TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4724 ~ 4
7
3
0
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.549
2
4724
Re
cei
v
ed
De
cem
ber 2
9
, 2013; Re
vi
sed
March 8, 201
4; Acce
pted
March 22, 20
14
Test Device for Liquid Moisture Transport Difference
Evaluation of Fabrics
Bao
-
guo Ya
o*, Shui-
y
ua
n Hong, Jian
-cha
o Wan
g
Coll
eg
e of Mechatron
i
cs Engi
neer
ing, Ch
in
a
Jilia
ng U
n
ivers
i
t
y
, Han
g
zho
u
, 310
01
8, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
y
a
obg
@cjl
u.edu.cn
A
b
st
r
a
ct
A test dev
ice
w
a
s deve
l
o
ped
an
d a
test
met
hod
w
a
s pr
opo
sed to
ch
aract
e
ri
z
e
t
he
dyn
a
m
ic
li
qui
d
mo
isture trans
port prop
erties
of
textile fabrics, based o
n
the mec
han
ic
al eq
uip
m
ent, micr
oel
ectron
ic
s,
sensors and c
ontrol system
.
Derived fr
om the test data, five indic
e
s
were defined to character
i
z
e
the
dyna
mic li
qu
id
mo
isture tra
n
s
port differ
ence
betw
een tw
o s
u
rfaces
of textil
e fabrics.
T
h
e t
e
st princ
i
p
l
e, th
e
structure of the mecha
n
ic
al
equ
ip
me
nt an
d the eva
l
uati
on
metho
d
fo
r
the dyna
mic mo
isture trans
por
t
differenc
e w
e
r
e
intro
duc
ed.
Six types
of fa
brics
ma
de
fro
m
differe
nt
textile materia
l
s
w
e
re me
asur
ed.
T
h
e
one-w
a
y ANO
VA analys
is w
a
s carrie
d
out
to identify th
e
signific
ance o
f
the differenc
es of the indic
e
s
amon
g the tes
t
fabrics. T
he result
s sh
ow
that eac
h ev
al
uatio
n in
dex
is
signific
antly
d
i
fferent (P<
0
.0
5)
amon
g differe
n
t
test
fabrics, and fabr
ic 3 (p
u
r
e cotton, knitted) has a b
e
tter liq
uid
mo
isture transp
o
rt fro
m
inn
e
r surface to outer surfac
e
w
i
th the highe
st value of moi
s
ture transport
differenc
e.
Ke
y
w
ords
: liq
uid
mo
isture, transp
o
rt prop
erties
, test device
,
difference, fabrics
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Dynami
c
moi
s
ture
tran
sp
o
r
t pro
pertie
s
,
whi
c
h h
a
ve
clo
s
e
relati
onship
s
with
human
perceptio
n of
moistu
re
se
nsatio
ns
and
wea
r
in
g co
mfort, are
consi
dered a
s
importa
nt a
nd
signifi
cant attribute
s
in the
purcha
s
e of
text
ile and appa
rel p
r
od
ucts by mo
d
e
rn
con
s
um
e
r
s,
esp
e
ci
ally un
der
dynami
c
we
ar
co
nditi
ons [1]. The
dynami
c
mo
isture
tra
n
sp
ort p
r
op
ertie
s
is
related
to the
therm
a
l-wet
comfo
r
t sen
s
ations
of
cl
othing, which to
gether with
ta
ctile
comfo
r
t and
pre
s
sure co
mfort are id
e
n
tified as the
three majo
r
sen
s
o
r
y facto
r
s of cl
othing
comfort [2]. The
dynamic moi
s
ture
tra
n
sp
ort p
r
op
ertie
s
h
a
ve g
r
ea
t influen
ce
o
n
the
wa
rmt
h
an
d moi
s
t
u
re
perm
eability, which are consi
dered
as the important attributes
of
the comfort sensations of
textile fabrics [3]. The objective mea
s
u
r
eme
n
t of
the dynamic moi
s
ture tran
spo
r
t prope
rtie
s of
textile fabrics and its app
lication
s
to the obje
c
tive evaluation of
textile fabrics and a
ppa
rel
engin
eeri
ng
surely help t
o
pro
d
u
c
e hi
gher
qualit
y
textile fabrics an
d certai
n other
po
ro
us
material
s. Th
erefo
r
e, it is highly req
u
ired and
d
e
si
rable to investigate the dynamic m
o
istu
re
transpo
rt pro
pertie
s
of textile fabrics.
