp
eed
will b
e
u
s
ed
to
estim
ate
water lo
ss from th
e p
l
an
t.
Man
y
farm
ers u
s
e
water
l
o
ss
dat
a
as i
n
p
u
t
t
o
t
h
ei
r i
rri
g
a
t
i
on c
ont
rol
s
y
st
em
and f
o
r
wat
e
r sa
vi
n
g
p
u
r
p
ose
[1
3]
-[
1
5
]
.
In
t
h
is stud
y, t
h
ree typ
e
s of au
to
m
a
tic d
r
ip
irri
gat
i
o
n c
o
nt
r
o
l
l
e
r are
bei
n
g
eval
uat
e
d t
o
m
easure t
h
e
am
ount
o
f
wat
e
r su
ppl
i
e
d t
o
t
h
e pl
ant
.
Th
e i
rri
gat
i
o
n co
nt
r
o
l
m
e
t
hod t
h
at
t
e
st
ed i
n
t
h
ese st
udi
es are ener
gy
b
a
lan
ce t
h
at
based
on
weather co
nd
itio
n, so
il water b
a
lance and
tim
er. An exp
e
rim
e
n
t
in
a
greenho
use was
con
d
u
ct
ed t
o
i
d
ent
i
f
y
t
h
e e
ffe
ct
i
v
eness
o
f
t
h
ese i
rri
gat
i
o
n
c
ont
rol
m
e
t
hod
base
d
on
t
h
e i
r
ri
gat
i
o
n
vol
um
e.
2.
R
E
SEARC
H M
ETHOD
A test crop
, chilli p
l
an
t was used
to
m
easu
r
e th
e water usag
e in
irri
g
a
tion for th
e th
ree typ
e
s of drip
irrig
a
tion
con
t
ro
l. C
o
cop
eat
was
u
s
ed
as the growth
m
e
d
i
u
m
as it h
a
s a
h
i
gh
water
ho
ld
ing
cap
acity.
Th
ree
B
i
l
g
e subm
ersi
bl
e wat
e
r
p
u
m
p
s pl
aci
ng at
t
a
nk m
i
xi
ng
wi
t
h
fl
o
w
rat
e
of
11
0
0
gal
l
o
ns
per
h
o
u
r
was
u
s
ed t
o
supply the m
i
xed AB
sol
u
tion to t
h
e pla
n
t
from
each i
rrigation control. Figure
1
s
h
ows the layout
for drip
i
rri
gat
i
o
n
fo
r
ove
ral
l
sy
st
em
at
g
r
ee
nh
o
u
se
. E
v
ery
i
r
ri
gat
i
on
co
nt
r
o
l
sy
s
t
em
l
i
n
e has
2
2
pol
y
b
a
gs
i
n
s
t
al
l
e
d
with individual
dri
ppe
r which
conn
ected t
o
the 16mm
pipeline from
each
water
pum
p and the Fi
gure
2
shown
t
h
e real
e
n
vi
ro
nm
ent
i
n
si
de
g
r
een
h
ouse
f
o
r
expe
ri
m
e
nt
for the
peppe
r
. T
h
e greenhouse
s
i
ze are
20 feet
width,
40
feet
fo
r l
o
n
g
a
n
d
7
feet
fo
r
heig
ht.
Fi
gu
re
1.
The
s
y
st
em
l
a
y
out
f
o
r
d
r
i
p
i
rri
gat
i
on
co
nt
r
o
l
sy
st
em
Fig
u
re
2
.
Ch
illi p
l
an
t i
n
sid
e
the greenho
u
s
e
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
En
ha
nce
d
Fert
i
gat
i
o
n C
ont
r
o
l
Syst
em
T
o
w
a
rds
Hi
g
h
er
Wa
t
e
r S
a
vi
n
g
…
(
M
u
h
a
m
m
a
d K
.
I.
Ab
d
Ra
h
m
a
n
)
86
1
2.
1.
Wea
t
he
r B
a
se
d I
rrigat
io
n
Controlle
r
The i
r
ri
gat
i
o
n
cont
rol
sy
st
em
uses
weat
he
r
dat
a
(
D
avis
Vantage
Pro2
Weather Station) to estim
a
t
e
the am
ount
of
water l
o
ss
from
the plant.
