Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 1,
April 201
6, pp. 23 ~ 31
DOI: 10.115
9
1
/ijeecs.v2.i1.pp23
-31
23
Re
cei
v
ed
Jan
uary 12, 201
6
;
Revi
sed Ma
rch 2, 2
016;
Acce
pted Ma
rch 1
4
, 2016
An Enhanced Symmetrical Fault Detection during
Power Swing/Angular Instability using Park’s
Transformation
Jeev
itha A*
1
, Dev
i
S
2
Dep
a
rtment of Electrical
and
Electron
ics En
gin
eeri
ng, K.S. Rang
asam
y
C
o
lle
ge of T
e
chnol
og
y,
T
i
ruchengo
de,
T
a
mil Nadu, India. Pho
ne N
o
: 9442
58
370
5
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: jeevith
aarj
u
n
an@
gmai
l.com
1
, devis@ksrct.ac.in
2
A
b
st
r
a
ct
Pow
e
r systems are subject
e
d to a w
i
de range of sm
all o
r
large distur
b
ances d
u
rin
g
oper
atin
g
cond
itions.
Po
w
e
r system di
sturbanc
es s
u
ch as
li
ne
sw
itchin
g, ge
ner
ator d
i
scon
nec
tion
an
d su
dd
e
n
removal
of fau
l
ts causes
oscil
l
atio
ns in
an
el
ectrical
machi
n
e
rotor ang
les that
can
r
e
sult in
sev
e
re pow
e
r
swings. Depending on the
protection c
ontrols
, the system may re
main stable
or unstab
le and
it m
a
y
res
u
lt
in l
o
ss of sy
nc
hron
ism. In
rec
ent ye
ars, dist
ance r
e
l
a
y fin
d
s
difficulty
bet
w
een sy
mmetri
cal fau
l
t an
d p
o
w
e
r
sw
ing w
h
ich c
auses
und
esir
ed tripp
i
n
g
of the trans
miss
io
n lin
e is the fo
remost reaso
n
for blacko
ut. T
h
is
pap
er pr
opos
e
s
a new
meth
od Park
’
s
T
r
a
n
sformatio
n
a
nd F
a
st F
ouri
e
r T
r
ansfor
m
w
h
ich are
use
d
t
o
discrim
inate
between the th
r
ee phase f
ault
and
power
s
w
ing and als
o
to protect the backup
z
one of
distanc
e r
e
lay.
T
h
is
metho
d
i
s
verifi
ed f
o
r n
o
rmal
an
d
ab
n
o
rmal
con
d
iti
o
ns w
i
th
differe
nt lo
ad
an
gl
es
an
d
different f
ault
locations in IEE
E
6-bus system
are sim
u
lated in MATLAB/
Simulink.
The Simulation
res
u
lt
s
show
the capa
bility to avo
i
d u
n
w
anted trip
pin
g
decis
ion
of relay qu
ickly an
d
precise
l
y.
Ke
y
w
ords
:
Dista
n
c
e
Re
la
y, Po
we
r Swi
n
g
,
Symme
tri
c
a
l
fa
u
l
t, Park
’s transfor
m
ati
on, F
a
st F
o
u
r
ier
T
r
ansform.
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In powe
r
syst
ems, po
we
r swi
n
g
s
are
created
du
ring
sho
r
t circuit faults, line switching,
gene
rato
r discon
ne
ction a
nd large lo
ad
cha
nge
s le
a
d
ing to la
rge
variation
s
in
voltage, cu
rrent
and p
o
wer.
A major
co
n
c
ern ove
r
b
a
c
kup
zon
e
m
a
l-op
eration i
n
ca
se
of p
r
i
m
ary p
r
ote
c
tion
failure
of dist
ance relay h
a
s b
een
rai
s
ed throug
hou
t the wo
rld.
