TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.5, May 2014, pp
. 3529 ~ 35
3
6
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i5.3538
3529
Re
cei
v
ed
Jun
e
19, 2013; Revi
sed
De
ce
m
ber 12, 201
3; Acce
pted
De
cem
ber 3
1
,
2013
Application of
Intelligent Three-state Pang-Pang
Control to Heat Exchan
ge Station
Wen Biao
Wang*,
Yong Sun, Si Yuan
Wang, Ha
n Wen
Coll
eg
e of infor
m
ation sci
ence
and tech
nol
og
y, Dal
i
a
n
Mariti
me Univ
ersit
y
,
Dali
an, 11
60
26
, China
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
w
w
b
2
01@
g
m
ail.co
m*, d
l
mu_su
n
y
o
ng@
1
63.com,dl
_
w
s
y
@sina.c
o
m,
w
e
n
han
_d
lmu
@
12
6.com
A
b
st
r
a
ct
The heat exc
h
ange st
ation of
central he
ating system
has
been increas
in
gly widely us
ed as the
inter
m
e
d
iate
h
ub co
nnecti
ng
the heat so
urce an
d h
e
a
t
users. If th
e specific te
mp
eratur
e co
ntro
l
requ
ire
m
e
n
ts are not satisfied
effect
ively and
specifical
ly, the security
and
stability of the pri
m
ary netw
o
r
k
and q
ual
ity of the seco
ndary
netw
o
rk w
ill be affected di
rect
ly. A temperat
ure contro
l scheme of the he
at
excha
n
g
e
station is pr
ese
n
te
d bas
ed o
n
int
e
lli
ge
nt
three-s
t
ates Pang-P
a
ng. On the b
a
s
is of mecha
n
i
s
m
ana
lysis, w
e
c
hoos
e th
e av
e
r
age
of su
pp
ly
an
d retur
n
w
a
ter temper
atur
es of s
e
con
dar
y netw
o
rk as
the
control
l
ed v
a
ri
abl
e in pr
ese
n
t
ed temper
atur
e control sc
he
me, w
h
ich is
e
quiv
a
le
nt to in
duci
ng the s
u
p
p
ly
water tem
p
erature as the feedforwa
rd signal. The
advantages
of t
he
intelligent thr
ee-
state Pang-Pang
control
algorit
hm lie in im
provin
g the stability
of the
primary ne
twork, reducing the overs
h
oot and
accel
e
ratin
g
th
e resp
ons
e of
the sec
ond
ary
netw
o
rk.
T
he a
pplic
atio
n of th
e pres
ente
d
co
ntrol sch
e
m
e t
o
the practic
a
l e
n
g
in
eeri
ng sh
ow
s that it
not onl
y imple
m
ents the a
u
to
matic c
ontrol
of the te
mp
eratur
e of h
eat
excha
n
g
e
stat
ion
he
nce
i
m
proves
its co
ntrol
per
for
m
a
n
ce but also
en
ha
nces a
nd i
m
prov
es th
e
control
l
ability
of the system
effectiv
ely and
espec
ial
l
y has
the r
e
ferent
i
a
l
and extending signific
ance
for
heat exch
an
ge
station transfo
rmi
ng o
pen-
lo
o
p
to closed-
lo
o
p
control.
Ke
y
w
ords
:
he
ating q
u
a
lity, averag
e te
mper
ature, intel
lig
en
t three-
state Pang-P
a
n
g
, controlla
bi
lity
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the deve
l
opment of gl
obal urbani
za
tion,
the appli
c
ation of cent
ral heatin
g ha
s bee
n
becoming
m
o
re
and
mo
re wi
dely u
s
e
d
. And
also
the he
at exchang
e
statio
n is in
cre
a
si
ngly
promi
nent b
e
ca
use of t
he imp
o
rtant
role i
n
th
e heat di
stribution a
n
d
tran
sform
a
tion.
Ho
wever,m
o
st of the heat excha
nge
sta
t
ions a
r
e ge
n
e
rally controll
ed by manu
a
l
operation a
nd
in ope
n-lo
op
control mo
de. The a
u
tomation d
e
g
r
ee i
s
lo
w [1]. Even if
along
with t
h
e
advan
ceme
nt of informatio
n techn
o
logy,
in recent
years, the
station reali
z
e
s
th
e telemetry a
nd
remote
cont
rol to a ce
rta
i
n extent, it i
s
st
ill difficult
to meet the dynamic
ch
ange
s he
atin
g
deman
d in re
al-time. Mea
n
whil
e,due to
the whole
society attach
es g
r
eat imp
o
rtan
ce to en
ergy
con
s
e
r
vation,
the terminal
heat users
who a
c
ti
vely partici
pate in
the heat measu
r
em
ent and
regul
ation, which have b
e
c
ome the in
e
v
itable trend.
Therefore, p
r
essing ne
ed
s are put forward
for practi
cal
a
l
gorithm
of th
e clo
s
e
d
-l
oop
cont
rol
eith
e
r
from
the p
e
r
sp
ective
of the security a
n
d
eco
nomy of heat excha
nge
station or me
eti
ng the feasibility of proce
ss
requi
rem
e
nts.
