I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
10
,
No
.
1
,
A
p
r
il
2
0
1
8
,
p
p
.
129
~
137
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
ee
cs.v
1
0
.
i1
.
p
p
129
-
1
3
7
129
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijee
cs
A Real Ti
m
e
Vein
Det
e
ction Sy
st
e
m
K
a
zi
I
s
t
ia
qu
e
Ah
m
e
d,
M
o
ha
m
e
d H
a
di H
a
ba
ebi
,
M
d Ra
f
i
qu
l I
s
la
m
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
Co
m
p
u
ter E
n
g
in
e
e
rin
g
,
Ku
ll
iy
y
a
h
o
f
En
g
in
e
e
rin
g
,
I
n
tern
a
ti
o
n
a
l
Isla
m
ic Un
iv
e
rsit
y
M
a
la
y
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
15
,
2
0
1
8
R
ev
i
s
ed
Mar
14
,
2
0
1
8
A
cc
ep
ted
Mar
30
,
2
0
1
8
Blo
o
d
v
e
in
s
d
e
tec
ti
o
n
p
ro
c
e
ss
c
a
n
b
e
c
u
m
b
e
rso
m
e
f
o
r
n
u
rse
s
a
n
d
m
e
d
ica
l
p
ra
c
ti
o
n
e
rs
w
h
e
n
it
c
o
m
e
s
to
sp
e
c
ial
o
v
e
r
w
e
ig
h
t
t
y
p
e
o
f
p
a
ti
e
n
ts.
Th
is
sim
p
le
ro
u
ti
n
e
p
ro
c
e
d
u
re
c
a
n
lea
d
th
e
p
ro
c
e
s
s
in
to
a
n
e
x
tre
m
e
c
a
la
m
it
y
f
o
r
th
e
se
p
a
ti
e
n
ts.
In
t
h
is
p
a
p
e
r,
w
e
e
m
p
h
a
siz
e
d
o
n
a
p
ro
c
e
ss
f
o
r
th
e
d
e
tec
ti
o
n
o
f
th
e
v
e
in
in
re
a
l
t
im
e
u
sin
g
th
e
c
o
n
se
c
ra
ti
o
n
s
o
f
M
a
tl
a
b
to
p
re
v
e
n
t
o
r
a
t
lea
st
re
d
u
c
e
th
e
n
u
m
b
e
r
o
f
in
e
sc
a
p
a
b
le
c
a
la
m
it
y
f
o
r
p
a
ti
e
n
ts
d
u
rin
g
th
e
i
n
f
u
sio
n
o
f
a
n
e
e
d
le
b
y
p
h
leb
o
to
m
y
o
r
d
o
c
to
r
i
n
e
v
e
r
y
d
a
y
li
v
e
s.
He
m
o
g
lo
b
in
o
f
th
e
b
lo
o
d
ti
ss
u
e
s
e
n
g
ro
ss
e
d
th
e
Ne
a
r
In
f
ra
re
d
(
NIR)
il
lu
m
in
a
ted
li
g
h
t
a
n
d
Nig
h
t
v
isio
n
c
a
m
e
ra
is
u
se
d
to
c
a
p
tu
re
th
e
sc
e
n
e
a
n
d
e
n
h
a
n
c
e
th
e
v
e
in
p
a
tt
e
rn
c
lea
rl
y
u
sin
g
Co
n
tras
t
L
i
m
i
ted
A
d
a
p
ti
v
e
Histo
g
ra
m
Eq
u
a
li
z
a
ti
o
n
(CL
AH
E)
m
e
th
o
d
.
T
h
is
sim
p
le
a
p
p
ro
a
c
h
c
a
n
su
c
c
e
ss
f
u
ll
y
a
lso
l
e
a
d
to
lo
c
a
li
z
in
g
b
lee
d
in
g
sp
o
ts,
c
l
o
ts
f
ro
m
stro
k
e
…
e
tc a
m
o
n
g
o
th
e
r
t
h
i
n
g
s.
K
ey
w
o
r
d
s
:
Vein
Dete
ctio
n
Nea
r
I
n
f
r
ar
ed
C
L
AHE
I
n
f
u
s
io
n
o
f
Nee
d
le
R
ea
l T
im
e
Ve
in
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Mo
h
a
m
ed
Had
i H
ab
ae
b
i
,
Dep
ar
t
m
en
t o
f
E
lec
tr
ical
an
d
C
o
m
p
u
ter
E
n
g
in
ee
r
i
n
g
K
u
ll
i
y
y
ah
o
f
E
n
g
in
ee
r
i
n
g
,
I
n
ter
n
atio
n
al
I
s
la
m
ic
U
n
iv
er
s
it
y
Ma
la
y
s
ia
,
Ma
la
y
s
ia.
E
m
ail:
h
ab
ae
b
i@
ii
u
m
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
N
o
w
ad
a
y
s
,
th
e
in
f
u
s
io
n
o
f
a
n
ee
d
le
to
th
e
p
atie
n
ts
f
o
r
h
o
s
p
italizatio
n
h
as
b
ee
n
d
o
n
e
b
y
d
if
f
er
e
n
t
m
ed
ical
o
p
er
ato
r
s
in
t
h
e
f
ie
ld
o
f
m
ed
ici
n
e
a
n
d
th
e
Op
er
ato
r
s
also
r
eq
u
ir
e
to
f
i
n
d
o
u
t t
h
e
v
e
in
s
f
o
r
th
e
d
o
n
at
io
n
o
f
b
lo
o
d
,
t
r
an
s
f
u
s
io
n
o
f
b
lo
o
d
an
d
in
j
ec
tio
n
o
f
th
e
a
m
p
u
l
e
liq
u
id
o
r
f
lu
id
in
to
th
e
b
o
d
y
[
1
]
.
I
t
is
a
v
er
y
i
m
p
o
r
tan
t
p
r
o
ce
s
s
f
o
r
th
e
p
h
l
eb
o
to
m
i
s
t
o
r
th
e
cli
n
icia
n
to
f
in
d
th
e
v
ei
n
v
ess
e
l
to
av
o
id
n
ee
d
less
p
ain
d
u
e
to
th
e
r
ep
ea
ted
s
k
i
n
at
p
o
k
in
g
o
f
th
e
p
atien
t.
Fo
r
lo
ca
tin
g
t
h
e
v
e
in
i
n
th
e
h
an
d
o
f
t
h
e
p
atie
n
ts
,
m
an
y
o
f
t
h
e
m
f
ac
e
th
e
d
i
f
f
ic
u
lt
ies
d
u
r
i
n
g
t
h
e
p
er
io
d
o
f
in
s
er
tio
n
o
f
a
n
ee
d
le
in
t
h
e
f
ir
s
t
ti
m
e,
w
h
ich
ca
n
cr
ea
te
a
p
an
i
c
at
m
o
s
p
h
er
e
f
o
r
t
h
e
p
atien
t
s
a
n
d
,
as
a
r
e
s
u
l
t,
t
h
e
p
r
o
ce
s
s
w
ill
tak
e
lo
n
g
er
ti
m
e.
F
u
r
t
h
er
m
o
r
e
,
i
m
a
g
i
n
g
u
tili
zi
n
g
Nea
r
I
n
f
r
ar
ed
(
NI
R
)
h
as
t
u
r
n
e
d
o
u
t
to
b
e
an
e
x
ce
p
tio
n
al
i
n
s
t
r
u
m
e
n
t
in
r
e
s
to
r
ativ
e
d
ia
g
n
o
s
tics
.
Fo
r
ex
a
m
p
le,
NI
R
is
u
s
ed
in
Op
tical
I
n
tell
ig
ib
ilit
y
T
o
m
o
g
r
ap
h
y
eq
u
ip
p
ed
f
o
r
3
D
im
a
g
in
g
w
it
h
h
i
g
h
d
et
er
m
in
a
tio
n
k
ee
p
i
n
g
p
ac
e
w
ith
lo
w
-
co
n
tr
o
l
m
icr
o
s
co
p
y
,
in
m
ea
s
u
r
in
g
b
lo
o
d
s
tr
ea
m
,
b
lo
o
d
v
o
lu
m
e,
O2
u
tili
za
ti
o
n
,
r
e
-
o
x
y
g
e
n
ati
on
r
ates
an
d
m
u
s
cle
r
ec
u
p
er
atio
n
ti
m
e
i
n
m
u
s
cle,
in
th
e
n
o
n
in
v
a
s
i
v
e
e
v
alu
a
tio
n
o
f
ce
r
eb
r
u
m
w
o
r
k
a
n
d
o
th
er
m
ed
ical
ap
p
licatio
n
s
[2
],
[
3
]
.