Dista
n
ce rela
y is vulne
r
abl
e to
sen
s
e
the i
m
peda
nce p
r
e
s
ente
d
to it
d
u
ring
a
po
we
r
swi
ng
as a
three
ph
ase
f
ault, unle
s
s it
is
prevente
d
fro
m
blocking t
he po
wer
swing. Di
sta
n
ce
relay eleme
n
ts prone to
operate d
u
ri
ng
s
t
able or trans
i
ent power swings
. A Power S
w
ing
Block
(PSB) func
tion is
available in modern
relays to prevent unsoli
cited relay el
ement operation.
The mai
n
function of PSB i
s
to di
stingui
sh
betwe
en fault
s
an
d po
we
r swi
n
g
s
an
d
block di
st
an
ce or oth
e
r
rel
a
y element
s
from op
eratin
g
durin
g a p
o
wer swin
g. Fau
l
ts that ari
s
e
durin
g a p
o
wer swin
g mu
st be dete
c
ted
and
clea
red
with
a high d
egre
e
of sele
ctivity and dep
en
dability [1].
Powe
r swin
gs
are d
e
viation
s
in po
we
r flow
that happe
n whe
n
the inte
rnal voltage
s
of generator
s at dissimila
r l
o
catio
n
s of th
e power sy
stem
slip relative t
o
ea
ch oth
e
r. Larg
e
po
wer
swin
gs,
st
able o
r
un
st
able, can o
r
i
g
in un
de
sira
ble
distan
ce
rela
y eleme
n
t o
peratio
ns at
differ
ent po
wer system
n
e
twork
lo
cati
ons, whi
c
h
can
exagge
rate the po
wer-system disturban
ce an
d ca
us
e
for major p
o
w
er bl
acko
uts. Du
ring a fa
ult,
the app
arent
impeda
nce trajecto
ry fa
lls i
n
sid
e
the
ope
rating
zo
ne a
nd a
s
a
re
sult
, the trip
sign
al
will be initiated by the di
stance
relay. The problem
of the existi
ng
methods is that
the threshold
setting of di
stance
relay o
peratin
g zon
e
s i
s
to differentiate the t
h
ree
pha
se f
ault and p
o
wer
swi
ng. Ahma
d Farid Abi
d
i
n
et al., [2] p
r
opo
se
d a ne
w metho
d
est
ablished o
n
S-tran
sform and
Proba
bilisti
c
neural n
e
two
r
k to
dete
c
t u
n
stabl
e
swi
n
g
s
d
u
rin
g
di
sta
n
ce
rel
a
y op
e
r
ation. Be
hnam
Maham
edi et
al., [3] prese
n
ted a n
e
w
method to
de
tect symmet
r
i
c
al fault
s
for
the du
ration
of a
power
swi
n
g
based o
n
the da
mping
freque
ncy
co
mpone
nt of
50 Hz o
r
6
0
Hz
create
d
on
instanta
neo
u
s
th
ree
-
ph
ase a
c
tive po
wer
within
on
e cy
cle. Bra
h
ma [4]
pro
posed
a
wa
velet
transfo
rm
of
time ba
sed
analysi
s
a
p
p
r
oach to d
e
te
ct any fault
durin
g p
o
we
r swi
ng
qui
ckl
y.
Che
n
g
z
ong
e
t
al., [5] introduced a
wavelet tran
sfor
m for id
entification of d
e
te
cting th
ree
p
hase
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 23 – 31
24
fault and p
o
wer
swin
g. In the deva
s
tatin
g
event of
30/
31 July 201
2, seve
ral inte
rcon
ne
cting lin
es
had t
r
ippe
d
o
n
severe tra
n
s
ient
co
nditio
n
s li
ke
po
we
r Swin
g a
nd l
o
ad e
n
croa
ch
ment. [7]. Sa
eed
Lotfifard et al
., [8] describ
e
d
a Prony me
thod to
extra
c
t the d
e
caying d
c
comp
o
nents
of current
wave d
u
ri
ng
fault. Song e
t
al., [9] intro
duced a
nov
el algo
rithm
usin
g fre
que
ncy d
e
viation
of
voltage for id
entifying stabl
e and un
stabl
e swi
ng.