T
o
re
place t
h
e a
m
ount of wate
r loss
, the
cont
roller calc
u
lates the
am
ount
o
f
wat
e
r dem
a
nd
f
r
o
m
t
h
e
pl
ant
t
o
be re
pl
eni
s
he
d. A Penm
an-
M
ont
ei
t
h
e
q
ua
t
i
on (1
) by
F
o
od
an
d
Ag
ricultu
re Or
ganizatio
n (F
OA
) was us
e
d
to calculate
r
e
fere
nce e
v
a
p
otra
nspi
ration
,
ETo
.
In
this
rega
rd
s,
m
e
t
e
orol
o
g
i
cal
dat
a
fr
om
t
h
e weat
he
r st
at
i
on at
t
h
e st
u
d
y
site were u
s
ed
t
o
calcu
late th
e irri
gatio
n
r
e
qu
ir
em
en
t [
2
],
[
1
5
]-[
18
].
.
.
(1)
Whe
r
e:
ETo
= refe
re
nce e
v
apot
rans
pi
rat
i
o
n
(m
m
/
hou
r)
R
n
= n
e
t so
lar
rad
i
atio
n
(W/m
2
)
γ
= psy
c
hr
om
et
ric (
h
y
g
r
o
m
e
t
r
y
)
co
nst
a
nt
(k
Pa
°C
-1
)
T
= m
ean dai
l
y
o
r
ho
url
y
ai
r
t
e
m
p
erat
ure at
1.
5 t
o
2
.
5
-
m
hei
g
ht
(
°
C
)
U
2
= m
ean dai
l
y
o
r
ho
url
y
wi
n
d
s
p
eed
at
2
-
m
hei
ght
(m
s-1)
e
s
= sat
u
rat
i
o
n
va
po
r
pre
ssu
re at
1.
5 t
o
2
.
5
-
m
hei
ght
(k
Pa)
Δ
= slop
e
o
f
t
h
e satu
r
a
tion
v
a
por pr
e
ssu
re
-tem
p
e
rature
cu
r
v
e
(
k
Pa
°C-
1
)
Fi
gu
re
3.
W
eat
her
base
d i
rri
g
a
t
i
on c
ont
rol
o
p
erat
i
o
n
2.2.
Soil Moi
s
ture B
a
sed Ir
rigation Controller
Th
e so
il m
o
istu
re irri
g
a
tio
n fo
r th
is
p
r
oj
ect, we can
co
nt
r
o
l
t
h
e vol
um
e
of wat
e
r base
d on
m
o
i
s
t
u
re
co
n
t
en
t o
f
t
h
e co
cop
eat m
e
d
i
u
m
. Acco
rd
ing to
so
il
m
o
istu
re, water pu
mp
ing
m
o
to
r tu
rn
on
or off
v
i
a th
e
relay au
to
m
a
ti
cally. Th
is
m
e
t
h
od
ab
le to
save water, wh
ile th
e so
il water co
n
t
en
t can
b
e
ob
tain
ed
i
n
preferred
asp
ect
o
f
th
e p
l
an
t, th
ereby in
creasi
n
g
p
r
od
u
c
tiv
ity
crop
s. Two cap
acitiv
e
b
a
sed so
il m
o
istu
re sen
s
or
(VH400
)
were u
s
ed
to
m
easu
r
e t
h
e lev
e
l
of vo
lu
m
e
tr
i
c
wat
e
r c
ont
e
n
t
(V
WC
) i
n
t
h
e
gr
owt
h
m
e
di
um
. The
cap
acitiv
e sen
s
o
r
s create an
ou
tpu
t
sign
al wh
ich
is a feedback
of d
i
electric p
e
rm
it
tiv
ity.
In
th
is exp
e
ri
men
t
,
th
e so
il m
o
ist
u
re level h
a
s
b
een
set at 0.50
cm
3
/
c
m
3
as
a referen
ce to th
e irrig
a
tion
co
n
t
ro
ller to
activ
ate
wat
e
r p
u
m
p
.
Thi
s
val
u
e was d
e
t
e
rm
i
n
ed base
d on
t
h
e fi
el
d
c
a
paci
t
y
of
t
h
e gr
owt
h
m
e
di
u
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
85
9 – 86
6
86
2
Fig
u
re
4
.
So
il m
o
istu
re b
a
sed irrig
a
tion
con
t
ro
l
op
eration
Fig
u
re
4 shows th
e so
il m
o
istu
re i
rrig
a
ti
o
n
co
n
t
ro
ller process fo
r
p
e
pp
er p
l
an
t fertig
atio
n system.