A
s
ta
n
d
ar
d
len
s
ca
m
er
a
ca
n
n
o
t
v
ie
w
th
e
NI
R
i
m
a
g
es
b
ec
au
s
e
it
r
eq
u
ir
es
an
I
R
n
o
n
e
-
b
lo
ck
i
n
g
f
ilter
to
allo
w
it
to
v
ie
w
th
i
s
r
an
g
e
f
r
o
m
th
e
elec
tr
o
m
a
g
n
etic
s
p
ec
tr
u
m
.
Mo
s
t
s
h
o
c
k
in
g
in
f
o
r
m
atio
n
is
t
h
at,
t
h
e
r
ate
o
f
f
ail
u
r
e
i
n
n
ee
d
le
i
n
f
u
s
io
n
is
a
p
p
r
o
x
im
a
tel
y
3
-
5
%
in
th
e
f
ir
s
t
en
d
ea
v
o
r
a
m
o
n
g
5
0
0
m
illi
ar
d
o
n
t
h
e
h
u
m
an
p
h
y
s
iq
u
e
f
o
r
d
if
f
er
en
t p
u
r
p
o
s
e,
[4
]
q
u
an
tify
t
h
is
b
y
t
h
eir
ex
p
lo
r
atio
n
.
T
h
e
p
atter
n
s
o
f
t
h
e
v
ei
n
s
ar
e
co
r
e
ch
ar
ac
ter
s
a
n
d
t
h
e
s
k
i
n
is
th
e
p
r
o
tecto
r
o
f
t
h
e
v
ei
n
s
w
h
i
ch
ar
e
n
o
t
ex
ag
g
er
ated
b
y
b
r
ick
la
y
i
n
g
,
p
r
o
p
ag
atio
n
,
s
cr
atch
e
s
,
an
d
w
o
u
n
d
s
e
tc.
k
i
n
d
o
f
ac
ti
v
itie
s
.
V
ein
lo
ca
tio
n
i
s
t
h
e
tech
n
iq
u
e
f
o
r
d
is
s
ec
ti
n
g
t
h
e
v
ein
d
esi
g
n
s
o
r
t
h
e
e
x
a
m
p
les
o
f
v
ei
n
s
u
n
d
er
t
h
e
s
k
i
n
a
n
d
it
is
co
n
ce
i
v
ab
le
to
d
is
tin
g
u
is
h
t
h
e
v
ein
s
f
r
o
m
t
h
e
b
in
ar
y
f
r
a
m
e
f
r
o
m
er
r
atica
ll
y
b
eg
in
p
o
s
i
tio
n
u
tili
z
in
g
li
n
e
t
r
ac
k
in
g
tec
h
n
iq
u
e
[5
]
.
Ho
w
e
v
er
,
th
e
r
ad
iatio
n
o
f
in
f
r
ar
ed
is
e
m
itted
b
y
h
u
m
a
n
s
an
d
th
e
te
r
m
t
h
er
m
o
g
r
ap
h
y
ca
n
b
e
d
ef
i
n
ed
as t
h
e
p
o
r
tr
ait
p
r
o
d
u
ce
d
b
y
a
n
i
n
f
r
ar
ed
ca
m
er
a
w
h
er
e
it
d
o
es
n
o
t
r
eq
u
ir
e
li
g
h
t
a
n
d
is
n
o
t
af
f
ec
te
d
b
y
t
h
e
v
ar
iatio
n
i
n
th
e
il
lu
m
i
n
atio
n
[6
]
.
Far
-
i
n
f
r
ar
ed
(
FIR)
ca
p
tu
r
es
t
h
e
t
is
s
u
e
h
a
v
in
g
a
h
i
g
h
er
te
m
p
er
atu
r
e
th
a
n
t
h
e
ad
j
ac
en
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
2
9
–
1
3
7
130
tis
s
u
e
i
n
th
e
s
u
r
f
ac
e
a
n
d
Nea
r
-
i
n
f
r
ar
ed
(
NI
R
)
ca
p
tu
r
es
t
h
e
b
lo
o
d
v
en
o
u
s
e
n
g
r
o
s
s
es
m
a
x
i
m
u
m
o
f
t
h
e
i
n
f
r
ar
ed
r
ad
iatio
n
th
a
n
th
e
ad
j
ac
en
t
tis
s
u
e.
Mo
r
eo
v
er
,
th
e
NI
R
a
n
d
FIR
b
o
th
ca
m
er
a
s
ca
p
tu
r
ed
th
e
lig
h
t
b
e
y
o
n
d
t
h
e
v
ie
w
o
f
h
u
m
a
n
s
a
n
d
th
e
r
an
g
e
o
f
NI
R
il
lu
m
i
n
atio
n
is
ar
o
u
n
d
7
4
0
n
an
o
m
eter
s
to
9
4
0
n
an
o
m
eter
s
a
n
d
i
s
ca
p
ab
le
to
in
f
iltra
te
5
m
m
s
u
b
t
er
r
an
ea
n
in
to
th
e
s
k
i
n
tis
s
u
e
[
7
],
[
8
]
.
Vein
Vie
w
er
an
d
C
MO
S
ca
m
er
a
an
d
XB
ee
p
air
w
it
h
I
R
illu
m
in
ato
r
is
a
lin
e
o
f
p
r
o
d
u
ct
w
h
ic
h
g
i
v
e
s
th
e
p
r
ac
titi
o
n
er
a
r
ea
l
-
ti
m
e
i
m
ag
e
p
r
o
j
ec
te
d
in
o
n
th
e
p
atien
t
ar
m
a
n
d
it
u
s
e
s
th
e
p
r
in
cip
le
t
h
at
in
f
r
ar
ed
lig
h
t
is
ab
s
o
r
b
ed
b
y
t
h
e
b
lo
o
d
m
o
r
e
th
an
t
h
e
s
u
r
r
o
u
n
d
in
g
ti
s
s
u
e
[3
],
[
7
]
.
Ho
w
ev
er
o
n
e
o
f
t
h
e
m
o
s
t
d
if
f
ic
u
lt
i
s
s
u
es
i
n
v
ein
s
h
ap
e
d
is
ti
n
g
u
i
s
h
in
g
p
r
o
o
f
b
y
u
tili
z
in
g
s
en
s
o
r
co
m
b
i
n
atio
n
b
et
w
ee
n
th
e
d
e
v
i
ce
s
[9
]
.
Mo
r
eo
v
er
,
v
ein
d
etec
tio
n
ca
n
b
e
d
r
asti
ca
ll
y
e
n
h
a
n
ce
d
b
y
m
o
d
i
f
y
in
g
ca
m
er
a
len
s
to
I
R
s
e
n
s
i
tiv
it
y
t
h
r
o
u
g
h
r
e
m
o
v
i
n
g
I
R
f
i
lter
w
it
h
r
esp
ec
t
to
R
GB
ca
m
er
a
[1
0
]
.
H
o
w
ev
er
,
all
th
e
m
o
d
er
n
ca
m
er
a
le
n
s
e
s
h
av
e
I
R
-
C
UT
Fil
ter
in
th
e
s
en
s
o
r
ar
ea
d
u
e
to
f
o
cu
s
i
n
g
o
n
th
e
v
is
ib
le
lig
h
ts
o
n
l
y
[
1
1
]
.
T
h
e
co
lo
r
o
f
o
b
jects
is
d
eter
m
in
ed
b
y
th
e
p
er
ce
n
ta
g
e
o
f
ab
s
o
r
p
tio
n
an
d
r
ef
lectio
n
o
f
d
if
f
er
e
n
t
w
a
v
ele
n
g
t
h
s
p
r
o
j
ec
ted
to
w
ar
d
th
at
o
b
j
ec
t,
w
e
ca
n
s
ee
r
ed
a
b
all
r
ed
b
ec
au
s
e
it
ab
s
o
r
b
s
t
h
e
w
av
e
len
g
t
h
s
o
f
b
lu
e
an
d
g
r
ee
n
w
h
ile
r
ef
lec
ti
n
g
r
ed
.