2. Proposed
Metho
d
The p
r
o
pose
d
metho
d
i
s
ba
sed
on P
a
rk’
s
t
r
an
sformation al
gori
t
hm that is
use
d
to
evaluation
th
e dynami
c
ph
aso
r
of
the vo
ltage a
nd
cu
rrent
sign
al a
n
d
al
so to
p
r
ov
ision
of b
a
ckup
zon
e
of dista
n
ce relay. This method is
use
d
to differentiate betwe
en the three
pha
se fault and
power
swing.
The
pro
p
o
s
e
d
Symmetri
c
al fault dete
c
t
i
on du
rin
g
po
wer swin
g al
gorithm
monit
o
rs
the thre
e p
h
a
se
voltage
and
cu
rrent
sign
als u
s
in
g
Park’s tran
sformation
an
d Fa
st Fo
uri
e
r
Tran
sfo
r
m.
2.1. Park’s Transformatio
n
The thre
e ph
ase voltag
e sampled
sign
a
l
s are co
nvert
ed into (d
q) d
i
rect a
nd qu
a
d
ratu
re
comp
one
nt si
gnal
s usi
ng Park’
s
tra
n
sfo
r
mation and i
s
given by equ
ation (1
).
c
b
a
q
d
V
V
V
V
V
V
2
1
2
1
2
1
3
2
sin
3
2
sin
sin
3
2
cos
3
2
cos
cos
3
2
0
(1)
whe
r
e,
V
a
(k), V
b
(k
) a
nd V
c
(k) rep
r
ese
n
ts the three pha
se volt
age si
gnal
s
I
a
(k), I
b
(k) a
nd I
c
(k) rep
r
e
s
ent
s the thre
e pha
se volta
ge sig
nal
s
V
d
(k) a
nd V
q
(k) a
r
e direct a
nd qua
dratu
r
e axis com
p
o
nents of volta
ge sig
nal
s
I
d
(k) and I
q
(k) are di
re
ct and qua
dratu
r
e axis com
p
o
nents of curre
n
t signal
s
After cal
c
ul
ating the
direct
and
qua
dratu
r
e
com
pon
en
ts
of
voltag
e and cu
rrent signal
s,
the ‘C’ co
efficient
s of direct and q
u
a
d
ratu
re
are cal
c
ulate
d
by using movi
ng data win
dow
sampl
e
s
with the new
sam
p
les u
s
in
g eq
uation
s
(2
), (3), (4
) and (5).
1
k
V
k
V
k
C
d
d
vd
(2)
1
k
V
k
V
k
C
q
q
vq
(3)
1
k
I
k
I
k
C
d
d
id
(4)
1
k
I
k
I
k
C
q
q
iq
(5)
No
w the
po
wer
co
efficient
s a
r
e
obtai
ne
d by m
u
ltiplying the
s
e
‘C’
coeffici
ents o
f
voltage
and current compon
ents of
direct an
d qu
adratu
r
e axe
s
are given by equatio
ns (6)
and (7
).
For direct axi
s
co
mpon
ent
s is
k
C
k
C
k
C
id
vd
pd
(6)
For qu
adrature axis com
p
o
nents i
s
k
C
k
C
k
C
iq
vq
pq
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
An Enhan
ced
Sym
m
e
trical Fault Dete
ction duri
ng Po
wer S
w
ing/An
gular …
(Jee
vitha A)
25
Duri
ng po
we
r swing
C
pd
(k) and C
pq
(k) values are n
o
t quite zero and it is con
s
ide
r
ed
unde
r symm
e
t
rical fault
co
ndition. The
detectio
n
criterion i
s
, if C
pd
(k) or C
pq
(k) is g
r
eate
r
th
an
the thre
shold
‘T’ then the symmetrical
fa
ult is detecte
d [6] during swing.