Thi
s
ex
peri
m
e
nt
used t
w
o s
a
m
p
l
e
peppe
r
pl
ant
t
o
m
e
asure t
h
e
vol
u
m
et
ri
c wat
e
r
cont
e
n
t
(V
WC
). Soi
l
m
o
istu
re 1
and so
il m
o
istu
re 2
will calcu
lated
averag
ed
hou
rly to
d
e
term
i
n
e wh
ether
water pu
m
p
will b
e
ON
o
r
OFF. Th
e t
i
m
e
in
terv
al irrig
a
tion
will be ON fo
r
5
min
u
t
es if th
e av
erag
e so
il mo
istu
re less than
0
.
5
cm
3/
cm
3.
2.3.
Timer B
a
sed
Irrigati
on Controller
Ir
ri
gat
i
o
n co
nt
rol
usi
n
g t
i
m
er i
s
com
m
onl
y
used
by
fa
r
m
ers d
u
e t
o
t
h
e
pri
ce a
nd
s
i
m
p
l
i
c
i
t
y
on
irrig
a
tion
sch
e
d
u
ling
set
u
p.
Basically,
th
e irrig
a
tion
sch
e
du
lin
g is b
a
sed
o
n
h
i
storical cu
ltiv
atio
n
practice an
d
farm
ers’
kn
o
w
l
e
dge i
n
un
de
rs
t
a
ndi
n
g
t
h
e
pl
a
n
t
wat
e
r
dem
a
nd
. I
n
t
h
i
s
e
x
p
e
ri
m
e
nt
, t
h
e t
i
m
er was c
o
nfi
g
u
r
e
d
t
o
be act
i
v
at
e
d
fi
ve t
i
m
es dai
l
y
fr
om
7.0
0
am
to
6.
00
pm
as s
h
o
w
n i
n
Ta
bl
e
1.
Tab
l
e 1
.
Irrig
a
t
i
o
n
sch
e
du
llin
g
Irrig
a
tio
n
No
.
Ti
m
e
ON
Ti
m
e
OFF
1
2
3
4
5
7.
00 a.m
.
10.
00 a.m
.
1.
00 p.m
.
3.
00 p.m
.
6.
00 p.m
.
7.
05 a.m
.
10.
05 a.m
.
1.
05 p.m
.
3.
05 p.m
.
6.
05 p.m
.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The res
u
l
t
ha
s been c
o
l
l
ect
ed f
o
r t
w
o
d
a
y
s
on
16/
8/
2
0
1
7
a
nd
17/
8/
20
1
7
i
n
a
n
expe
ri
m
e
nt
al
gree
nhouse structure located
at
Agr
o
t
a
ni
Ga
rde
n
,
Uni
v
ersi
t
i
Tekn
ol
o
g
i
M
a
l
a
y
s
i
a
, Joho
r
B
a
hr
u, M
a
l
a
y
s
i
a
. The
plant
was c
u
ltivated i
n
the
greenhou
se a
n
d
the result for
each irrigati
on cont
roller
wa
s m
easured from the
water sup
p
lied
to
th
e
resp
ective po
lyb
a
gs.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
En
ha
nce
d
Fert
i
gat
i
o
n C
ont
r
o
l
Syst
em
T
o
w
a
rds
Hi
g
h
er
Wa
t
e
r S
a
vi
n
g
…
(
M
u
h
a
m
m
a
d K
.
I.
Ab
d
Ra
h
m
a
n
)
86
3
3.
1.
We
a
t
her
B
a
sed
C
o
n
t
ro
l
Fi
gu
re 5 s
h
ow
s t
h
e am
ount
of i
r
ri
gat
i
o
n a
nd
desi
re
d wat
e
r base
d o
n
w
eat
her co
nt
r
o
l
sy
st
em
. In
t
h
i
s
sy
st
em
,
t
h
e am
ount
of
de
si
red wat
e
r wa
s cal
cul
a
t
e
d ba
sed o
n
weat
he
r
dat
a
. B
a
sed o
n
t
h
e fi
g
u
re
, i
t
can
be o
b
se
rve
d
t
h
at
t
h
e i
rri
gat
i
o
n v
o
l
u
m
e
chan
ged
base
d o
n
t
h
e v
o
l
u
m
e
of
wat
e
r de
si
re
d.