In the traditio
nal co
ntrol m
ode, it usuall
y
chang
ed th
e regul
ating
valve of the prima
r
y
netwo
rk to satisfy the return
wate
r temperatu
r
e
to h
eating index
requi
rem
ents accordi
ng to
the
outdoo
r environment temp
eratu
r
e.
Because of the cha
r
a
c
teri
stics of heat storag
e and the
essen
c
e
of la
rge
ine
r
tia lin
k, the
station
not
o
n
ly me
ets the
de
ma
nd of th
e
se
conda
ry net
wo
rk
temperature,
but al
so
en
su
res the
sta
b
ili
ty of pr
e
s
su
re
fluctuatio
ns i
n
p
r
ima
r
y net
work
a
c
cordi
ng
to the techn
o
logi
cal re
qui
reme
nts an
d
con
s
trai
nt
s. Thus the
reg
u
lating valve
shoul
d not act
freque
ntly, so
su
ch a
s
PID cont
rol alg
o
rithm is
difficu
lt to adapt to
the heatin
g
system
co
ntrol
requi
rem
ents [2]. The simple Pang
-Pan
g cont
rol alg
o
r
ithm whi
c
h h
a
s be
en successfully appli
e
d
in practi
ce
re
gulate
s
the
re
gulating valv
e by limit
ing
the valve a
m
p
litude to e
n
su
re the
impa
ct
to
prima
r
y net
work p
r
e
s
sure
fluctuation
s
i
n
the te
chn
o
l
ogy lice
n
se
range. At the
same
time, ta
king
the cha
r
a
c
teristic
of h
eat
stora
g
e
an
d
large
lag
int
o
a
c
count
to
meet
heat
deman
d
of the
se
con
dary n
e
twork, the
system p
u
ts forwa
r
d
the
idea that repla
c
e
s
precise
control
with
satisfa
c
to
ry control. Pan
g
-Pang cont
rol
algorith
m
refl
ects it
s st
ron
g
pra
c
ticabilit
y in the practi
cal
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3529 – 35
36
3530
heating
control en
ginee
rin
g
. But Pang
-Pang
cont
rol
is
really
simp
le to
stabili
ze
the
se
con
d
a
r
y
netwo
rk
controlled tem
p
e
r
a
t
ure i
n
to a
satisfacto
ry
rang
e. The
up
per
and l
o
wer limi
t
s of th
e valv
e
openi
ng of
Pang-P
ang
co
ntrol a
r
e
con
s
train
ed
by water a
nd
heat
bala
n
ce of
p
r
imary
netwo
rk.
Wheth
e
r
can
we ad
opt the
more si
mple
and co
nveni
ent improve
m
ent to
enha
nce the
stabil
i
ty,
accuracy
and
spe
ed
of the heat
in
g
co
ntrol
system
comp
re
hen
si
vely to prod
u
c
e the
follo
wi
ng
intelligent three-state Pan
g
-Pan
g co
ntrol.
2. Contr
o
l Process
The process flow diagra
m
of control
system
is shown in Fig
u
re 1. He
at excha
nge
st
at
ion
co
nt
ro
l sy
st
e
m
mai
n
ly
inclu
d
e
s
h
e
a
t
i
ng t
e
mp
era
t
ure cont
rol, circul
ating pu
mp
tra
n
sfe
rri
ng
heat co
ntrol, make
-u
p wat
e
r co
ntrol
a
n
d
pressu
re reli
ef control.
Figure 1. Pro
c
e
ss Fl
ow Di
agra
m
of Con
t
rol System
The h
eating t
e
mpe
r
ature
control m
a
inly
re
g
u
late
s th
e prim
ary n
e
twork valve
b
a
se
d on
the he
at de
m
and
of the
se
con
dary
network.
Ci
rculat
i
ng p
u
mp
tran
sferring
he
at
control tran
sfers
the heat ci
rcu
l
ating pump t
o
terminal h
e
a
t use
r
s
safel
y
and relia
bly by frequen
cy
control. Make-
up water p
u
m
p
co
ntrol
kee
p
s the n
e
two
r
k full of wate
r to avoid emp
t
y and air resi
stan
ce al
so t
o
prevent
air corrosi
on
by
make-up
pump; Pressure relief
control
ut
ilizes pressure relief
val
v
e
to
ensure th
at there
are no
o
v
erpressu
re
and b
u
rst pi
p
e
s in
se
co
nd
ary network
system in o
r
de
r to
the safe
op
eration of h
eati
ng net
wo
rk. T
he res
earch
focu
se
s o
n
th
e heatin
g tem
peratu
r
e
co
ntrol
of the heat
excha
nge
st
ation. Firstly, make
a si
m
p
le summa
ry analysi
s
for the other th
ree
control co
mp
onent
s.
2.1. Circula
t
i
ng Pump Tr
ansferring
Heat
Co
ntrol,
Make
-up
Water
Co
ntr
o
l and Pr
ess
u
r
e
Relief Control
Circulatin
g p
u
mp tran
sferring
heat
co
ntrol
in
clu
d
e
s
con
s
tant p
r
essu
re
cont
rol
a
n
d
differential pressure cont
rol.
Co
nsta
nt
pressu
re co
ntrol sele
ct
s the
circul
ation p
u
mp
ou
tlet
pre
s
sure a
s
set value while
differential
pressure
contro
l sele
cts
pressure differen
c
e between th
e
sup
p
ly
water pipe network and
th
e return
water
pi
p
e
netwo
rk of
se
con
dary
network.