T
h
e
r
ef
lectio
n
a
n
d
ab
s
o
r
p
tio
n
o
f
w
av
e
len
g
t
h
s
ar
e
li
m
ited
to
th
e
v
i
s
ib
le
lig
h
t
as
th
e
r
e
s
t
o
f
th
e
w
av
el
en
g
t
h
s
p
ec
tr
u
m
also
f
o
llo
w
t
h
e
s
a
m
e
t
h
i
n
g
[1
2
]
.
C
o
n
tr
ar
iw
i
s
e,
t
h
e
f
a
s
ci
n
ati
n
g
th
i
n
g
is
t
h
at
t
h
e
b
a
n
d
clo
s
e
to
th
e
r
ed
w
av
ele
n
g
t
h
t
h
e
n
ea
r
i
n
f
r
ar
ed
r
an
g
e
th
e
b
lo
o
d
r
ea
ct
in
to
tali
t
y
d
if
f
er
en
t
w
a
y
w
h
er
e
it a
b
s
o
r
b
s
it
[
1
3
]
.
Mo
r
eo
v
er
,
th
e
h
u
m
an
e
y
es
o
n
l
y
ab
le
to
s
ee
in
th
e
v
i
s
ib
le
w
av
elen
g
t
h
b
et
w
ee
n
3
8
0
n
m
w
h
ich
tr
ea
ted
as
v
io
let
a
n
d
7
2
0
n
m
w
h
ic
h
r
e
d
an
d
T
h
e
tis
s
u
e
s
u
n
d
er
l
y
i
n
g
in
t
h
e
h
u
m
a
n
s
k
in
ab
s
o
r
b
s
t
h
e
lig
h
t
d
if
f
er
en
t
iall
y
w
h
er
e
th
e
ab
s
o
r
p
tio
n
r
atio
ca
n
b
e
in
cr
ea
s
ed
b
y
th
e
d
eo
x
y
g
en
ated
b
lo
o
d
h
e
m
o
g
lo
b
i
n
[
1
4
]
.
Ho
w
e
v
er
,
th
e
v
ei
n
ca
n
n
o
t b
e
s
ee
n
clea
r
l
y
o
n
t
h
e
s
k
in
[
1
5
]
b
ec
au
s
e
o
f
it
s
d
iv
er
te
d
s
k
in
to
n
e
[7
]
.
On
th
e
o
t
h
er
h
a
n
d
,
th
er
e
ar
e
d
i
f
f
er
en
t
tec
h
n
iq
u
e
ca
n
b
e
co
n
s
i
d
er
ed
to
b
e
u
s
ed
f
o
r
th
e
en
h
a
n
ce
m
en
t
o
f
i
m
a
g
es
b
u
t
th
e
cr
itical
w
o
r
k
to
g
et
th
e
clea
r
er
v
ie
w
o
f
t
h
e
v
ein
f
r
o
m
t
h
e
h
u
m
an
b
o
d
y
p
ar
ts
in
r
ea
l
-
ti
m
e.
Mo
r
eo
v
er
,
th
e
i
n
B
i
-
His
to
g
r
a
m
E
q
u
a
lizatio
n
(
B
B
HE
)
p
r
o
c
ed
u
r
e
th
e
i
m
ag
e
s
ar
e
e
x
tr
ac
te
d
to
cr
ea
te
m
u
ltip
le
s
u
b
-
i
m
a
g
e
a
n
d
b
et
w
ee
n
t
w
o
co
n
s
ec
u
tiv
e
p
ar
t
o
f
i
m
ag
e
s
th
e
av
er
ag
e
to
p
r
eser
v
e
th
e
a
v
er
a
g
e
b
r
ig
h
tn
e
s
s
o
f
t
h
e
in
p
u
t
i
m
ag
e
ar
e
p
r
o
v
id
in
g
as
an
o
u
tp
u
t
[1
6
]
.
T
h
e
au
t
h
o
r
ill
u
s
tr
ate
s
a
co
m
p
ar
i
s
o
n
o
f
t
h
e
o
u
tp
u
t
r
esu
lts
a
m
o
n
g
B
B
HE
,
R
MSHE
&
R
ec
u
r
s
i
v
e
Su
b
I
m
a
g
e
His
to
g
r
a
m
E
q
u
aliza
tio
n
(
R
SIH
E
)
o
v
er
a
g
r
ay
i
m
ag
e
a
n
d
f
o
u
n
d
i
m
p
r
ess
i
v
e
o
u
tp
u
t
f
o
r
R
SIH
E
b
u
t
th
e
r
ec
u
r
s
i
v
el
y
s
ep
ar
atio
n
o
n
th
e
h
i
s
to
g
r
a
m
.
Ne
v
er
th
ele
s
s
,
in
th
e
R
ec
u
r
s
i
v
e
Me
an
Sep
ar
ate
Hi
s
to
g
r
a
m
E
q
u
aliza
tio
n
(
R
M
SHE)
th
e
s
e
s
u
b
-
i
m
a
g
es
o
f
t
h
e
i
n
p
u
t
i
m
ag
e
i
s
d
o
n
e
t
h
r
o
u
g
h
t
h
e
eq
u
aliza
tio
n
o
f
th
e
i
n
p
u
t
s
r
ec
u
r
s
io
n
le
v
el
[1
7
],
[1
8
]
.
C
o
n
tr
ar
i
w
i
s
e,
f
r
o
m
[
1
9
]
,
th
e
tab
u
la
ted
in
f
o
r
m
atio
n
a
t
T
ab
le
1
s
h
o
w
s
t
h
at
t
h
e
C
L
AH
E
is
ex
tr
e
m
el
y
e
x
ce
p
tio
n
al
o
v
er
all
th
e
p
r
o
ce
d
u
r
e
f
o
r
th
e
v
ei
n
i
m
a
g
e
s
.
Ou
r
ai
m
i
n
r
ea
l
ti
m
e
T
h
er
m
o
g
r
ap
h
y
w
h
er
e
th
e
NI
R
ar
ea
o
f
th
e
elec
tr
o
m
a
g
n
et
ic
s
p
ec
tr
u
m
is
u
s
ed
to
m
ea
s
u
r
e
th
e
h
ea
t
tr
a
n
s
m
itted
o
r
r
ef
lecte
d
f
r
o
m
th
e
h
u
m
an
b
o
d
y
o
r
to
cr
ea
te
an
i
m
a
g
e
t
h
at
allo
w
s
u
s
to
d
etec
t
th
e
v
ei
n
s
n
ea
r
th
e
s
k
in
s
u
r
f
ac
e
an
d
w
e
ca
n
d
eter
m
i
n
e
th
e
v
ein
f
r
o
m
t
h
e
f
r
a
m
e
an
d
en
h
an
ce
th
e
p
atter
n
o
f
th
e
v
ein
b
y
Ma
t
lab
.
T
h
is
r
est
o
f
th
e
p
ap
er
is
s
tr
u
ctu
r
ed
as
f
o
ll
o
w
s
.
Sectio
n
2
d
is
cu
s
s
es
r
ela
ted
w
o
r
k
s
a
n
d
th
e
th
eo
r
y
o
f
h
u
m
an
s
k
i
n
in
ter
ac
ti
o
n
w
it
h
NI
R
an
d
th
e
co
n
tr
as
t
li
m
ited
ad
ap
tiv
e
h
i
s
to
g
r
a
m
eq
u
aliza
tio
n
C
L
A
HE
alg
o
r
ith
m
,
s
ec
tio
n
3
,
i
n
tr
o
d
u
ce
s
t
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
f
o
r
d
es
ig
n
i
n
g
a
r
ea
l
-
ti
m
e
v
ei
n
d
etec
t
io
n
,
s
ec
tio
n
4
,
s
u
m
u
p
r
esu
lt
s
an
d
an
a
l
y
s
is
a
n
d
s
ec
tio
n
5
,
co
n
clu
d
es t
h
e
p
ap
er
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
R
ea
l Time
V
ein
Dete
ctio
n
S
ystem
(
K
a
z
i I
s
t
ia
q
u
e
A
h
med
)
131
T
ab
le
1
.
T
h
e
h
is
to
g
r
a
m
co
m
p
a
r
is
o
n
a
m
o
n
g
d
is
s
i
m
ilar
i
m
ag
e
en
h
a
n
ce
m
en
t te
ch
n
iq
u
e
a
n
d
th
eir
o
u
tp
u
t
(
a
)
w
it
h
E
n
tr
o
p
y
7
.
7
3
1
6
(
b
)
w
it
h
E
n
tr
o
p
y
0
.
9
1
7
6
3
&
MSE
2
3
8
.
6
8
9
5
an
d
P
SNR
2
4
.