2.2. Fast Fou
rier Trans
f
or
m
Fast Fo
urie
r
Tran
sfo
r
m (F
FT) i
s
a
n
effi
cient
algo
rith
m to spee
d u
p
the
Discret
e Fou
r
ie
r
Tran
sfo
r
m (DFT)
cal
c
ulatio
n by red
u
ci
ng
the num
b
e
r of
multiplicati
ons and addit
i
ons req
u
ire
d
.
It
requi
re
s only
compl
e
x multiplication
s
.
The FFT
e
quation
can
be define
d
b
y
the followi
ng
equatio
ns (8)
and (9
).
1
0
)
2
sin(
2
N
k
k
s
k
N
x
N
X
(8)
1
0
)
2
cos(
2
N
k
k
c
k
N
x
N
X
(9)
whe
r
e,
X
s
= V
s
= I
s
are real comp
o
nent of funda
mental voltag
e and current
phasor.
X
c
= V
c
= I
c
are imagina
ry compon
ent of fundam
ental voltage an
d cu
rre
nt phaso
r
.
N is num
be
r of sample
s p
e
r pe
riod of fundam
ental cycle.
2.3.
Compu
t
atio
n of App
a
re
nt Impedanc
e
The mai
n
obj
ective of the
digital di
stan
ce relayin
g
of
transmissio
n
lines i
s
to d
e
termin
e
the pha
sor
repre
s
e
n
tation
s of the voltage and
cu
rre
nt signal
s fro
m
their sa
mp
led value
s
a
nd
then to cal
c
ul
ate the app
arent imped
an
ce of the li
ne f
r
om the
relay
location to th
e fault point i
n
orde
r to determine wh
ethe
r the fault lies within the pro
t
ective zon
e
or not.
The calculati
ons of the a
pparent impe
dan
ce
of the
test system
have a prosp
e
ctive of
discrimi
nating
the
differen
t
zon
e
s of
prote
c
tion. T
he time
ste
p
meth
odol
o
g
y for
different
prote
c
tion zo
nes all
o
ws th
e pre
s
ent mo
dern
relay
s
cl
os
es
t to the signific
a
nt fault to ac
tivate firs
t
.
If they fail to
operate, the
relay lo
cated
at the i
s
ol
ate
d
termi
nal
s in
the tra
n
smission
line th
at
see
the simila
r fa
ult as in
prim
ary protectio
n
zon
e
2.
If zo
ne 2
relay fail
s to op
erate, the rel
a
y loca
ted
further away
from the faulted line in the
power
sy
stem will work next with the backup protection
zon
e
rea
c
h
setting of the powe
r
syste
m
.
Knowin
g V
s
, V
c
, I
c
, I
s
, the magnitud
e
s (rms valu
es) a
nd ph
ase an
g
l
es of th
e fun
damental
freque
ncy vol
t
age and
current pha
sors a
r
e given
by e
quation
s
(1
0),
(11), (12) a
n
d
(13
)
.
(10
)
√
(11
)
∅
t
a
n
(12
)
∅
t
a
n
/
(13
)
Whe
n
the si
g
nal is
cho
s
e
n
for a given fault,
the ratio
of the voltage to curre
n
t gives the
appa
rent imp
edan
ce of the
line.
The app
arent
impedan
ce i
s
then given
by the equati
on (14
)
.
|
|
|
|
∗
∅
∅
(14
)
The co
mplet
e
symmetri
c
a
l
fault detection duri
ng po
wer
swi
ng al
gorithm p
r
o
c
edure is
given in the flow chart in th
e Figure (1
).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 23 – 31
26
Figure 1. Flowchart for F
a
ult Discrimi
na
tion from Power Swin
g Co
n
d
ition
3. Simulation of the Pro
posed Me
th
od
The
pro
p
o
s
e
d
Symmetri
c
al fault d
e
tection du
ring
p
o
we
r
swi
n
g
tech
niqu
e u
s
e
s
Pa
rk’
s
transfo
rmatio
n an
d Fa
st F
ourie
r T
r
a
n
sf
orm to
di
scri
minate th
ree
pha
se fa
ult a
nd p
o
wer
swi
ng. It
is
s
i
mulated in IEEE 6- bus
s
y
s
t
em us
ing MATLAB/
Simulink
tool and is
shown in the Figure (2).