The
working
prin
ciple of b
o
th is adju
s
ti
ng the sp
eed
of the
circul
ation pump b
y
altering the
circulating p
u
mp
operating fre
quen
cy ba
se
d on the set value chan
gin
g
to ensure th
at the se
con
d
a
ry network h
eat
is sent to the
use
r
s in tim
e
orderly. Th
e co
nt
rol
stru
cture
blo
c
k d
i
agra
m
of fre
quen
cy control
spe
ed is sho
w
n in Figu
re 3. When the
measured
pressure value
is higher tha
n
the set value,
PLC emit
s si
gnal to redu
ce the freq
uen
cy to red
u
ce the second
ne
twork flow to
maintain the
se
t
value
con
s
ta
nt acco
rdin
g t
o
control al
go
rithm.
When
t
he m
e
a
s
ured
pressu
re val
ue i
s
lo
we
r th
an
the set value
to incre
a
se the freque
ncy to kee
p
the se
t value con
s
tant.
In the heat
excha
nge
st
ation op
erati
on of
central
heating
syst
em, if the seco
nda
ry
netwo
rk
wate
r is n
o
t eno
u
gh, it will ca
u
s
e the
pipe n
e
twork p
r
e
ssure
red
u
ced
and lea
d
to the
phen
omen
on
of empty a
n
d
air re
si
stan
ce
of the
pi
p
e
net
work
also it ca
n
co
rro
de pip
e
n
e
twork
and affect th
e life of equ
ipment. Wh
a
t
’s wo
rse,
it can result that the heat
load ca
n't be
transpo
rted to the heat u
s
ers i
n
time which affe
ct
s h
eat quality directly. The pri
n
cipl
e of make-u
p
water
cont
rol
is that when the measured pressure
is below the set value to fill water to the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Intelligent Three
-
state Pan
g
-Pan
g Co
ntrol to Heat Excha
nge
… (Wen Biao Wa
n
g
)
3531
system, when
rea
c
he
s the requireme
nt to stop. In the intermitt
ent he
ating, due to t
he expan
sio
n
and
contracti
on of water in
pipe net
wo
rk, the syst
em
also
need
s to
make
-u
p wat
e
r an
d p
r
essure
relief dynami
c
ally.
Figure 2. Block
Diag
ram o
f
Average
Tempe
r
atu
r
e Control
Figure 3. Prin
ciple
Diag
ram
of Freque
ncy
Control
Whe
n
mo
re t
han o
ne u
s
e
r
s cl
ose the re
gulating valv
e at the sam
e
time, the seco
nda
ry
netwo
rk
pre
s
sure of heat
excha
nge
sta
t
ion will incr
e
a
se
sha
r
ply
whi
c
h will
ca
use the a
c
cid
ent of
bursting the p
i
pe netwo
rk of the user
s. In order to prevent exce
ssive
pressu
re, it is ne
cessa
r
y to
ensure that the maximum
pressu
re val
ue of heat
e
x
chan
ge stati
on must not
excee
d
the set
value or the
minimum p
r
e
s
sure valu
e
must not exceed the set value. Wh
en the mea
s
u
r
ed
value
is hi
ghe
r tha
n
the
set val
ue to
relieve
the pres
su
re
to gua
rante
e
the safe o
peration of
heati
ng
network.
However, in the
course of the
pressure
relief, the sy
stem
vents out the hot
water, f
ills
the cold
wat
e
r wh
en the
system n
eed
s to make
u
p
water. Th
e
r
efore, unde
r the premi
s
e
o
f
safety, the system shoul
d perfo
rm a
s
little as po
ssibl
e
relief a
c
tion
to avoid the phen
omen
on
of
side of ma
kin
g
up wate
r while pre
s
su
re
relief
2.2. Principle of He
ating
Tempera
t
ure
Contr
o
l
The
schem
e
of heatin
g te
mperature
co
ntrol
se
le
cts
the average
of su
pply an
d retu
rn
water tem
perature
s
of se
conda
ry
netwo
rk a
s
the cont
rolled p
a
ram
e
ters. Th
e co
ntrolled o
b
je
ct is
the re
gulating
valve on p
r
i
m
ary net
wo
rk of heat
ex
ch
ange
station.
Und
e
r th
e co
ndition of
clim
ate
comp
en
satio
n
, sel
e
ct
ave
r
age
temp
era
t
ure
set valu
e of the
seconda
ry net
work a
s
the
gi
ven
value, the valve openin
g
(f
requ
en
cy) a
s
the outpu
t, so
that the average of the
su
pply and retu
rn
water tempe
r
ature
s
of
se
con
dary
net
work m
a
intai
n
s at th
e
se
t value, the
block di
ag
ra
m is
s
h
ow
n
in
F
i
gu
r
e
2
.