3
5
2
5
(
a
)
w
it
h
E
n
tr
o
p
y
7
.
5
7
5
9
&
MSE
7
0
.
2
9
8
2
an
d
P
SNR
2
9
.
6
6
1
4
(
a
)
w
it
h
E
n
tr
o
p
y
7
.
5
9
3
2
&
MSE
1
7
.
3
9
8
0
an
d
P
SNR
3
5
.
7
2
5
8
(
e)
w
ith
E
n
tr
o
p
y
7
.
7
7
9
8
w
it
h
E
n
tr
o
p
y
7
.
5
9
3
2
&
MSE
2
6
9
3
.
8
4
5
5
an
d
P
SNR
1
3
.
8
2
7
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
2
9
–
1
3
7
132
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.
1
.
NIR I
m
a
g
ing
a
nd
H
u
m
a
n S
kin
NI
R
illu
m
i
n
atio
n
is
an
i
m
a
g
i
n
g
tec
h
n
iq
u
e
to
v
ie
w
b
et
w
ee
n
w
av
ele
n
g
t
h
s
o
f
7
2
0
n
m
a
n
d
1
0
0
0
n
m
w
h
er
e
h
u
m
a
n
e
y
e
an
d
g
e
n
er
al
p
u
r
p
o
s
e
ca
m
er
a
u
n
ab
le
to
d
etec
t
as
th
e
F
ig
u
r
e
1
s
h
o
w
i
n
g
all
v
is
ib
le
an
d
in
v
is
ib
le
w
a
v
elen
g
t
h
s
.
T
h
e
m
ai
n
p
u
r
p
o
s
e
o
f
th
e
s
e
tech
n
iq
u
es
is
u
s
ed
to
v
ie
w
m
o
r
e
d
ee
p
ly
i
n
an
i
m
a
g
e
w
it
h
o
u
t
i
g
n
o
r
i
n
g
th
e
I
n
f
r
ar
ed
w
a
v
ele
n
g
th
.
I
n
g
en
er
al
i
m
ag
in
g
tec
h
n
iq
u
es,
t
h
e
i
n
v
is
ib
le
s
p
ec
tr
u
m
i
s
i
g
n
o
r
ed
an
d
r
ep
r
esen
ted
as c
o
lo
r
co
r
r
e
ctio
n
o
r
f
alse c
o
lo
r
o
f
th
e
i
m
a
g
e
f
o
r
b
ette
r
p
r
esen
tatio
n
i
n
a
h
u
m
a
n
e
y
e.
Fig
u
r
e
1
.
Nea
r
I
n
f
r
ar
ed
(
NI
R
)
L
i
g
h
t Sp
ec
tr
u
m
[2
0
]
T
h
e
h
u
m
a
n
s
k
i
n
ca
n
b
e
d
iv
id
ed
in
to
t
w
o
la
y
er
s
th
e
ep
id
er
m
is
an
d
t
h
e
d
er
m
is
,
b
elo
w
th
er
e
is
a
s
u
b
cu
tan
eo
u
s
f
at
la
y
er
,
d
ep
en
d
in
g
o
n
t
h
e
co
n
ce
n
tr
atio
n
o
f
m
ela
n
in
,
b
lo
o
d
,
an
d
k
er
atin
th
e
r
ea
ctio
n
m
a
y
v
ar
y
.
I
n
th
e
t
h
er
ap
eu
tic
r
ev
ie
w
p
o
in
t
li
g
h
ts
i
n
w
av
ele
n
g
t
h
s
i
n
th
e
v
ici
n
it
y
o
f
7
2
0
n
m
a
n
d
9
5
0
n
m
,
i
n
f
iltra
tes
p
r
o
f
o
u
n
d
l
y
i
n
to
tis
s
u
e
s
,
o
r
g
an
icall
y
to
o
k
in
to
co
n
s
id
er
atio
n
n
o
n
-
i
n
tr
u
s
iv
e
e
x
a
m
in
a
tio
n
.
I
n
th
is
w
a
y
,
th
e
w
a
v
ele
n
g
t
h
o
f
t
h
e
in
f
r
ar
ed
li
g
h
t
b
ar
t
u
r
n
i
n
g
o
u
t
f
r
o
m
a
li
g
h
t
s
o
u
r
ce
is
c
h
o
s
e
n
to
b
e
i
n
s
id
e
th
e
clo
s
e
i
n
f
r
ar
ed
d
is
tr
ict
w
it
h
a
co
m
m
o
n
w
a
v
elen
g
th
ar
o
u
n
d
8
5
0
n
m
.
Utili
zin
g
th
is
w
a
v
ele
n
g
th
,
a
s
F
ig
u
r
e
2
,
it
li
k
e
w
i
s
e
m
ai
n
t
ai
n
s
a
s
tr
ate
g
ic
d
is
ta
n
ce
f
r
o
m
u
n
w
a
n
ted
i
m
p
ed
an
ce
f
r
o
m
t
h
e
I
R
r
ad
iatio
n
p
r
o
d
u
ce
d
b
y
t
h
e
h
u
m
an
b
o
d
y
an
d
th
e
ea
r
th
.
Fig
u
r
e
2
.
Hu
m
a
n
s
k
i
n
i
n
f
r
ar
ed
r
ef
lectio
n
[1
2
]
Mo
r
eo
v
er
,
th
e
v
ein
p
ict
u
r
es
b
y
t
h
e
ass
is
ta
n
ce
o
f
NI
R
L
E
D
is
n
o
n
i
n
v
asi
v
e
w
it
h
n
o
k
n
o
w
n
u
n
s
a
f
e
i
m
p
ac
ts
.
I
t
is
n
'
t
tr
u
s
t
w
o
r
t
h
y
f
o
r
d
is
tin
g
u
is
h
i
n
g
p
r
o
f
o
u
n
d
s
u
p
p
ly
r
o
u
te
s
an
d
v
ein
s
,
f
o
r
ex
a
m
p
le,
th
e
ad
v
a
n
ce
d
co
n
d
u
it
[
1
4
]
.
2
.
2
.
Co
ntr
a
s
t
L
i
m
it
ed
Ada
ptiv
e
H
is
t
o
g
ra
m
E
q
ua
liza
t
io
n (
CL
AH
E
)
T
h
e
C
L
AHE
i
s
a
n
al
g
o
r
ith
m
w
h
ic
h
w
a
s
d
ev
elo
p
ed
i
n
1
9
9
4
.
T
h
e
p
r
im
ar
y
t
h
o
u
g
h
t
o
f
t
h
is
ca
lcu
latio
n
is
to
cu
t
th
e
p
r
o
d
u
ce
d
h
is
to
g
r
am
in
t
h
e
d
ar
k
lev
el
in
cli
n
e
o
f
a
p
ictu
r
e
w
h
er
e
th
e
p
ix
e
l
in
ea
ch
ar
ea
is
s
i
m
ilar
l
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
R
ea
l Time
V
ein
Dete
ctio
n
S
ystem
(
K
a
z
i I
s
t
ia
q
u
e
A
h
med
)
133
ap
p
r
o
p
r
iated
w
it
h
t
h
e
p
r
iv
ate
l
y
cr
ea
ted
h
is
to
g
r
a
m
an
d
i
t
i
s
tr
ailed
b
y
r
ed
is
tr
ib
u
ti
n
g
o
f
th
e
p
i
x
els
o
v
er
t
h
e
en
tire
h
i
s
to
g
r
a
m
to
in
f
l
u
en
ce
t
h
e
h
i
s
to
g
r
a
m
to
p
r
o
ce
s
s
m
o
r
e
in
d
is
ti
n
g
u
is
h
ab
le
[
1
4
]
.
T
h
e
d
if
f
er
en
ce
f
ac
to
r
is
c
h
ar
ac
ter
ized
as
ex
cl
u
s
i
v
e
o
f
th
e
n
o
r
m
al
h
is
to
g
r
a
m
s
u
b
s
tan
ce
in
a
l
o
w
f
ac
to
r
n
eig
h
b
o
r
h
o
o
d
h
is
to
g
r
a
m
s
,
t
h
e
m
o
s
t
ex
tr
e
m
e
in
c
lin
e
w
i
ll
b
e
lo
w
an
d
i
n
th
i
s
w
a
y
r
esu
lt
i
n
r
estricte
d
d
if
f
er
e
n
tiatio
n
i
m
p
r
o
v
e
m
e
n
t.