The IEEE-6 bus
s
y
s
t
em is
s
i
mulated as
per the generator, trans
f
ormer, line,
synchro
nou
s
comp
en
sato
r and
loa
d
d
a
t
as. Th
e te
st syste
m
i
s
e
s
tabli
s
he
d u
n
der no
rmal
a
nd
abno
rmal
co
ndition with
different load
angle
s
, different fault lo
cation
s an
d different swi
n
g
freque
nci
e
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
An Enhan
ced
Sym
m
e
trical Fault Dete
ction duri
ng Po
wer S
w
ing/An
gular …
(Jee
vitha A)
27
Figure 2. Simulation Diagram of IEEE 6
-
Bus
Sys
t
em
of the proposed method
Figure 3. Simulation Di
agram of Park’
s
tran
sform
a
tion
Figure 4. Simulation Di
agram of Fast F
ourie
r tran
sfo
r
mation
The
Di
screte
thre
e Pha
s
e
Lo
cked
Loo
p (PL
L
) can
be u
s
e
d
to
synchroni
ze
o
n
three-
pha
se sinu
so
idal
si
gnal
s. Park’
s
tran
sformatio
n
is
u
s
ed fo
r
cal
c
ul
ating three p
hase compo
n
ents
into dire
ct an
d quad
ratu
re
comp
one
nts
are sho
w
n in
Figure (3
).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 23 – 31
28
The lo
w p
a
ss filter i
s
de
si
gned
u
s
ing
Fi
lter
Desi
gn
a
nd Analy
s
is (FDA) tool fo
r
both the
voltage a
nd
curre
n
t si
gnal
s. Th
e
Ham
m
ing
wind
ow is
de
sign
ed
with a
lea
k
a
g
e
facto
r
of a
bout
0.04% and
si
de- lo
be atte
nuation of ab
out 355.8 d
e
ci
bels. Th
e FF
T block is
sh
own in the Fi
gure
(4)
comp
utes
the Fast Fou
r
ier tran
sform each ro
w of
a sample for a
n
N- dime
nsi
onal input a
r
ray.
Whe
n
the inp
u
t length is greater than
th
e FFT length,
it gives the FFT output.
4
.
Simulation Resul
t
s an
d discussion
s under Abn
o
rmal Condi
tions
The te
st
system is si
mul
a
ted u
nde
r
abno
rmal
co
ndition
s
with
the
dissimil
ar fa
ult
resi
stan
ce
s, different load
angle
s
an
d di
fferent fault location
s.
4.1. Three Phase Fa
ult
w
i
th Load Ang
l
e 60
0
The te
st syst
em is
simul
a
ted und
er a
b
norm
a
l condi
tion with a l
o
ad an
gle of
60
0
and
fault re
sista
n
c
e of
0.01
Ω
.
Figures 5(a) and
5(b
)
sh
ow the
thre
e
pha
se volta
ge an
d
curre
n
t
signals of the IEEE-6 bus system under
pow
er swing condition of load angle 60
0
.
5(a
)
5(b
)
Figures 5
(
a
)
and 5(b). Th
ree Phase Vol
t
age and
Cu
rrent Signals u
nder Symmet
r
ical F
ault wit
h
Load Angl
e o
f
60
0
The symm
etrical fault is
created in the t
r
an
smi
ssi
on l
i
ne (3
-4
) at 1
.