Whe
n
the average temp
eratu
r
e is le
ss tha
n
the set value, the controller adopt
s
rea
s
on
able
al
gorithm to
ad
apt the
regul
ating valv
e a
u
tomatically t
o
incre
a
se th
e heat l
oad
when
the average
tempe
r
ature i
s
mo
re t
han t
set valu
e,
th
e controll
er
a
dapts the
reg
u
lating valve
to
redu
ce the h
e
a
t load
3. The Theor
etical De
sig
n
Value of Av
erage
of Supply
and Return Wa
ter Te
mperatu
r
es
of
Seconda
r
y
N
e
t
w
o
r
k
The he
ating
quality autom
atic control o
f
heat
exch
a
nge
station i
s
t
hat it en
su
res that
use
r
ind
oor t
e
mpe
r
ature i
s
re
asona
ble
and me
et
ing the heat d
e
m
and of u
s
ers
whe
n
the out
side
temperature
i
s
cha
ngin
g
.
So the i
ndo
or tempe
r
at
u
r
e
is u
ndo
ubtedl
y the mo
st i
n
tuitive co
ntroll
ed
para
m
eters, but in the most of the
users, it's difficult to find a broa
dly repre
s
e
n
tative point. In
the
heating
syste
m
the heat supplie
d by system equal
s the heat dissipatin
g ca
pa
city and of the
indoo
r tempe
r
ature maintai
ned by users.
System adju
s
tment form
ul
a [3] shows:
1
1
1
1
1
1
11
t=
t
(
'
'
2
)
(
'
'
)
2'
2
'
11
t=
t
(
'
'
2
)
(
'
'
)
2'
2
'
1
()
/
2
t
(
'
'
2
)
2'
nw
nw
B
gn
g
h
n
g
h
nw
n
w
nw
n
w
B
hn
g
h
n
g
h
nw
nw
nw
B
pg
h
n
g
h
n
nw
tt
t
t
tt
t
t
t
tt
G
t
t
tt
tt
tt
t
t
t
tt
G
t
t
tt
tt
t
t
t
t
tt
()
()
()
()
()
.
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3529 – 35
36
3532
Whe
r
e
tn
i
s
indoo
r tem
p
e
r
ature
cal
c
ul
ated in
wi
nte
r
h
eating,
tw
re
pre
s
e
n
ts
outdoo
r
temperature
cal
c
ulate
d
in
winte
r
h
eati
ng,
tg
a
nd
th
del
egate t
he
sup
p
ly a
nd return water
temperature
unde
r heatin
g system d
e
s
ign
con
d
itio
ns,
B
repre
s
ent
s ra
diato
r
heating tra
n
sfer
index whi
c
h e
qual
s to 03,
G
is
the relative flow rate of c
i
rculating water.
The fund
ame
n
tal Equation
(1) of op
era
t
ing
reg
u
latio
n
in heating
system
sho
w
s that
unde
r the
condition
of the in
doo
r te
mperat
ure
u
n
ch
ang
ed, th
e average
tempe
r
ature
tp
in
se
con
dary n
e
twork i
s
ju
st a uniform f
unctio
n
of o
u
tside tem
p
e
r
ature
tw
;
tp
can a
c
cu
rat
e
ly
respon
se to u
s
er's h
eat loa
d
cha
nge.
3.1. The D
y
n
a
mic Set Value of Av
erag
e Tempera
t
u
r
e of Secon
d
a
r
y
Net
w
o
r
k
The relation
ship bet
wee
n
set value
an
d the outd
o
o
r
temperature
can
be d
e
fin
ed a
s
a
linear e
quatio
n sho
w
n
in E
quation
(2).
Figure 4.
de
scrib
e
s the
rel
a
tionship
bet
wee
n
set val
ue
and the outd
o
o
r tempe
r
atu
r
e clea
rly.
S
V
=
A
*
X
+
B.
(2)
Whe
r
e
SV
is
the set valu
e
of the avera
g
e
of su
pply
a
nd retu
rn
wat
e
r temp
eratu
r
es of
se
con
d
a
ry
netwo
rk,
X
i
s
the o
u
tdoo
r tempe
r
atu
r
e,
A
and
B
are th
e pa
ra
meters to d
e
fine the lin
ear
relation
shi
p
who
s
e
value
and
symbol
can
be
set a
c
cordi
ng to
a
c
tual
nee
ds.
A
and
B
can
be
obtaine
d as f
o
llows. Fo
r e
x
ample, w
h
e
n
the outd
oor temperature
is -1
5
Ԩ
, we
mak
e
SV
is
60
Ԩ
;
whe
n
the out
door tem
pera
t
ure is eq
ual to 5
Ԩ
,
SV
is 40
Ԩ
.
It is
eas
y
to obtain
A
=-1,
B
=
4
5 then subs
titute them into
Equation
(2). After that
, we can
get the li
nea
r equ
ation a
b
out the
set v
a
lue
of
the a
v
erage
temp
eratu
r
e
of se
con
dary
network
and the
outd
oor te
mpe
r
at
ure th
at is
sh
own i
n
Eq
u
a
tion (3). T
he
relation
ship
b
e
twee
n set value
and outd
oor t
e
mpe
r
ature is sho
w
n in Fig
u
re 5.
SV=(-1)*X+45.