I
n
s
p
ite
o
f
t
h
e
f
ac
t
t
h
at
t
h
e
p
ict
u
r
e
cr
ea
ted
b
y
C
L
AHE
p
r
ep
ar
ed
to
u
tili
ze
a
h
ig
h
d
if
f
er
e
n
tiatio
n
f
ac
to
r
,
p
ictu
r
e
cla
m
o
r
is
a
s
y
et
w
o
r
th
y
.
T
h
e
p
r
im
ar
y
f
av
o
r
ab
le
cir
cu
m
s
tan
ce
s
o
f
t
h
e
C
L
A
HE
ch
an
g
e
ar
e
th
e
h
u
m
b
le
co
m
p
u
tatio
n
al
p
r
er
eq
u
is
ite
s
,
its
u
s
ab
ilit
y
,
an
d
its
ex
c
lu
s
i
v
e
o
u
tco
m
es
o
n
g
e
n
er
al
p
ictu
r
es
w
h
ic
h
ca
n
b
e
A
p
p
li
ed
o
n
l
y
to
t
h
at
ca
te
g
o
r
y
o
f
i
m
a
g
es
[2
1
]
w
h
er
e
d
if
f
er
en
t
n
o
r
m
al
A
d
ap
ti
v
e
His
to
g
r
a
m
E
n
h
an
ce
m
e
n
t
(
AHE
)
tech
n
iq
u
e
s
ar
e
n
o
t
s
u
ita
b
le.
T
h
e
m
ai
n
s
i
g
n
if
icatio
n
o
f
th
i
s
m
et
h
o
d
is
it
s
clip
p
in
g
li
m
it
w
h
ic
h
i
s
ac
q
u
ain
ted
w
it
h
d
e
f
ea
t
t
h
e
cla
m
o
r
h
ei
g
h
te
n
in
g
is
s
u
e.
T
h
e
au
t
h
o
r
o
f
[2
2
]
,
[
2
3
]
illu
s
tr
ates
th
at
t
h
e
h
is
to
g
r
a
m
o
f
an
i
m
a
g
e
is
clip
p
ed
b
y
a
p
r
e
-
ac
ce
p
ted
v
al
u
e
b
e
f
o
r
e
it
ca
lcu
late
s
C
u
m
u
lati
v
e
Dis
tr
ib
u
tio
n
F
u
n
ctio
n
(
C
DF)
an
d
B
lo
ck
Size
(
B
S)
w
h
ic
h
is
C
L
A
HE
’
s
m
ai
n
d
esti
n
ed
a
n
d
its
C
lip
p
in
g
L
i
m
i
t
(
C
L
)
ar
e
p
r
ed
o
m
i
n
an
tl
y
u
s
ed
f
o
r
th
e
en
h
a
n
ce
m
en
t o
f
lo
w
-
co
n
tr
ast i
m
a
g
es
[1
6
]
.
(
)
√
(
(
)
)
(
1
)
w
h
er
e
is
th
e
lo
w
er
b
o
u
n
d
o
f
th
e
p
ix
el,
PIC
input
(
i
R
a
y
le
ig
h
d
is
tr
ib
u
tio
n
w
it
h
f
ix
ed
to
0
.
0
4
.
I
n
d
iv
id
u
al
i
n
te
n
s
it
y
v
alu
e
e
x
p
r
ess
ed
f
o
r
(
)
≥
(
(
)
)
(
(
)
)
(
(
(
)
)
)
(
2
)
w
h
er
e
α
p
la
y
s
a
s
i
g
n
i
f
ican
t
r
o
le
an
d
w
ill
e
f
f
ec
t
o
n
t
h
e
en
h
a
n
ce
m
e
n
t
o
f
i
m
a
g
e
co
n
tr
ast.
C
o
n
tr
ar
i
w
is
e,
in
cr
ea
s
i
n
g
th
e
v
al
u
e
o
f
α
al
s
o
in
ten
s
i
f
ied
th
e
n
o
is
e
le
v
el
s
.
Fu
r
th
er
m
o
r
e,
b
y
li
n
ea
r
co
n
t
r
ast
s
tr
etch
in
g
t
h
e
v
alu
e
s
is
r
e
-
s
ca
led
b
y
a
n
d
illu
s
tr
ate
as,
(
)
(
(
)
)
(
3
)
w
h
er
e
(
)
tr
an
s
f
o
r
m
atio
n
p
r
o
ce
s
s
v
a
lu
e,
an
d
th
e
m
a
x
i
m
u
m
a
n
d
m
in
i
m
u
m
f
o
r
th
e
tr
an
s
f
o
r
m
atio
n
p
r
o
ce
s
s
b
y
u
tili
zi
n
g
a
b
i
-
s
tr
aig
h
t
i
n
tr
o
d
u
c
tio
n
b
et
w
ee
n
f
o
u
r
d
is
ti
n
ct
m
a
p
p
in
g
s
i
n
g
r
a
y
le
v
el
s
u
b
-
m
atr
i
x
to
an
n
i
h
ilate
t
h
e
li
m
itatio
n
.
Fo
r
th
e
i
n
v
esti
g
atio
n
,
w
e
u
s
ed
a
2
m
p
I
R
n
i
g
h
t
v
is
io
n
e
n
ab
le
ca
m
er
a
w
h
er
e
th
e
I
R
cu
t
f
ilter
i
s
co
v
er
ed
to
to
g
et
co
n
ti
n
u
o
u
s
l
y
n
i
g
h
t
v
i
s
io
n
i
m
ag
e
s
.
A
n
d
w
e
also
tr
ied
d
if
f
er
en
t
8
5
0
n
m
I
R
i
llu
m
i
n
ato
r
s
o
u
r
ce
s
lik
e
g
e
n
er
al
I
R
a
n
d
al
s
o
I
R
led
ar
r
ay
alo
n
g
w
it
h
t
h
e
Ma
tlab
2
0
1
7
a
s
cietif
ic
to
o
ls
.
(
a)
(
b
)
(
c)
Fig
u
r
e
3
.
(
a)
2
m
p
I
R
C
a
m
er
a
w
h
er
e
th
e
B
lack
ca
p
is
e
n
ab
lei
n
g
n
i
g
h
t
m
o
d
e
an
d
(
b
)
&
(
c)
8
5
0
n
m
NI
R
I
llu
m
i
n
a
to
r
As
f
o
u
n
d
f
o
r
a
s
i
n
g
le
f
r
a
m
e
th
e
r
esu
lt
s
h
as
b
ee
n
s
h
o
w
n
i
n
t
h
e
Fi
g
u
r
e
4
,
w
h
er
e
w
e
p
ar
ticu
la
r
l
y
u
s
ed
a
s
till
i
m
a
g
e
to
f
o
r
o
u
r
ex
p
er
i
m
en
t
a
n
d
it
is
s
h
o
w
n
b
lu
r
r
ed
ac
q
u
ir
ed
r
ef
er
en
ce
i
m
ag
e
(
Fig
u
r
e
4
(
a)
)
an
d
f
o
llo
w
ed
b
y
t
h
e
b
ac
k
g
r
o
u
n
d
d
etec
tio
n
an
d
R
OI
s
elec
tio
n
b
y
s
o
m
e
i
m
ag
e
p
r
o
ce
s
s
i
n
g
th
r
es
h
o
ld
in
g
tech
n
iq
u
es
i
n
th
e
i
m
a
g
e
(
Fig
u
r
e
4
(
b
)
)
w
h
ic
h
is
r
eq
u
ir
e
to
ad
o
p
t
th
e
b
est
in
f
o
r
m
at
io
n
f
r
o
m
t
h
e
i
m
a
g
e.
Fu
r
th
er
m
o
r
e
co
n
tr
ast
en
h
a
n
ce
m
en
t
tech
n
iq
u
e
C
L
AHE
h
elp
ed
to
p
r
o
v
id
e
clea
r
v
ein
s
f
o
r
v
is
u
aliza
t
io
n
ca
n
b
e
s
ee
n
as
t
h
e
ac
q
u
ir
ed
i
m
a
g
e
(
Fig
u
r
e
4
(
c)
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
2
9
–
1
3
7
134
(
a)
(
b
)
(
c)
Fig
u
r
e
4
.