In t
h
i
s
sy
st
em
, t
h
e
am
ount
of
i
rri
g
a
t
i
on
was s
u
p
p
l
i
e
d l
e
ss t
h
an
t
h
e am
ount
of
wat
e
r
desi
re
d
by
t
h
e
pl
ant
.
It
was m
a
i
n
l
y
due t
o
t
h
e
d
r
y
at
m
o
sphere
an
d
wi
ndy
con
d
i
t
i
on
a
s
i
t
creat
es a l
a
r
g
er
d
r
i
v
i
n
g f
o
rce
f
o
r
wat
e
r
m
ove
m
e
nt
out
f
r
om
t
h
e
pl
ant
a
n
d
t
h
us i
n
crease
t
h
e
rat
e
o
f
e
v
a
pot
ra
ns
pi
rat
i
o
n.
Fi
gu
re
5.
R
e
fer
e
nce e
v
ap
ot
ra
n
s
pi
rat
i
o
n a
n
d
t
h
e
vol
um
e of i
r
ri
gat
i
o
n
3.
2
.
Soil Moi
s
ture B
a
sed Control
Fig
u
re 6
sho
w
s th
e so
il m
o
ist
u
re level an
d
i
r
rig
a
tion
vo
lu
m
e
for th
e p
l
an
ts. In
t
h
is con
t
rol syst
e
m
,
irrig
a
tion
system
wil
l
start to
o
p
e
rate
wh
en
t
h
e so
il m
o
istu
re lev
e
l reach
e
d th
e
v
a
lu
e less
th
an
0
.
5
cm
3
/c
m
3
to
m
a
in
tain
th
e so
il water con
t
en
t
o
f
0
.
5
cm
3
/c
m
3
. Based
o
n
th
e
figu
re, th
e so
il m
o
ist
u
re
b
a
sed
irrigatio
n
co
n
t
ro
l
syste
m
was
ab
le
to
m
a
in
tain
th
e am
o
u
n
t
o
f
so
il water con
t
en
t
b
y
0
.
4
5
cm
3
/c
m
3
in t
h
e
m
e
di
um
that
was
sam
p
l
e
d by
ave
r
agi
ng t
w
o
di
f
f
ere
n
t
p
l
ant
s
. The
r
e
f
ore, th
is con
t
ro
l
syste
m
was ab
le to
con
t
ro
l
th
e
am
ount
o
f
soi
l
m
o
i
s
t
u
re
l
e
vel
wi
t
h
an
acc
ura
c
y
of
0.
0
5
cm
3
/cm
3
.
In
add
ition
,
t
h
is con
t
ro
ller also
p
e
rfo
r
m
i
n
g
well
as
it
o
p
e
rated
stead
ily
with
ou
t an
y d
i
fficu
lties to
pro
v
i
d
e
su
fficient water sup
p
l
y
with
in th
e d
e
sired
so
il water
con
t
en
t
Fig
u
re
6
.
So
il m
o
istu
re lev
e
l
an
d vo
lu
m
e
o
f
irrig
a
tion
3.3.
Timer Ir
rigation
Sys
t
e
m
Fi
gu
re
7 sh
o
w
s t
h
e am
ount
o
f
wat
e
r
v
o
l
u
m
e
use
d
f
o
r t
i
m
er i
rri
gat
i
on
sy
st
em
based o
n
t
h
e t
i
m
e
r
sche
dul
i
n
g s
h
o
w
n i
n
Ta
bl
e
1.
B
a
sed
on
Tabl
e 1, t
h
e i
r
ri
gat
i
o
n
t
i
m
e
for t
h
e
sy
st
em
was se
t
fo
r fi
ve m
i
nut
es
at
each
interva
l
. The
r
efore
,
it was
estim
ated that
each
plan
t
will
receive the am
ount of
water
approxim
ately
aroun
d
0
.
5
litre at ev
ery in
terv
al. Based
on Figu
re
7
,
th
e water
vo
lu
m
e
sho
w
s so
m
e
in
con
s
isten
c
y
b
y
com
p
aring at
each interval.
It was m
a
inly
due t
o
the
uns
t
able dc pum
p
power
supply as a solar e
n
e
r
gy
syste
m
was us
ed as
a m
a
in powe
r s
o
urce
in
this experim
e
nt.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
85
9 – 86
6
86
4
Fi
gu
re
7.