4 se
con
d
s a
nd the
fault is cle
a
re
d at 1.6 se
co
nds by o
peni
ng the ci
rc
uit brea
ke
rs at b
o
th end
s of the tran
smi
ssi
on
line. This deli
berate d
e
lay in fault cleara
n
ce time
a
c
q
uaint with the
powe
r
swing
con
d
ition in b
o
th
voltage and
current sig
nal
s.
0
0.
5
1
1.5
2
2.
5
3
-1
.
5
-1
-0
.
5
0
0.5
1
1.5
Ti
m
e
i
n
s
eco
nds
V
o
lt
a
g
e
(
v
o
l
t
s
)
in
p
e
r
u
n
it
0
0.5
1
1.5
2
2.5
3
-4
-3
-2
-1
0
1
2
3
x 1
0
-1
2
Ti
m
e
i
n
s
e
co
nds
C
u
r
ren
t
(
a
m
p
ere)
i
n
p
e
r
u
n
i
t
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
An Enhan
ced
Sym
m
e
trical Fault Dete
ction duri
ng Po
wer S
w
ing/An
gular …
(Jee
vitha A)
29
Figure 6. Output of dq Based Active Power
u
nde
r Symmetrical Fa
ult with Load
Angle of 60
0
Duri
ng po
we
r swing
con
d
i
tion, the fault per
iod of 1
.
4 to 1.6 second
s ha
s dq
base
d
active po
we
r
is g
r
eate
r
tha
n
its threshol
d val
ue a
nd t
hen the
sym
m
etrical fault
is dete
c
ted
a
n
d
vice versa is
pre
s
ente
d
in the Figu
re (6
).
Figure 7. Impedan
ce Plot o
f
Symmetrical
Fault with Lo
ad Angle of 6
0
0
The impe
dan
ce plot is plot
ted for the ab
norm
a
l con
d
ition with swin
g freque
ncy
of 1 Hz
and load a
ngl
e of 60
0
is revealed in the Figure (7). Th
e faul
t period
from 1.4 to 1.6 se
cond
s, the
appa
rent imp
edan
ce i
s
low and imped
an
ce is hi
gh in n
on- fault pe
rio
d
.
4.2. Three Phase Fa
ult
w
i
th Load Ang
l
e 160
0
The test syst
em is simul
a
ted unde
r abn
ormal conditi
on with a loa
d
angle of 16
0
0
, s
w
ing
freque
ncy of 2
Hz and
fau
l
t
resi
stan
ce
of
0.01
Ω
.
Figure
s
8(a)
an
d 8(b) sho
w
t
he three
pha
se
voltage and current si
gnal
s of the
IEEE-6 bus sy
stem
unde
r power
swi
ng
condition of load angle
160
0
.
0
0.
5
1
1.
5
2
2.
5
3
0
2
4
6
8
x 1
0
-1
2
T
i
m
e
i
n
s
eco
nds
dq ba
s
e
d a
c
t
i
v
e
po
w
e
r
i
n
pe
r
uni
t
0
0.
5
1
1.
5
2
2.
5
3
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
0.
5
x 1
0
16
Ti
m
e
i
n
s
e
c
o
nds
I
m
pe
danc
e
(
o
hm
s
)
i
n
pe
r
uni
t
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 23 – 31
30
8(a
)
8(b
)
Figure 8(a
)
a
nd 8(b
)
. Thre
e Phase Volt
age an
d Cu
rrent Signals u
nder Symmet
r
ical F
ault wit
h
Load Angl
e o
f
160
0
The symm
etrical fault is
created in the t
r
an
smi
ssi
on l
i
ne (3
-4
) at 2
.
4 se
con
d
s a
nd the
fault is cle
a
re
d at 2.6 se
co
nds by o
peni
ng the ci
rc
uit brea
ke
rs at b
o
th end
s of the tran
smi
ssi
on
line. Thi
s
inte
ntional d
e
lay
in fault cle
a
ra
nce tim
e
introdu
ce
s the p
o
we
r
swin
g
condition i
n
bo
th
voltage and
current sig
nal
s.