R
esu
lt o
n
a
s
i
n
g
le
i
m
ag
e
(
a)
A
cq
u
ir
ed
I
m
a
g
e
(
b
)
T
h
r
esh
h
o
ld
i
m
a
g
e
w
it
h
b
in
ar
i
zin
g
a
n
d
s
u
b
tr
ac
tin
g
(
c)
Po
s
t
-
E
n
h
a
n
ce
d
i
m
a
g
e
u
s
in
g
C
L
A
HE
A
c
q
u
i
r
e
F
r
a
m
e
f
r
o
m
t
h
e
S
o
u
r
c
e
A
p
p
l
y
I
m
a
g
e
S
m
o
o
t
h
e
n
T
e
c
h
n
i
q
u
e
B
a
c
k
g
r
o
u
n
d
D
e
t
e
c
t
i
o
n
a
n
d
R
O
I
S
e
l
e
c
t
i
o
n
R
e
d
u
c
t
i
o
n
o
f
N
o
i
s
e
a
n
d
D
i
s
c
a
r
d
i
n
g
u
n
n
e
c
e
s
s
a
r
y
s
m
a
l
l
o
b
j
e
c
t
s
B
i
n
a
r
i
z
e
T
h
r
e
s
h
o
l
d
e
d
f
r
a
m
e
A
p
p
l
y
A
d
a
p
t
i
v
e
T
h
r
e
s
h
o
l
d
i
n
g
T
e
c
h
n
i
q
u
e
S
u
b
t
r
a
c
t
T
h
r
e
s
h
o
l
d
e
d
f
r
a
m
e
f
r
o
m
L
a
s
t
_
f
r
a
m
e
P
e
r
f
o
r
m
C
L
A
H
E
E
n
h
a
n
c
e
m
e
n
t
G
e
n
e
r
a
t
e
O
u
t
p
u
t
D
a
t
a
a
n
d
C
o
n
v
e
r
t
t
o
F
r
a
m
e
S
t
a
r
t
E
n
d
D
i
s
p
l
a
y
I
n
t
o
t
h
e
S
c
r
e
e
n
Fig
u
r
e
5
.
B
lo
ck
d
iag
r
a
m
o
f
v
e
in
d
etec
tio
n
m
et
h
o
d
o
lo
g
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
R
ea
l Time
V
ein
Dete
ctio
n
S
ystem
(
K
a
z
i I
s
t
ia
q
u
e
A
h
med
)
135
T
h
ese
p
r
o
ce
s
s
s
tar
t
w
it
h
t
h
e
ac
q
u
is
it
io
n
o
f
v
ei
n
f
r
a
m
e
f
r
o
m
m
ilie
u
a
n
d
af
ter
r
ec
eiv
in
g
ea
ch
o
f
t
h
e
f
r
a
m
e,
t
h
e
s
y
s
te
m
w
i
ll a
u
to
m
a
ticall
y
s
elec
t t
h
e
R
e
g
io
n
o
f
I
n
t
er
est (
R
OI
)
lo
ca
tio
n
b
y
th
r
e
s
h
o
ld
in
g
f
u
n
ctio
n
an
d
en
h
a
n
ce
ea
ch
o
f
t
h
e
f
r
a
m
es
u
s
i
n
g
m
ed
ian
f
ilter
.
T
h
e
s
tep
f
o
llo
w
ed
to
th
e
en
h
an
ce
m
e
n
t
s
tep
th
e
v
ein
w
i
ll
au
to
m
at
icall
y
b
in
ar
ize
t
h
at
f
r
a
m
e
an
d
s
u
b
tr
ac
t
it
f
r
o
m
th
e
f
r
a
m
e
w
h
ic
h
w
a
s
r
ec
eiv
ed
i
n
th
e
b
eg
i
n
n
i
n
g
a
n
d
ad
ap
tiv
e
th
r
e
s
h
o
ld
i
n
g
w
ill
b
e
u
til
ized
to
cr
ea
te
a
f
r
a
m
e
o
f
ea
c
h
f
r
ag
m
e
n
ted
d
ig
it
s
p
r
o
d
u
ce
d
ar
k
v
ein
b
y
ch
an
g
i
n
g
t
h
e
q
u
ali
ties
i
n
th
e
s
tate
o
f
v
al
u
e
s
<0
.
5
w
ill
b
e
0
f
o
r
th
e
d
eter
m
i
n
atio
n
o
f
th
e
v
ein
s
.
C
L
AHE
is
an
i
m
a
g
e
p
r
o
ce
s
s
in
g
tec
h
n
iq
u
e
wh
ich
w
ill
p
r
o
v
id
e
h
ig
h
co
n
tr
as
t
i
m
a
g
e
o
f
th
e
p
r
o
ce
s
s
ed
f
r
a
m
e.
Af
ter
co
m
p
letio
n
o
f
all
th
e
s
tep
,
t
h
e
s
y
s
te
m
w
i
ll
u
s
e
C
L
A
HE
f
o
r
t
h
e
a
s
P
o
s
t
E
n
h
an
ce
m
e
n
t
o
f
t
h
e
f
r
a
m
e
t
o
p
r
o
v
id
e
b
r
ig
h
te
s
t
o
u
tp
u
t
o
f
th
e
d
etec
ted
v
ei
n
s
.
F
in
all
y
,
f
r
o
m
t
h
e
o
u
tp
u
t
d
ata
w
i
ll
b
e
co
n
v
er
ted
to
a
f
r
am
e
a
n
d
an
d
o
n
th
e
d
is
p
la
y
it
w
i
ll b
e
av
ailab
le
to
v
ie
w
.
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
is
s
ec
tio
n
is
d
i
v
id
ed
in
to
t
wo
p
ar
ts
.
T
h
f
ir
s
t
p
ar
t
is
f
o
r
th
e
v
id
eo
p
r
o
ce
s
s
in
g
w
h
ile
t
h
e
s
e
co
n
d
p
ar
t
is
to
f
i
n
d
o
u
t th
e
e
f
f
ec
ti
v
en
e
s
s
o
f
th
e
s
y
s
te
m
i
n
r
ea
l
-
ti
m
e.
So
m
e
in
itial r
es
u
lt
s
r
ep
o
r
ted
in
[
24
].
3
.
1
.
P
ro
ce
s
s
ing
a
Vein
v
ideo
F
ile
I
n
th
i
s
s
ec
tio
n
,
t
h
e
co
n
ti
n
u
o
u
s
p
r
o
ce
s
s
in
g
f
o
r
ea
ch
f
r
a
m
e
i
n
a
v
id
eo
s
eq
u
e
n
ce
,
ea
ch
f
r
a
m
e
ca
n
b
e
s
ee
n
w
it
h
v
er
y
clea
n
v
ei
n
.
So
,
p
h
leb
o
to
m
y
ca
n
ea
s
il
y
id
en
ti
f
y
th
e
v
ei
n
as li
k
e
th
e
f
i
g
u
r
e
(
F
ig
u
r
e
6
(
a)
–
(
b
)
)
.
(
a)
(
b
)
Fig
u
r
e
6
.
T
h
e
r
esu
ltan
t
f
r
a
m
e
s
f
r
o
m
v
id
eo
s
eq
u
e
n
ce
(
a)
Fra
m
e
2
0
,
(
b
)
Fra
m
e
1
0
0
d
is
p
lay
e
d
co
n
s
ec
u
ti
v
el
y
f
r
o
m
a
v
id
eo
f
ile
3
.
2
.
P
ro
ce
s
s
ing
in Re
a
l Ti
m
e
As
th
e
m
et
h
o
d
o
lo
g
y
s
tated
,
we
tak
e
m
o
r
e
s
a
m
p
le
f
r
o
m
t
h
e
r
ea
l
m
ilie
u
a
n
d
f
o
u
n
d
th
e
s
a
m
e
r
esu
lt
a
s
f
o
r
th
e
v
id
eo
p
r
o
ce
s
s
in
g
.
I
n
th
is
s
ce
n
ar
io
it
i
s
also
co
n
s
id
er
e
d
th
at
t
h
er
e
w
as
a
0
.
3
m
s
d
ela
y
i
n
b
et
w
ee
n
f
r
a
m
e
p
r
o
ce
s
s
i
n
g
b
u
t sti
l
l it
ca
n
b
e
c
o
n
s
id
er
ab
le
as th
o
u
g
h
th
e
f
r
a
m
e
r
ate
w
as 1
5
f
p
s
.