Many mea
s
u
r
ement
syste
m
s a
nd eval
u
a
ti
on meth
od
s have
be
en
prop
osed
an
d carried
out to chara
c
teri
zing the
moisture transport pr
op
erties of textile fabrics [4
-11]. The M
M
T
(Moi
sture
M
anag
ement
Teste
r), d
e
velope
d by
Hu et al, re
p
o
rted th
e m
easurin
g p
r
in
ciple
together with
the ap
paratu
s
de
sig
n
a
n
d
the defin
itio
n
of perfo
rma
n
c
e in
dices of
liquid m
o
istu
re
transpo
rt pro
pertie
s
evalu
a
tion of textile materi
als.
Hu et al
al
so
studie
d
the rel
a
tion
sh
ips
betwe
en
sub
j
ective pe
rce
p
tions
and t
he obj
ecti
ve
liquid moi
s
t
u
re m
ana
ge
ment prope
rties
measured by MMT [4]. The updated version of MMT,
develope
d by Yao et al and
widely used all
over th
e
worl
d, is
an i
m
proved a
nd typi
cal
me
a
s
u
r
e
m
ent system and evaluatio
n
meth
od
fo
r the
liquid m
o
istu
re tran
sp
ort p
r
ope
rtie
s eva
l
uation of
po
rou
s
p
o
ly
mer
i
c
mat
e
rial
s su
ch as
t
e
x
t
i
l
e
fa
b
r
ics
.
Yao
’
s r
e
s
e
a
r
c
h
for
th
e
impr
o
v
e
d
MMT
foc
u
s
e
d
o
n
th
e
imp
r
o
v
e
m
e
n
t
o
f
th
e
tes
t
me
thod
and the ev
aluation of i
ndices of li
quid moi
s
ture mana
gem
ent pro
pertie
s
, gra
d
ing
and
cla
ssifi
cation method
s,
dat
a
proce
s
sing
method and
t
he expressio
n
of test
resu
lts for in
du
stri
al
appli
c
ation
s
[
5
]. The
MMT
test
method,
develo
ped
b
y
Yao et
al,
is
widely
u
s
e
d
in
exten
s
ive
studie
s
to
ev
aluate th
e m
o
isture m
ana
gement
prop
erti
es of va
rio
u
s fa
bri
cs.
Namligo
z
E.S.
et al
studie
d
the l
i
quid moi
s
tu
re tran
spo
r
t
prop
ertie
s
, th
e gra
d
ing
a
nd cl
assification metho
d
s o
f
variou
s wove
n fabri
cs by u
s
ing the MM
T
[6]. G
authier Bedek et al
analyzed an
d
determin
ed the
relation
shi
p
betwe
en th
e
textile pro
p
e
rties an
d
th
e thermal
co
mfort of
six
knitted type
s of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Test Devi
ce f
o
r Liqui
d Moi
s
ture T
r
a
n
sp
ort Differe
nce
Evaluation of
Fabri
cs
(Bao
-guo Ya
o)
4725
unde
rwea
r u
s
ing th
e MM
T and
othe
r l
aboratory te
c
hniqu
es
[7]. Wu Hai
-
Yan et
al
stu
d
ied the
moistu
re tra
n
s
fer p
r
in
ciple
of waterproof
breath
able f
abri
c
by u
s
in
g the MMT a
nd the moi
s
t
u
re
transfe
r p
r
op
erties
provide
d
by MMT [8]. E. Öner
a et
al determi
ne
d the effect o
f
raw m
a
teria
l
,
weave
type a
nd
tightne
ss on
liquid ab
sorption and
t
r
ansmi
ssion
p
r
ope
rtie
s of knitted fabri
cs
b
y
the multi-dim
ensi
onal li
qui
d tran
sp
ort t
e
st of
M
M
T [
9
]. McQu
een
R.H. et
al recom
m
en
ded
a
proto
c
ol fo
r h
andlin
g test i
n
order to ma
nage th
e
hig
h
varia
b
ility of MMT and
al
so id
entify so
me
fabrics which are not
suitab
le fo
r evaluati
on usi
ng the
MMT [10].