(3)
Figure 4. Rel
a
tionship bet
wee
n
Set Value and
Outdoo
r Tem
peratu
r
e
Figure 5. Time Corre
c
tion
Curve of Se
conda
ry
Network Tem
peratu
r
e
Huma
n-m
a
ch
ine dial
og
s
of the high
e
s
t out
do
or t
e
mpe
r
ature,
the lowest
outdoo
r
temperature
and
th
e co
rresp
ondi
ng
mi
nimum aver
a
ge wate
r
tem
peratu
r
e, ma
ximum
ave
r
a
g
e
temperature
are given
in
t
h
is syst
em. A
fter users inp
u
t the two
set
s
of value
s
a
c
cordi
ng to l
o
cal
con
d
ition
s
or person
a
l ha
bits, the sy
stem can
cal
c
ulate
the set value
of average temp
erature
automatically [4]. So wh
en the o
u
td
oor tem
per
ature i
s
hig
h
e
r
, the set value of ave
r
age
temperature i
s
sm
alle
r; wh
en the outd
o
o
r temp
eratu
r
e is lo
we
r, the set value i
s
large
r
. And t
he
minimum av
erag
e tempe
r
ature and th
e maximum av
erag
e tem
peratu
r
e rest
rict the ra
ng
e of
averag
e tem
p
eratu
r
e to
av
oid the
tempe
r
ature too
la
rge o
r
too
sm
all. By this m
ean
s, the
system
can adj
ust th
e averag
e temperature in
a suitable
val
ue. So it can save a lot of energy on the
basi
s
of en
su
ring hu
man
comfort.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Intelligent Three
-
state Pan
g
-Pan
g Co
ntrol to Heat Excha
nge
… (Wen Biao Wa
n
g
)
3533
3.2. The Calc
ulation of Se
t v
a
lue Correction
To meet the heat req
u
ire
m
ents of indo
or t
herm
a
l co
mfort is not si
mply depen
di
ng on the
outdoo
r tem
p
eratu
r
e, it i
s
also
cl
osely
related
to
factors
su
ch as
solar ra
diation,
wind dire
ctio
n,
wind
spee
d. When the
system
can't
obtain com
p
reh
e
n
s
ive me
teorologi
cal para
m
eters, for
further e
n
e
r
g
y
saving an
d rai
s
ing h
e
a
t quality,
multi-pe
riod
co
rre
ction fun
c
t
i
on of avera
ge
temperature
set value
can
be adde
d in
accordan
ce
with the stati
s
tic de
man
d
s on the ba
sis of
norm
a
l clim
a
t
e com
pen
sa
tion. That is
to say ba
se
d on diffe
ren
t
cha
r
a
c
teri
stics i
n
differe
nt
regio
n
s o
r
di
fferent u
s
e
r
deman
ds to
do fu
rther
refinement co
rrection. Co
rre
c
tion method
i
s
sho
w
n i
n
Eq
uation
(4),
where
SVc
rep
r
esents the
correctio
n
valu
e and
k0
~
k23 corre
s
po
n
d
to
the day from
0:00 to twent
y three i
n
24
hours
sh
ow
n
in Tabl
e 1. T
he
corre
c
tion
cu
rve i
s
sho
w
n
in Figure 5. By adding or
subtra
cting the
va
lue to fine tuning for furt
her corre
c
tion
.
SVc
=
SV+
△
t.
(4)
Duri
ng the
sl
eepin
g
peri
o
d
of "0:00 - 6:00" and
"11:00
~ 15:00" at n
oon, co
rrectio
n
value
has a
ce
rtain
degree
of red
u
ction
ba
se
d
on the
set va
l
ue in
the
origi
nal
setting
while in
the tim
e
living of "18:00 ~ 21:00 ", t
he co
rrectio
n
value is in
cre
a
sin
g
to a certain degree.
Table 1. Co
rrection
Coefficient
Ti
me
[h]
0
1
2
……
k21 k22 k23
∆
t
[]
-2
-3
-2
4
2
2
3.3. The Smart Pang-P
a
n
g
Control
Equation
(1) i
ndicates th
at the retu
rn (su
pply wate
r te
mperature
)
water temp
erat
ure of
the second
ary netwo
rk
an
d outd
o
o
r
te
mperature
co
rre
sp
ond
to e
a
ch othe
r. When we a
dopt
the
cla
ssi
cal
con
t
rol, the
retu
rn
(supply
water tem
p
e
r
a
t
ure) water tempe
r
ature i
s
contin
uou
sly
tracking the
outdoo
r temp
eratu
r
e, so t
hat t
he regul
ating valve moves fre
q
u
ently and ca
use
pre
s
sure fluct
uation
s
of p
r
i
m
ary net
wo
rk stro
ngly
whi
c
h m
a
y indu
ce indu
stri
al a
cci
dent. O
n
the
other ha
nd it can lead th
e life of the
regul
ator
to sho
r
ter to da
mage the eq
uipment ea
sil
y
.
Although Pan
g
-Pan
g cont
rol accuracy is not high,
it
can a
c
hieve t
he cont
rol sta
ndard, meet the
heat de
man
d
and
solve
th
e problem
ab
ove, so P
ang
-Pang
co
ntrol
is fea
s
ibl
e
in
ce
ntral
heati
ng
system
with chara
c
te
risti
c
s of big delay and large lag
[5].