As
a
f
in
a
l
p
o
in
t,
it
ca
n
b
e
s
ee
n
f
r
o
m
ab
o
v
e
t
h
at
t
h
e
p
r
o
ce
d
u
r
e
is
g
o
i
n
g
co
m
p
letel
y
t
o
w
ar
d
s
t
h
e
s
o
lu
tio
n
o
f
o
u
r
o
b
j
ec
tiv
e
to
u
tili
ze
t
h
e
ti
m
e
i
n
a
n
e
f
f
icie
n
t
w
a
y
a
n
d
r
ed
u
ce
t
h
e
n
u
m
b
er
o
f
er
r
o
r
in
n
ee
d
le
in
f
u
s
io
n
i
n
h
u
m
an
b
o
d
y
u
s
i
n
g
th
e
co
m
p
u
tatio
n
al
p
o
w
er
to
d
eter
m
i
n
e
clea
r
er
v
ein
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
1
,
A
p
r
il 2
0
1
8
:
1
2
9
–
1
3
7
136
(
a)
(
b
)
(
c)
(
d
)
(
e)
(
f
)
Fig
u
r
e
7
.
T
h
e
r
esu
ltan
t
f
r
a
m
e
s
ar
e
ca
p
tu
r
ed
f
r
o
m
r
ea
l
-
ti
m
e
b
y
Mic
r
o
s
o
f
t E
x
p
r
ess
io
n
E
n
co
d
er
4.
CO
NCLU
SI
O
N
Th
is
v
ei
n
d
etec
tio
n
S
y
s
te
m
is
n
o
t
a
b
r
ea
k
t
h
r
o
u
g
h
i
n
t
h
e
m
ed
ical
i
m
a
g
in
g
b
u
t
s
t
ill,
it
h
a
s
a
g
r
ea
ter
i
m
p
ac
t
in
d
ail
y
m
ed
ical
p
r
ac
tices
w
h
ich
f
o
cu
s
o
n
th
e
lea
s
t
n
u
m
b
er
o
f
ca
la
m
it
y
i
n
n
e
ed
le
in
f
u
s
io
n
.
T
h
e
i
m
m
i
n
en
t
o
f
th
is
p
r
o
ce
s
s
w
ill
f
o
cu
s
o
n
th
e
p
er
f
o
r
m
a
n
ce
a
n
d
ac
cu
r
ac
y
as
a
p
r
o
s
p
ec
t
alo
n
g
w
it
h
in
t
h
e
m
o
s
t
w
id
el
y
u
s
ed
h
a
n
d
h
e
ld
d
ev
ice
S
m
ar
tp
h
o
n
e
as
t
h
e
n
u
m
b
er
o
f
to
tal
s
m
ar
tp
h
o
n
e
u
s
er
h
as
cr
o
s
s
ed
o
v
er
2
b
illi
o
n
an
d
its
ca
m
er
a
w
h
er
e
th
e
ap
p
w
i
ll
b
e
co
n
s
id
er
ed
m
o
r
e
v
ia
b
le
alter
n
ati
v
e
b
ec
au
s
e
it
w
il
l
r
e
m
o
v
e
t
h
e
co
s
t
o
f
m
an
u
f
ac
t
u
r
in
g
o
r
b
e
p
u
r
s
u
i
n
g
n
e
w
h
ar
d
w
ar
e
s
y
s
te
m
.
So
w
e
ar
e
tr
y
i
n
g
to
s
p
ar
k
th
e
ca
m
er
a
len
s
e
s
m
an
u
f
ac
t
u
r
er
d
is
ce
r
n
m
en
t
s
to
b
r
in
g
I
R
n
o
n
-
b
lo
ck
i
n
g
ca
m
er
a
in
to
a
s
m
ar
tp
h
o
n
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
R
ea
l Time
V
ein
Dete
ctio
n
S
ystem
(
K
a
z
i I
s
t
ia
q
u
e
A
h
med
)
137
RE
F
E
R
E
NC
E
S
[1
]
H.
K.
A
l
G
h
o
z
a
li
,
e
t
a
l.
,
“
V
e
i
n
d
e
tec
ti
o
n
sy
ste
m
u
sin
g
in
f
ra
r
e
d
c
a
m
e
ra
,
”
20
1
6
I
n
t.
El
e
c
tro
n
.
S
y
mp
.
,
p
p
.
1
2
2
–
1
2
7
,
2
0
1
6
.
[2
]
M
.
Ka
v
y
a
,
“
V
e
in
P
a
tt
e
rn
Ex
trac
ti
o
n
:
A
Re
v
ie
w
,
”
In
t.
J
.
E
n
g
.
Res
.
T
e
c
h
n
o
l
.
,
v
o
l
/
issu
e
:
6
(
5
)
,
p
p
.
8
6
9
–
8
7
0
,
2
0
1
7
.
[3
]
M
.
M
a
ra
th
e
,
e
t
a
l.
,
“
A
n
o
v
e
l
w
irele
ss
v
e
in
f
in
d
e
r,
”
Pro
c
.
I
n
t.
C
o
n
f.
Circ
u
it
s,
C
o
mm
u
n
.
Co
n
tro
l
Co
m
p
u
t.
I4
C
2
0
1
4
,
p
p
.
2
7
7
–
2
8
0
,
2
0
1
4
.
[4
]
S
.
I.
S
h
c
h
u
k
in
,
“
P
e
ri
p
h
e
ra
l
v
e
in
d
e
tec
ti
o
n
u
si
n
g
e
lec
tri
c
a
l
i
m
p
e
d
a
n
c
e
m
e
th
o
d
,
”
J
El
e
c
tr
Bi
o
imp
,
v
o
l.
8
,
p
p
.
7
9
–
8
3
,
2
0
1
7
.
[5
]
B.
Be
sra
,
“
Ex
tra
c
ti
o
n
o
f
S
e
g
m
e
n
ted
V
e
in
P
a
tt
e
r
n
s
u
sin
g
Re
p
e
a
ted
L
in
e
T
ra
c
k
in
g
A
l
g
o
rit
h
m
,
”
in
2
0
1
7
IEE
E
3
r
d
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
S
e
n
s
in
g
,
S
i
g
n
a
l
Pr
o
c
e
ss
in
g
a
n
d
S
e
c
u
ri
ty (
ICS
S
S
)
Extra
c
ti
o
n
,
p
p
.
8
9
–
92
,
2
0
1
7
.
[6
]
N.
S
.
G
n
e
e
,
“
A
stu
d
y
o
f
h
a
n
d
v
e
i
n
,
n
e
c
k
v
e
in
a
n
d
a
r
m
v
e
in
e
x
trac
ti
o
n
f
o
r
a
u
th
e
n
ti
c
a
ti
o
n
,
”
ICICS
2
0
0
9
-
Co
n
f.
Pro
c
.
7
th
I
n
t.
Co
n
f.
I
n
fo
rm
a
ti
o
n
,
C
o
mm
u
n
.
S
i
g
n
a
l
Pr
o
c
e
ss
.
,
p
p
.
5
–
8
,
2
0
0
9
.
[7
]
G
.
C.
M
e
n
g
,
e
t
a
l.
,
“
P
ro
to
ty
p
e
d
e
sig
n
f
o
r
we
a
ra
b
le
v
e
in
s
lo
c
a
li
z
a
ti
o
n
sy
ste
m
u
sin
g
n
e
a
r
in
fra
re
d
im
a
g
in
g
tec
h
n
iq
u
e
,
”
2
0
1
5
IEE
E
1
1
th
In
t
.
Co
ll
o
q
.
S
ig
n
a
l
Pro
c
e
ss
.
Its
A
p
p
l
.
,
p
p
.
1
1
2
–
1
1
5
,
2
0
1
5
.
[8
]
S
.
Yu
so
f
f
,
e
t
a
l.
,
“
Re
v
ie
w
o
n
V
e
in
E
n
h
a
n
c
e
m
e
n
t
M
e
th
o
d
s
f
o
r
Bio
m
e
tri
c
S
y
st
e
m
,
”
In
t.
J
.
Res
.
En
g
.
T
e
c
h
n
o
l
.
,
v
o
l
/i
ss
u
e
:
4
(
4
)
,
p
p
.
8
3
3
–
8
4
1
,
2
0
1
5
.
[9
]
S
.
Crisa
n
a
n
d
B.
T
e
b
re
a
n
,
“
L
o
w
c
o
st,
h
ig
h
q
u
a
li
ty
v
e
in
p
a
tt
e
rn
re
c
o
g
n
it
io
n
d
e
v
ice
w
it
h
li
v
e
n
e
ss
De
tec
ti
o
n
.
W
o
rk
f
lo
w
a
n
d
im
p
le
m
e
n
tatio
n
s,”
M
e
a
s.