Ti
m
e
r
based
i
rri
gat
i
o
n
v
o
l
u
m
e
3.
4.
Irri
ga
ti
o
n
W
a
ter
Us
a
g
e
Th
e cu
m
u
lativ
e water u
s
ag
e
for three
d
r
i
p
i
rrig
a
tion
con
t
ro
ller
s
w
a
s show
n in
Figu
r
e
8. I
t
can
b
e
obs
er
ved t
h
at
t
h
e i
rri
gat
i
on
v
o
l
u
m
e
for m
o
ist
u
re b
a
sed a
n
d weat
her b
a
se
d co
nt
r
o
l
l
e
r w
a
s hi
g
h
er t
h
a
n
t
h
e
t
i
m
e
r based c
o
nt
r
o
l
l
e
r wi
t
h
a
perce
n
t
a
ge
o
f
49
%. T
h
e fi
n
a
l cu
m
u
lativ
e water
u
s
ed
in a d
u
ration
of
two
d
a
ys
was
10
8.2
2
litre for th
e
t
i
m
e
r
b
a
sed
contro
ller, 2
2
0
.
61
for th
e
m
o
istu
re b
a
sed
con
t
ro
ller
an
d
2
1
7
.
26
litre
fo
r
weat
her
b
a
sed
co
nt
r
o
l
l
e
r.
The
i
r
ri
gat
i
o
n
vol
um
e
bet
w
een m
o
i
s
t
u
re
base
d an
d
wea
t
her
based c
o
n
t
rol
sy
st
em
s
di
ffers
fo
r a
b
o
u
t
2%
whi
c
h weat
her
base
d co
nt
r
o
l
has a l
o
we
r i
rri
gat
i
o
n
v
o
l
u
m
e
. Ther
ef
ore
,
bas
e
d
on
t
h
ose c
o
m
p
ari
s
o
n
, a
weat
her
base
d
c
ont
rol
sy
st
em
was
m
o
re
prefe
rre
d
t
h
a
n
t
h
e
m
o
i
s
t
u
re
base
d
co
nt
r
o
l
sy
st
em
.
Gene
r
a
l
l
y
,
t
o
de
fi
ne
and
cal
cul
a
t
e
t
h
e am
ou
nt
o
f
wat
e
r
usa
g
e
f
o
r i
r
ri
gat
i
o
n,
t
h
e am
ount
of
pl
ant
wat
e
r
dem
a
nd
need
t
o
be
cal
c
u
l
a
t
e
d f
o
r s
o
i
l
m
o
i
s
t
u
re and
weat
he
r base
d
cont
rol
sy
st
em
. In t
h
e ot
he
r h
a
nd
,
t
h
e t
i
m
e
r base
d c
ont
r
o
l
sy
st
em
cont
r
o
l
s
t
h
e i
rri
gat
i
o
n t
i
m
e
and
v
o
l
u
m
e
by
p
r
e
-
set
t
i
ng t
h
e
val
u
e a
h
ead
according t
o
s
c
hedule
planned
by the
farmer. This c
o
ntrol system
usually increases
the wate
r usage in
agri
c
u
l
t
u
re as
i
t
suppl
i
e
s wat
e
r base
d o
n
t
h
e sched
u
l
e
an
d
t
h
e
am
ount
of
wat
e
r
dem
a
nd
wa
s
negl
ec
t
e
d.
There
f
ore,
at s
o
m
e
tim
es,
water
was s
u
pplie
d
eve
n
though
th
e
p
l
an
t do
es
n
o
t
really
n
e
ed
th
e
water. In
th
is
expe
ri
m
e
nt
,
t
h
e
am
ount
o
f
wa
t
e
r
su
ppl
i
e
d
i
n
t
h
e
t
i
m
e
r
based
sy
st
em
show
s
a de
fi
ci
t
i
rri
gat
i
on t
o
t
h
e
pl
a
n
t
as
t
h
e am
ount
o
f
wat
e
r s
u
p
p
l
i
e
d
was fa
r l
o
we
r
t
h
an t
h
e sy
st
em
t
h
at
operat
e
s base
d o
n
pl
a
n
t
wat
e
r
dem
a
nd
.