The
ba
sic pri
n
cipl
e of P
a
n
g
-Pan
g
cont
rol is sho
w
n i
n
Fig
u
re
6. P
ang-P
ang
co
ntrol
ha
s
two po
sitions—the upp
er
limit and the lower limi
t.Whe
n the measure
d
tem
peratu
r
e valu
e is
highe
r than th
e uppe
r limit tempe
r
ature o
f
Pang-P
ang,
the prima
r
y network regul
a
t
ing valve run
s
in the lower limit position automatically to decreas
e t
he wate
r flow of primary n
e
twork to red
u
ce
heat lo
ad;
When th
e m
e
a
s
ured
temp
era
t
ure val
ue i
s
l
o
we
r th
an Pa
ng-Pa
ng l
o
we
r limit valu
e, t
he
prima
r
y n
e
twork regul
ating
valve o
perates i
n
the
upp
er limit positi
on to incre
a
se the water flow
to improve th
e heat load.
The calculation equ
at
ion
of the uppe
r and limit temperatu
r
e of P
ang-
Pang i
s
sho
w
n a
s
Eq
uati
on (5). Th
e regulatin
g
val
v
e setting
of dynamic up
p
e
r a
nd lo
we
r
limit
value and the
amplitude va
lue depe
nd o
n
the pro
c
e
s
s actual dem
a
nds
whi
c
h includs the a
r
ea
of
taken
warm
and th
e p
r
e
s
sure influ
e
n
c
e cau
s
ed
by
all the
he
at exch
ang
e
station o
peni
n
g
or
clo
s
ing in th
e permitted range [6].
σ
1% and
σ
2% rep
r
e
s
ent the
over
sh
oots
of the avera
g
e
temperature
of se
con
gda
ry network. Beca
use t
he a
m
plitude valu
e between th
e two po
sitio
n
s i
s
relatively far
distan
ce
so t
hat
it
can
ea
sily lea
d
to
p
r
essu
re
fluctu
ation of th
e
prima
r
y net
work
and the overshoot will be relatively large
.
1.
5
1.
5
Tu
S
V
c
Tl
S
V
c
(
5
)
Whe
r
e
SVc
is the corre
c
tio
n
value of
SV
,
Tu
is the Pang-Pa
ng tem
peratu
r
e u
p
p
e
r limit, while
Tl
is Pang
-Pang
temperatu
r
e
lowe
r limit.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3529 – 35
36
3534
Figure 6. Prin
ciple
Diag
ram
of P-P Control
Figure 7. Prin
ciple
Diag
ram
of Three
-
stat
e
Control
3.4. The Thr
ee-s
t
a
t
e Pan
g
-Pang
Control
In orde
r to redu
ce the p
r
essure fluctu
ation of the
prima
r
y network
and
red
u
c
e the
overshoot to
prom
otes th
e co
ntrol a
c
curacy
to e
n
han
ce the
h
eat quality o
f
the se
con
d
a
ry
netwo
rk. On the
ba
si
s
of Pang-Pa
ng control
t
w
o
-
po
sition limit, th
e sy
stem int
r
odu
ce
s the t
h
ird
limit—the median limit (the
median limit is equal to
averag
e of the uppe
r and lo
wer limit) so that
the amplitude
value of valve relatively shrin
ks to
reli
e
v
e the pipe network p
r
e
s
sure fluctu
atio
ns
cau
s
e
d
by va
lve actio
n
. Th
e pri
n
ci
ple
of
the thr
ee-stat
e Pang
-Pan
g
co
ntrol
is sh
own
in Fi
gu
re
7.
Whe
n
the av
erag
e temp
erature m
e
a
s
ured is
high
er t
han the te
mp
eratu
r
e u
ppe
r limit value o
f
Pang-Pa
ng, the prima
r
y network re
gula
t
ing valve runs
to the lower limit position automatically to
decrea
s
e
the
avera
ge te
m
peratu
r
e,
wh
en the
avera
ge temp
eratu
r
e i
s
le
ss tha
n
up
per limit
of
|Pv
-Sv
|
≤
0.5
,
the valve switche
s
to valve media
n
lim
i
t
position to
e
a
se th
e avera
ge tempe
r
atu
r
e
decrea
s
in
g speed of
seco
ndary network.
When
th
e
avera
ge te
mperature
m
easure
d
i
s
lo
wer
than the temperatu
r
e lo
we
r limit of Pan
g
-Pan
g ,the
valve run
s
to upper limit po
sition to increa
se
the he
at load
; whe
n
the
averag
e tem
per
ature i
s
more
than th
e lo
wer limit
of
| Pv
-S
v
|
≤
0.5 ,t
he
valve switche
s
to median p
o
sition to alle
viate the
average tempe
r
at
ure to co
ntinu
e
to rise. In the
ideal ca
se, when the outd
oor tempe
r
at
ure is relati
ve
ly low, the regulati
ng valve stays in up
per
limit position
to increa
se the heat
loa
d
. When th
e measure
d
tem
peratu
r
e
Pv
is goin
g
to re
ach
the set value
Sv
, the valve run
s
to the median po
sition then
Pv
tend
s to
Sv
gently to stay in a
rea
s
on
able t
e
mpe
r
ature range; Simila
rly, when the
temperature i
s
rel
a
tively high, be
cau
s
e
of
the media
n
limit of the re
gulating valv
e,
Pv
will reach to
Sv
g
e
n
t
ly and stay in a rea
s
o
n
a
b
le
temperature
rang
e to get
the cont
rol ef
fect [4
]. The intelligent three-state Pan
g
-Pan
g co
ntrol
redu
ce
s the
pre
s
sure fluct
uation of the
prima
r
y network,alleviate
s
the fluctu
ation ra
nge of
the
averag
e
of supply
an
d re
turn wate
r
te
mperatur
e
s
i
n
seconda
ry
network a
n
d redu
ce
s t
h
e
overshoot co
mpared to si
mple Pang –
P
ang co
ntrol
whi
c
h mea
n
s
σ
'1% <&1%,
σ
'2%
≈
0.