Figure 9. Output of dq Based Active Power
u
nde
r Symmetrical Fa
ult with Load
Angle of 160
0
Duri
ng po
we
r swing
con
d
i
tion, the fault per
iod of 2
.
4 to 2.6 second
s ha
s dq
base
d
active p
o
we
r is g
r
e
a
ter t
han it
s threshold valu
e, then th
e sym
m
etrical fault
is d
e
tecte
d
and
durin
g non
- fault perio
d, it
is lesse
r
than
its
threshold
value is sho
w
n in the Figure (9).
0
0.
5
1
1.
5
2
2.
5
3
3.
5
-1
.
5
-1
-0
.
5
0
0.5
1
1.5
V
o
lt
a
g
e
(
v
o
l
t
s
)
in
p
e
r
u
n
it
0
0.
5
1
1.5
2
2.
5
3
3.
5
-4
-3
-2
-1
0
1
2
3
x 1
0
-12
Ti
m
e
i
n
s
e
c
o
nd
s
C
u
rren
t
(
a
m
p
ere)
i
n
p
er
u
n
i
t
0
0.
5
1
1.
5
2
2.
5
3
3.
5
0
1
2
3
4
5
6
7
8
x 1
0
-1
2
Ti
m
e
i
n
s
eco
n
d
s
dq b
a
s
e
d a
c
t
i
v
e
p
o
w
e
r
i
n
pe
r
uni
t
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
An Enhan
ced
Sym
m
e
trical Fault Dete
ction duri
ng Po
wer S
w
ing/An
gular …
(Jee
vitha A)
31
Figure 10. Impeda
nce Plot of Symmetrical Fault with Load Angl
e o
f
160
0
The a
ppa
rent
imped
an
ce i
s
give
n by t
he ratio of
p
hase ‘A’ volt
age to
the p
hase ‘A’
curre
n
t with resp
ect to time. The impe
d
ance plot
is p
l
otted for the
abno
rmal
con
d
ition with swing
freque
ncy of
2 Hz
and lo
a
d
angle of 1
6
0
0
is sh
own i
n
the Figu
re (10). The fa
ult perio
d from
2.4
to 2.6 secon
d
s, the app
arent impeda
nce is low
a
nd
appa
rent imp
edan
ce i
s
hi
gh in non
- fa
ult
perio
d.
5. Conclusio
n
In this
pape
r,
the p
r
op
ose
d
metho
d
whi
c
h
uses Park’
s
tra
n
sfo
r
mati
on b
e
sid
e
s wi
th Fast
Fouri
e
r
Tra
n
sform to
discri
minate the
th
ree
pha
se
fa
ult from
po
we
r swin
g
con
d
i
t
ion is verifie
d
in
the IEEE-6 bus
system. B
a
ckup
zo
ne
mal-operation may interrupt
the smooth
operation of t
he
power
syste
m
. The
propo
sed
thresh
old
value
setting
is th
e m
o
st
consi
s
tent th
re
shol
d
setting
to
maintain a sense
of balance
bet
ween
the secu
rity and dependability of the modern rel
a
y
deci
s
io
n du
ring no
rmal a
nd po
we
r swing co
nditi
on.
For validati
on of the propo
sed m
e
th
od,
certai
n invest
igation
s
are
carrie
d on th
e test sy
ste
m
unde
r different fault lo
cation
s, different
swi
ng freq
ue
ncie
s and dif
f
erent fault ince
pti
on times are exam
ined du
ring t
he po
wer
swing
perio
d. The S
i
mulation
re
sults verify the
innate
p
o
ten
t
ial of the pro
posed meth
o
d
to overwhel
m
the pro
b
lem o
f
symmetrical
fault discrimi
nation
from
p
o
we
r swing
condition q
u
ickly and pre
c
i
s
ely
to facilitate the right rel
a
y trip signal
s duri
ng stabl
e and unstabl
e power
swi
n
gs.