There
f
ore,
the am
ount of
wat
e
r
supplied by the
tim
e
r
base
d
c
ontrol
syste
m
was
not
accurate a
nd t
h
e plant
may b
e
h
a
v
i
n
g
a
m
a
ln
u
t
ritio
n as a resu
lt.
In
th
e o
t
h
e
r h
a
n
d
, th
e irrig
a
tion
co
n
t
ro
l
b
y
weath
e
r
and
m
o
ist
u
re
base
d
pr
ovi
di
ng
a s
u
f
f
i
c
i
e
n
t
and
exa
c
t
i
r
ri
gat
i
o
n am
ou
nt
ba
sed
o
n
t
h
e act
u
a
l
pl
a
n
t
wat
e
r
dem
a
nd
.
Th
erefo
r
e, it can
b
e
gu
aran
tee th
at th
is irri
g
a
tio
n c
o
n
t
ro
l
syste
m
will p
r
o
v
i
d
e
an
effici
en
t so
il m
o
ist
u
re
bal
a
nce
an
d e
n
ergy
bal
a
nce
f
o
r
t
h
e s
o
i
l
-
pl
an
t
-
atm
o
sphe
re s
y
st
em
.
Fig
u
re
8
.
Cu
mu
lativ
e to
tal
water u
s
e fo
r irri
g
a
tio
n
4.
CO
NCL
USI
O
N
Prov
i
d
e a state
m
en
t th
at what is ex
p
ected
, as st
ated
in
th
e "In
t
rodu
ctio
n
"
ch
ap
ter can
u
ltim
a
t
el
y
resu
lt in
"Resu
lts and
Discussio
n
"
ch
ap
ter, so
th
ere
is co
m
p
atib
ilit
y. Mo
reo
v
e
r, it can
also
b
e
add
e
d
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
En
ha
nce
d
Fert
i
gat
i
o
n C
ont
r
o
l
Syst
em
T
o
w
a
rds
Hi
g
h
er
Wa
t
e
r S
a
vi
n
g
…
(
M
u
h
a
m
m
a
d K
.
I.
Ab
d
Ra
h
m
a
n
)
86
5
pr
os
pect
of t
h
e devel
o
pm
ent
of resea
r
ch r
e
sul
t
s
and a
p
p
l
i
cat
i
on pr
ospe
ct
s of fu
rt
he
r st
udi
es i
n
t
o
t
h
e ne
x
t
(base
d
on resul
t
and
disc
ussi
on).
ACKNOWLE
DGE
M
ENTS
Th
e au
tho
r
s ar
e gr
atefu
l
to
th
e Un
iv
er
sity o
f
Techno
logy Malaysia an
d
th
e Min
i
str
y
o
f
H
i
gh
er
Ed
ucat
i
on
(M
OHE
),
fo
r t
h
ei
r pa
rt
i
a
l
fi
nanci
a
l
su
pp
ort
t
h
r
o
ug
h t
h
ei
r resea
r
c
h
fu
nds
, V
o
t
e
No
.
R.J13
000
0.7823
.4
F7
59
.
REFERE
NC
ES
[1
]
B. R. Hans
on, L
.
J
.
S
c
hwankl
,
K. F
.
S
c
hulbach
, and
G. S
.
P
e
tt
yg
rove, “
A
com
p
aris
on
of
furrow, s
u
rface
drip
,
an
d
s
ubs
urface drip i
rrigat
i
on on lett
uce
yie
l
d and ap
plied wat
e
r,
”
Ag
ric. Water Mana
g.
, vol. 33
, no. 2–3, pp. 139–157,
1997.
[2
]
R. B. Singandh
upe, G. G
.
S.
N. Rao,
N.
G.
Patil,
and P. S.
Brahm
a
nand,
“
F
ertigat
ion studi
es and irrig
a
t
i
o
n
scheduling
in dr
ip irrig
a
tion s
y
s
t
em
in to
mato cr
op (Ly
c
opersico
n
esculen
t
um L.),”
Eur
.
J.
Agro
n.
, vol. 19, no
pp
.
327–340, 2003
.
[3
]
I. Sinha, G. S.
Buttar
,
and
A.
S.
Brar
, “Drip irrigation and
fertigation
improve economics, w
a
ter
and
energ
y
productivity
of s
p
ring sunflower (Helian
t
hus annuus L.) in Indian Punjab,”
Agric. Water Manag.
, vol. 185, pp. 58
–
64, 2017.