3.5. Process
Indicator
s
The re
se
arch
focuses o
n
a
heat excha
n
ge st
ation of
a university student apa
rtments in
Dalia
n whi
c
h
taken
wa
rm covers
an a
r
e
a
of 3900
0 m
2
cu
rre
ntly and the he
at u
s
ers a
r
e m
a
inly
for stu
dent h
o
stel
s. The
schem
e t
hat
select
s the
averag
e of the
sup
p
ly and
re
turn temp
erature
s
of the
se
co
nd
ary n
e
two
r
k a
s
the
controll
ed p
a
ramete
rs m
ean
while
Pang-Pa
ng
control
algo
rith
m
and thre
e-st
ate cont
rol
algorith
m
are applie
d to
the actual
temperature
control sy
ste
m
s.
Corre
s
p
ondin
g
para
m
eters in the control
l
er are set sh
own in Ta
ble
2.
Table 2. Para
meter Setting
of the Contro
ller
Parameter settin
g
Upper limit value
Median limit valu
e
Lo
w
e
r limit value
Pang-Pang valve opening
Three
-
state contr
o
l valve opening
O
u
t
d
o
o
r
t
e
m
p
er
at
u
r
e
Average tempe
r
a
t
ure
40
40
5°
40°
30
20
20
-15°
60°
4. Experiment Re
sult an
d Analy
s
is
Makin
g
a co
mpre
hen
sive comp
ari
s
o
n
Pang-Pa
ng control effect
with three
-
sta
t
e Pang-
Pang co
ntrol
effect from Figure 8 an
d Figure 9,
we
can see that the amplitud
e
value of valve
t
Valve
tp
Ph
<
P
sv
动
启
σ
'1
%
σ
'2
%
tp
Val
v
e
t
σ
1%
σ
2%
P-P lower
l
i
mi
t
P-P Upper
limit
P-P L
o
wer li
mi
t
P-P Upper
limit
Upper limit
Lower limit
Lower limit
Upper limit
Median limit
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Intelligent Three
-
state Pan
g
-Pan
g Co
ntrol to Heat Excha
nge
… (Wen Biao Wa
n
g
)
3535
limit is relativ
e
ly large
due
to the two-p
o
siti
on of the
Pang-Pa
ng
control so th
at the mea
s
u
r
ed
value u
s
ually
deviates fro
m
the set val
ue of the
tem
peratu
r
e
whi
c
h re
sults i
n
a
relatively large
overshoot. Als
o
, the valve ac
t
s
relatively fr
equ
ently. If ado
pting
the
three-sta
t
e Pang
-Pan
g
control whi
c
h
is equival
ent to two set
s
Pa
ng-Pa
ng cont
rol be
cau
s
e
o
f
the median l
i
mit.Thereby it
enabl
es the
a
v
erage
temp
eratu
r
e val
u
e
mea
s
u
r
ed
re
mains in
the
area
of |
Pv - Sv
|
≤
0.5. Wh
en
the outdoo
r t
e
mpe
r
ature i
s
lo
w, the re
g
u
lating valve
is in the upper limit to
incre
a
se th
e prim
ary
netwo
rk
wate
r flow and th
e se
cond
ary
network
ave
r
age temp
erature ri
se
s. As the avera
ge
temperature
raises to
co
n
f
orm the me
dian limit
op
eration
co
ndi
tion, the valve moves to t
he
median
limit to ease the i
n
crea
sing
slo
pe of
the averag
e
temp
erature, whi
c
h is
bette
r
for
Pv
stabili
ze
s ne
ar the
set val
ue
Sv
; Simil
a
rly, whe
n
the
outdo
or tem
peratu
r
e
is
hi
gh, the m
edi
an
limit also pl
ays a
role i
n
re
duci
ng the
overshoo
t. So t
hat, rega
rdl
e
ss
of the out
door te
mpe
r
a
t
ure
raises or falls, the medi
an
limited acts t
w
o times i
n
t
he transition
process. S
o
t
hat the valve
will
remai
n
in th
e media
n
lim
it position
a
relative
ly lon
g
time whi
c
h
redu
ce
s the
overshoot a
n
d
improve
s
the
control a
c
curacy (heatin
g
quality).
Som
e
evaluatio
n i
ndexe
s
can
b
e
obtain
ed from
the hi
stori
c
al
data: Pan
g
-P
ang
co
ntro
l
a
l
gorithm, th
e
averag
e
oversho
o
t
σ
% = 7.9%,
whil
e
t
he
use of three-state control
Pang-P
ang av
erag
e oversh
oot
σ
%= 3.1
%
,which
red
u
c
e
s
86.1%.