Referen
ces
[1]
IEEE Po
w
e
r S
y
stem Relay
i
ng Committee
of the IEEE Pow
e
r En
gineering Societ
y
.
Po
w
e
r swi
n
g
and
out-of-step co
n
s
ider
ations o
n
trans
missi
on l
i
n
e
.
Rep. PSRC
W
GD6. 2005.
[2]
Ahmad
F
a
rid
Abid
in, Az
ah
Moham
ed
an
d
Huss
ain
Sh
ar
eef. Intell
ig
ent
detectio
n
of u
n
stabl
e
po
w
e
r
s
w
i
n
g
for corr
ect dista
n
ce r
e
la
y o
per
ation
usin
g S-transf
o
rm an
d n
eur
a
l
net
w
o
rks.
Ex
pert System
s
w
i
th Applicati
o
ns.
2011; 3
8
: 1496
9–
149
75.
[3]
Behn
am Ma
ha
medi
an
d Ji
an
Guo Z
hu. A
Novel
Ap
proac
h to D
e
tect S
y
mmetrical F
a
ul
ts Occurrin
g
Durin
g
Po
w
e
r
S
w
i
n
gs b
y
Usi
ng F
r
equ
enc
y
Comp
one
nt
s of Instantane
ous
T
h
ree-Phas
e
Active Po
w
e
r
.
IEEE Transactions on Power
Deliv
ery
. 201
2; 27(3): 136
8- 1
376.
[4]
Brahma SM.
Distanc
e rel
a
y
w
i
t
h
out-of-st
ep b
l
ocki
ng f
unctio
n
usi
n
g
w
a
vel
e
t tran
sform.
IEEE
Tra
n
s
a
c
ti
on
s on
Po
we
r D
e
l
i
v
ery
. 2007; 22(
3): 1360- 1
3
6
6
.
[5]
Che
ngzo
ng P
a
ng, an
d Kezu
n
o
vic, M. F
a
st
Dist
anc
e Rel
a
y Scheme for D
e
tecting S
y
mm
etrical F
a
u
l
t
duri
ng Po
w
e
r S
w
i
n
g.
IEEE Tr
ansactions on Power Deliv
ery
. 2010; 25(
4).
[6]
Kumarraj
a
An
d
ana
pal
li a
nd B
R
K
Varma. Pa
rk’s T
r
ansformation b
a
se
d S
y
mmetric
al F
a
ult Detectio
n
duri
ng Po
w
e
r S
w
i
n
g.
IEEE
. 2
014.
[7] Po
w
e
r
grid.
Report on the G
r
id Disturb
anc
e on 30th a
n
d
31th July 20
1
2
.
CERC Order in Petitio
n
.
201
2; 167.
[8]
Saee
d Lotfifar
d
, Ja
w
a
d F
a
iz
and Mla
d
e
n
Kezun
o
vic. De
tection of S
y
m
m
etrical F
aults
b
y
Dista
n
c
e
Rela
ys duri
ng Po
w
e
r
S
w
i
ngs.
IEEE Transactions on Power Deliv
ery.
201
0; 25(1): 81-8
7
.
[9]
Song
X, Ji
ao
S, W
anshun
L
,
Z
henhu
a Z
,
Ruih
ua
X.
A fuzz
y
th
eor
y b
a
sed
princ
i
pl
e
to distin
guis
h
stable s
w
i
n
gs
and
unsta
ble
s
w
i
ngs
in c
o
mplicat
ed p
o
w
e
r s
y
stems.
In
ternatio
nal Co
nferenc
e
o
n
Pow
e
r System
T
e
chno
logy
. 2
004; 2(1): 1
091
-109
5.
0
0.
5
1
1.5
2
2.5
3
3.5
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
0.
5
x 1
0
16
Ti
m
e
i
n
s
e
c
o
nd
s
I
m
pe
d
a
nc
e
(
o
hm
s
)
i
n
pe
r
uni
t
Evaluation Warning : The document was created with Spire.PDF for Python.