[4
]
A. M. Hassanli, S. Ah
madirad
,
and S. Beecham, “Evaluation
of th
e influ
e
nce of irr
i
gation m
e
thods and
water
quality
on
sugar beet y
i
eld a
nd w
a
ter
us
e
effi
cien
c
y
,”
Agric. Water Manag.
, vol. 9
7
, no
. 2
,
pp
. 357
–362,
2010.
[5
]
M. Bhuriy
a, S.
Choudhar
y
, and
V. Swar
nakar, “Stud
y
of Adoption Behaviour
of
Drip Irrigation
S
y
stem on Chilli
Crop in B
a
rwani District of
M.P.
India,”
IOSR J.
Agric. Vet. Sci.
,
vol. 8
,
no
. 12
, pp
. 2319–2372
,
20
15.
[6
]
G. Megersa and
J. Abdulahi,
“Irr
igation s
y
stem in Israel
: A review,”
Int.
J. Water Resour. Enviro
n. Eng.
, vol. 7
,
n
o
.
3, pp
. 29–37
,
20
15.
[7
]
C. Jones, K. Ols
on-rutz, and
C.
Dinkins, “Nutrient Uptak
e
Timin
g
b
y
Crops,” no
. June, p. 8,
2011
.
[8
]
B. Csenteri, G. Csernath, and L.
Turos, “Modeling and Implementing Ev
a
potranspiration in Embedded Sprinkler
Machine,” no. September 201
6,
pp. 923–928
,
20
17.
[9
]
J.
Gou,
“Error Analy
s
is of ON-OF
F and
ANN
Controllers Based on Evapotranspiration,
”
TE
LKOMNIKA
Indonesian Jour
nal of El
ectrical Engineering,
vol. 12
, no
. 9
,
pp
. 6
771–6779, 2014
.
[10
]
Z. Zhu
,
L. T
a
n,
S
.
Gao,
and Q. Jiao, “Observation on soil moisture of
irrig
a
tio
n cropland b
y
cosmic-ray
probe,”
IEEE Geosci.
Remote Sens. Lett.
, vol. 12, no. 3, p
p
. 472–476
, 201
5.
[11
]
P.
Hanswal,
O.
Dale,
D.
Gupta, and R. N. Yadav,
“Designing a central control u
n
it and soil moisture sensor ba
sed
irrigation water
pump system,”
Proc.
- 2013
Tex
a
s Instruments India
Educ. Conf
.
TIIEC 2013
, pp
.
306– 310,
2013
.
[12
]
S. Navulur, S.
Navulur, C
.
S.
S.
AS, and G
.
P. MN, “Agricu
ltural Ma
nag
e
ment th
rough Wir
e
less Sensors and
Internet of
Thin
gs,”
Internation
a
l Journal of
Electrical and Com
puter
Eng
i
neerin
g (
I
JECE)
,
2017
; 7(6): 3492,.
[13
]
M.
S.
B.
Z
.
Abidin,
S.
Shibusa
w
a, S. Bu
y
a
min
,
and Z. Mohamed,
“Intellig
ent
con
t
rol of capi
llary
irrigation syste
m
for water-saving
culti
vation
,
”
2015 10th Asian Control Conf. Em
erg. Cont
rol
Tech. a Sustain. Wo
rld, ASCC 2015,
pp. 2–6
,
2015.
[14
]
K. Sirohi,
“Auto
m
ated Irrigation
and Fire Alert S
y
stem based
on Hargreaves Equation using Weather Forecast an
d
ZigBee Protoco
l
,
” I
E
EE 2nd
Int.
Conf. Commun.
Control In
tell. Sy
st.,
2016
.
[15
]
D. Hanith
a, B
.
Anusha, and M. D.
Prakash, “FPGA Implement
a
tion of
Auto
m
a
tic Irr
iga
tion an
d Pesticid
e Cont
ro
l
S
y
stem,” vol. 5
,
no. 3
,
pp
. 136–1
40, 2016
.
[16
]
Zain
al Abidin Mohammd
Shukri Bin
et al.
,
“Ca
p
illa
ry
flow re
sponse
s in a
soil-
plant s
y
stem for mo
dified subsurface
precision
irrig
a
tion,”
Prec
is. Agri
c.
, vol. 15
, no
. 1
,
pp. 17–30, Feb.
2014.
[17
]
I.
C.