J
.
In
t.
M
e
a
s.
Co
n
fed
.
,
v
o
l.
1
0
8
,
p
p
.
2
0
7
–
21
6
,
2
0
1
7
.
[1
0
]
R.
R.
F
letc
h
e
r,
e
t
a
l
.
,
“
De
v
e
lo
p
m
e
n
t
o
f
m
o
b
il
e
-
b
a
se
d
h
a
n
d
v
e
in
b
i
o
m
e
tri
c
s
f
o
r
g
lo
b
a
l
h
e
a
lt
h
p
a
ti
e
n
t
id
e
n
ti
f
ica
ti
o
n
,
”
Pro
c
.
4
t
h
IEE
E
Glo
b
.
H
u
ma
n
it
.
T
e
c
h
n
o
l.
Co
n
f.
GH
T
C
2
0
1
4
,
p
p
.
5
4
1
–
5
4
7
,
2
0
1
4
.
[1
1
]
M
.
W
a
d
h
w
a
n
i,
e
t
a
l.
,
“
V
e
in
De
tec
ti
o
n
S
y
ste
m
u
sin
g
In
f
r
a
re
d
L
ig
h
t,
”
In
t.
J
.
S
c
i.
En
g
.
Res
.
,
v
o
l
/i
ss
u
e
:
6
(
12
)
,
p
p
.
780
–
7
8
6
,
2
0
1
5
.
[1
2
]
Y.
Ka
n
z
a
w
a
,
e
t
a
l.
,
“
Hu
m
a
n
S
k
i
n
De
tec
ti
o
n
b
y
V
isib
le
a
n
d
Ne
a
r
-
In
f
ra
re
d
I
m
a
g
in
g
,
”
IAP
R
Co
n
f.
M
a
c
h
.
Vi
s.
,
p
p
.
503
–
5
0
7
,
2
0
1
1
.
[1
3
]
S
.
Ka
c
m
a
z
,
e
t
a
l.
,
“
T
h
e
Us
e
o
f
I
n
f
ra
re
d
T
h
e
r
m
a
l
I
m
a
g
in
g
in
t
h
e
Dia
g
n
o
sis
o
f
De
e
p
V
e
in
T
h
ro
m
b
o
sis,”
In
fra
re
d
Ph
y
s.
T
e
c
h
n
o
l.
,
2
0
1
7
.
[1
4
]
B.
W
.
F
ick
e
,
e
t
a
l.
,
“
Ne
a
r
-
In
f
ra
r
e
d
V
e
in
V
is
u
a
li
z
a
ti
o
n
i
n
In
d
e
x
F
in
g
e
r
P
o
ll
iciz
a
ti
o
n
,
”
J
.
Ha
n
d
S
u
rg
.
Am.
,
v
o
l
/i
ss
u
e
:
42
(
6
)
,
p
p
.
4
8
1
.
e
1
-
4
8
1
.
e
2
,
2
0
1
6
.
[1
5
]
X
.
Da
i,
e
t
a
l.
,
“
A
f
a
st
v
e
in
d
isp
lay
d
e
v
ic
e
b
a
se
d
o
n
th
e
c
a
m
e
ra
-
p
ro
jec
to
r
s
y
ste
m
,
”
IS
T
2
0
1
3
-
2
0
1
3
I
EE
E
In
t.
Co
n
f.
Ima
g
i
n
g
S
y
st.
T
e
c
h
.
Pro
c
.
,
p
p
.
1
4
6
–
1
4
9
,
2
0
1
3
.
[1
6
]
J.
M
a
,
e
t
a
l.
,
“
Co
n
tras
t
L
i
m
it
e
d
A
d
a
p
ti
v
e
Histo
g
ra
m
Eq
u
a
li
z
a
ti
o
n
Ba
se
d
F
u
sio
n
f
o
r
Un
d
e
rw
a
t
e
r
I
m
a
g
e
En
h
a
n
c
e
m
e
n
t,
”
Pre
p
rin
ts
,
p
p
.
1
–
27
,
2
0
1
7
.
[1
7
]
R.
Kh
a
n
,
“
Co
m
p
a
riso
n
a
n
d
A
n
a
ly
sis
o
f
V
a
rio
u
s
Hist
o
g
ra
m
Eq
u
a
li
z
a
ti
o
n
T
e
c
h
n
i
q
u
e
s,”
In
t.
J
.
En
g
.
S
c
i.
T
e
c
h
n
o
l.
,
v
o
l
/i
ss
u
e
:
4
(
4
)
,
p
p
.
1
7
8
7
–
1
7
9
2
,
2
0
1
2
.
[1
8
]
M
.
A
a
rth
y
a
n
d
P
.
S
u
m
a
th
y
,
“
A
C
o
m
p
a
riso
n
o
f
Histo
g
ra
m
Eq
u
a
li
z
a
ti
o
n
M
e
t
h
o
d
a
n
d
Histo
g
ra
m
Ex
p
a
n
sio
n
,
”
In
t.
J
.
Co
mp
u
t
.
S
c
i
.
M
o
b
.
A
p
p
l.
,
v
o
l
/i
ss
u
e
:
2
(
3
)
,
p
p
.
2
5
–
3
4
,
2
0
1
4
.
[1
9
]
K.
I.
A
h
m
e
d
,
e
t
a
l.
,
“
E
n
h
a
n
c
e
d
V
e
in
De
tec
ti
o
n
f
ro
m
V
id
e
o
S
e
q
u
e
n
c
e
s,”
In
d
o
n
e
s.
J
.
El
e
c
tr.
E
n
g
.
Co
mp
u
t.
S
c
i.
,
v
o
l
/i
ss
u
e
:
8
(
2
)
,
p
p
.
4
2
0
–
4
2
7
,
2
0
1
7
.
[2
0
]
D.
DV
,
“
S
a
te
ll
it
e
Im
a
g
e
r
y
,
”
2
0
1
6
.
[
O
n
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
s:/
/f
o
ru
m
.
n
a
sa
sp
a
c
e
f
li
g
h
t.
c
o
m
/i
n
d
e
x
.
p
h
p
?
t
o
p
ic=
3
9
6
1
7
.
0
.
[2
1
]
T
.
Jin
tas
u
tt
isa
k
a
n
d
S
.
In
taja
g
,
“
Co
lo
r
re
ti
n
a
l
im
a
g
e
e
n
h
a
n
c
e
m
e
n
t
b
y
Ra
y
l
e
ig
h
c
o
n
tras
t
-
li
m
it
e
d
a
d
a
p
ti
v
e
h
isto
g
ra
m
e
q
u
a
li
z
a
ti
o
n
,
”
in
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
C
o
n
tr
o
l,
Au
t
o
ma
ti
o
n
a
n
d
S
y
ste
ms
,
p
p
.
6
9
2
–
6
9
7
,
2
0
1
4
.
[2
2
]
K.
Zu
i
d
e
rv
e
ld
,
“
Co
n
tras
t
L
im
it
e
d
A
d
a
p
ti
v
e
Histo
g
ra
m
Eq
u
a
li
z
a
ti
o
n
,”
A
c
a
d
e
m
ic P
re
ss
,
In
c
.
,
1
9
9
4
.
[2
3
]
J.
Da
sh
a
n
d
N.
Bh
o
i,
“
De
tec
ti
o
n
o
f
Re
ti
n
a
l
Blo
o
d
V
e
ss
e
ls
f
ro
m
Op
h
th
a
lm
o
sc
o
p
e
I
m
a
g
e
s
Us
in
g
M
o
rp
h
o
lo
g
ica
l
A
p
p
ro
a
c
h
,
”
EL
CVIA
,
v
o
l
/i
ss
u
e
:
16
(
1
)
,
p
p
.
1
–
1
4
,
2
0
1
7
.
[2
4
]
K.
I.
A
h
m
e
d
,
e
t
a
l.
,
“
En
h
a
n
c
e
d
V
isio
n
Ba
se
d
V
e
in
De
tec
ti
o
n
S
y
ste
m
,
”
in
4
th
IEE
E
In
ter
n
a
t
io
n
a
l
Co
n
fer
e
n
c
e
o
n
S
ma
rt I
n
stru
me
n
t
a
ti
o
n
,
M
e
a
su
re
me
n
t
a
n
d
A
p
p
li
c
a
ti
o
n
s (
ICS
IM
A),
Pu
tra
ja
y
a
,
M
a
la
y
si
a
,
2
0
1
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.