Figure 8. The
Curve of P-P
Control
Figur
e 9. The
Curve of
Th
ree-state Co
ntrol
The three
-
sta
t
e Pang-Pan
g
control alg
o
rith
m re
du
ces the overs
hoot and imp
r
oves the
control a
c
curacy effe
ctively comp
ared
to Pang
-Pan
g control
alg
o
rithm. Th
e
averag
e of t
h
e
sup
p
ly and re
turn tempe
r
at
ure
s
as the
controlle
d para
m
eter an
d the inte
lligent three
-
state Pang-
Pang
cont
rol
algo
rithm i
m
prove
s
th
e
co
ntro
l
pe
rforma
nce a
n
d
heatin
g q
u
a
lity and h
a
s
the
benefit for the
primary net
work p
r
e
s
sure stability.
5. Conclusio
n
The
avera
g
e
of
sup
p
ly a
nd
return
wa
ter temp
erature
s
of seco
ndary
net
work a
s
the
controlled
pa
rmeter i
s
si
milar to in
du
cing th
e
sup
p
ly water te
mperature
as the feedforward
sign
al whi
c
h
played a rol
e
in lead co
ntro
l. It’s
very important for
ce
ntra
l heatin
g control syste
m
s
with a larg
e time con
s
tant
and large del
ay.
The Pang
-Pang co
ntrol
with rea
s
o
nable setting bound
ari
e
s co
nform
s
process
requi
rem
ents espe
cially the intelligent three
-
st
ate Pang-P
ang co
ntrol algo
rith
m is simple
and
effective to accelerate the spe
ed
of re
sp
onse of the controlle
r.
The intelli
gent three-state
Pang-Pang control
not
only im
proves the stability of the
prima
r
y network and
re
du
ce
s the ove
r
sho
o
t of t
he
se
con
dary n
e
twork b
u
t al
so imp
r
ove
s
the
controllability
of the system, solv
es
uncontrollability
that the si
m
p
le PID algorithm doesn't
do
,brea
ks th
e "
bottlene
ck" th
at the pro
c
e
s
s he
at of
the
heat exchan
g
e
stat
ion tran
sfers fro
m
op
en-
loop into
a
clo
s
ed
loop
and im
prove
s
the
qu
ality of he
ating
whi
c
h
has referential
an
d
prom
otional v
a
lue on the g
r
owin
g popul
a
r
ity of the heat exchang
e st
ation
Furthe
r
re
se
arch a
nd i
m
provem
ents i
n
clu
d
e
s
o
n
the ba
si
s of
statisti
cal
a
nalysi
s
introdu
ce th
e
dynamic th
ree-st
ate Pan
g
-Pan
g co
ntrol whi
c
h me
a
n
s to re
gulat
e the dynami
c
al
boun
dari
e
s o
f
Pang-Pang
according to the time pr
op
ortion of the uppe
r limit or the lower li
mit
everyday.Me
anwhile,ma
k
e
su
re
that th
e
prim
ary
net
work di
sturban
ce i
s
in th
e p
r
oce
s
s p
e
rmitt
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3529 – 35
36
3536
rang
e a
c
cord
ing to the
proce
s
s a
c
tual
deman
d a
nd
the average t
e
mpe
r
ature
stays at me
di
an
limit value in more time as
far as
poss
ible.
Ackn
o
w
l
e
dg
ements
This work is fi
nan
cially sup
ported by “ th
e Funda
ment
al Re
sea
r
ch Fund
s for the
Central
Univ
er
sitie
s
”.
Referen
ces
[1]
W
enbi
ao W
a
n
g
, Yan
w
u
Ch
en, Si
yu
an
W
ang,
Xing
lo
ng
Dua
n
a
n
d
F
an Y
u
.
Res
e
a
r
ch on
He
at
Exchan
ge Stati
on Dyn
a
m
ic C
ontro
l Bas
ed o
n
Heat Pred
icti
on
. 201
2: 618-
621, 20
12ICICI
P.
[2] Bennett
S.
Develo
p
m
ent of th
e PID controll
e
r
.
IEEE Control System
s
. 199
3b; 13: 58
65.
[3] Hong
Kang.
Choic
e
of Contro
lled P
a
ra
meter
of
Auto Control System
in Substation
. In Chi
n
ese. 200
3.
[4]
Si
yua
n
W
a
n
g
,
F
u
Ji, Jia
l
u
Du,
W
enbi
ao
W
a
n
g
.
T
e
mper
atur
e Co
ntrol
of H
eat Exch
an
ge
Station B
a
se
d
on ITGC
PART 1.
2010; 39
4-3
97, 201
0ICICI
P.
[5]
Peng C
han
gh
a
i
, W
u
Z
h
ishen, Che
n
Z
henq
ia
n, Li Min.
Dela
y rates an
d time lags of he
at cond
uctio
n
i
n
buil
d
i
ng co
nstruction u
n
d
e
r field co
nditi
ons.
Journ
a
l of Sout
heast Un
iversit
y
.
26(2): 249-2
53.
[6]
Si
yua
n
W
a
n
g
,
Don
g
W
a
n
g
, C
hen
g Sh
ao,
R
unton
g Z
h
a
ng.
On
control decision m
a
nagem
ent
system
for heatin
g bo
il
ers
. 26th Chi
n
e
s
e Contro
l Con
f
erence.
Evaluation Warning : The document was created with Spire.PDF for Python.