Be
rna
d
e
t
te
;,
A.
O.
Mose
s;,
a
nd I.
O.
Ma
rtin, “E
valuation of Evapotr
a
nspirati
on Using FAO Penman- Monteith
Method in
Kano
Nigeria,”
Int. J.
Sci. Techno
l.
, vo
l. 3
,
no
. 11
, pp
. 6
98–703,
2014
.
[18
]
L.
Zha
o
,
J.
Xia,
C.
y
u
Xu,
Z.
Wa
ng,
L.
Sobkowia
k,
a
nd C.
Long,
“Eva
potra
n
spira
t
ion e
s
tima
tion me
thods
in
h
y
drolog
ical mo
dels,”
J. Geogr.
Sci.
, vo
l. 23, no.
2,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
I
ndo
n
e
sian
J Elec Eng
& Com
p
Sci, V
o
l. 10
,
No
.
3
,
Jun
e
2
018
:
85
9 – 86
6
86
6
BIOGRAP
HI
ES OF
AUTH
ORS
Muhammad Kha
i
rie Idham Abd Rahman reciv
e
d his
B. Eng in Electr
i
cal Engin
eer
ing majored in
Control and Mechatron
i
cs from
Universiti
Tekn
ol
ogi Mal
a
y
s
ia (
U
TM) in 2016.
Currentl
y
, he
is
pursuing his studies in Master
of Philosoph
y
o
f
Ele
c
tri
c
a
l
Eng
i
neer
ing and his
inter
e
st is in
adaptive contro
l for
precision agr
i
cultur
a
l s
y
stem
for water saving
.
Mohamad Shukri Zainal Abidin
received h
i
s B.
Eng in
Electr
i
cal Engin
eer
ing fr
om Universiti
Teknologi Malay
s
ia (UTM) in
1998, Msc in Elect
r
i
cal Engin
e
ering from
Universiti Tekno
logi
Malay
s
ia (UTM
) in 2001 and
PhD in Agricultu
re Engin
eerin
g from Toky
o
University
of
Techno
log
y
, Jap
a
n in 2014. Curr
entl
y
,
he is
a Se
nior Lecturer at
Universiti
Tekn
ologi Mal
a
y
s
i
a
(UTM) in Control and Mech
atronics Departm
e
nt
,
Faculty
of Electrical Engin
eering and
his
current res
e
arch
interes
t
invo
lve
the adapt
i
ve c
ontrol strategies
in fibrous capillar
y
irr
i
gation
s
y
stem and
agr
i
cultural robotics.
Salinda
Bu
yam
i
n
rec
e
iv
ed h
e
r B
.
Eng
in
El
ec
tric
al
Engine
ering
fr
om
Universit
y
o
f
Tol
e
do,
USA
in 1998, Msc in Automation and Control (Distin
ctio) from University
of Newcastle, United
Kingdom in 200
3 and PhD in Co
ntrol of Electrical
Drives from
University
of Newcastle, United
Kingdom
in 2007. Current
l
y
, s
h
e is an Associ
ate
Professor at
Universiti
Tek
nologi Mal
a
y
s
ia
(UTM) in Cont
rol and Mechatr
onics Department
, F
acult
y of
Ele
c
tri
cal Eng
i
n
eering and her
current r
e
sear
ch
inter
e
st involv
e
the Modelling
an
d Simulation of
D
y
namic S
y
s
t
ems, Control and
Developm
ent of
Elect
ric Drives
Sy
st
em
, S
y
ste
m
Identifica
tion
and Estim
ation
,
Optim
isation,
Intell
igen
t Contr
o
l, Sensorl
e
ss Cont
rol
and S
m
art
Agricul
t
ure
S
y
s
t
em
.
Mohd Saiful Azimi Mahmud received
his B
.
Eng
in
Electr
ical
En
gineer
ing, major
e
d in
Control
and Mechatron
i
cs from Universiti Teknologi Mal
a
y
s
i
a
(UTM) in 2015. Currentl
y
,
he is pursuing
his studies in Doctor of Philosoph
y
of Ele
c
tr
ica
l
Engine
erin
g and his inter
e
st is in m
u
lti-
objec
tive
optim
i
zat
ion for
agri
cu
ltura
l mobile rob
o
t nav
i
gation s
y
s
t
em.
Evaluation Warning : The document was created with Spire.PDF for Python.