Although th
e
r
e a
r
e
stan
d
a
rd m
e
thod
s su
ch
as A
A
TCC195
-20
09 [12] a
nd
maturely
applie
d in
strument M
M
T
[13], whi
c
h
ca
n b
e
e
m
ployed to
measure the
fabri
c
m
o
isture
manag
eme
n
t pro
p
e
r
ties i
n
clu
d
ing
wat
e
r a
b
sorben
cy, water re
p
e
llen
c
y an
d
overall
moi
s
ture
manag
eme
n
t prope
rtie
s, the test device and me
tho
d
repo
rted in
this pape
r focu
se
s on th
e
cha
r
a
c
teri
zin
g
metho
d
of
liquid m
o
istu
re tran
sp
ort d
i
fference
b
e
twee
n
two su
rface
s
of
textile
fabrics,
whi
c
h is the
mo
st
impo
rtant
pa
ramete
r
to re
flect the dynamic liquid m
o
isture tran
sport
prop
ertie
s
an
d comfort
se
nsatio
ns of te
xtile f
abrics.
More
over, th
e ne
w
app
aratus to
gethe
r with
the measure
m
ent system
wa
s develop
e
d
from the se
mi-autom
at
ic
test device of
the MMT to the
full-autom
atic test devi
c
e
with the
mechani
cal e
quip
m
ent, microel
ectro
n
ics,
se
nso
r
s an
d co
ntrol
sy
st
em.
2. Test Princ
i
ple and Ev
aluation Me
th
od
2.1. Test Principle
As sho
w
n in
Figure1, the mech
ani
cal e
quipme
n
t of the test device and system
contain
s
the followin
g
six main co
m
pone
nts:
(1) L
o
wer me
asu
r
ing h
ead
1;
(2)
Upp
e
r me
asu
r
ing h
ead
2;
(3)
Wate
r storage box 3;
(4) Driving co
mpone
nt
4;
(5) Lifting
system 5;
(6) Me
asuri
n
g device fra
m
e 6.
Figure 1. Mechani
cal Equip
m
ent of
the Test Devi
ce an
d System
There are up
per a
nd lo
we
r co
ncentri
c l
i
quid
moi
s
ture sen
s
o
r
s in
stalled in th
e
uppe
r
measuri
ng
h
ead
and
lo
wer m
e
a
s
u
r
ing
hea
d, b
e
twe
en
whi
c
h th
e
fabri
c
bein
g
tested i
s
pla
c
ed.
The
i
nne
r su
rface
(upp
er surfa
c
e
)
of
th
e
fab
r
ic
cont
acts to th
e u
pper liqui
d m
o
isture
se
nso
r
s,
while
outer surface (l
ower
su
rface)
co
n
t
acts to th
e sensor
s in th
e
lowe
r me
asuring
hea
d. T
he
stru
cture of th
e liqui
d moi
s
t
u
re
se
nsor an
d the
se
nsors arran
gem
e
n
t in the
mea
s
u
r
ing
hea
ds a
r
e
sho
w
n i
n
Fig
u
re
2. The
sensor
co
nsi
s
t
s
of fixi
ng ca
p,
cylind
r
ical shell, sp
ring,
con
n
e
c
ting rod
and sen
s
or h
ead. The spri
ng is appli
ed i
n
the sen
s
o
r
desi
gn to ensure go
od cont
act of the fabric
to the sen
s
o
r
s even
if the f
abri
c
i
s
roug
h
or i
r
regula
r
.
There is a fin
e
wate
r
pipe f
i
xed thro
ugh t
h
e
central
sen
s
o
r
of the
up
p
e
r m
e
a
s
uri
n
g
hea
d,
whi
c
h
ca
n supply
a predefin
ed
amou
nt of t
e
st
solutio
n
(synthetic sweat) with
the wate
r
sto
r
ag
e box
and
control system du
ring
testing. In o
r
d
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4724 – 4
730
4726
T
h
e im
ag
e
c
a
n
n
o
t
b
e
d
i
s
p
lay
e
d
.
Y
o
u
r
c
o
m
p
u
t
er
m
a
y
n
o
t
h
a
v
e
en
o
u
g
h
m
e
m
o
r
y
t
o
o
p
en
t
h
e
im
ag
e,
o
r
t
h
e im
ag
e
m
a
y
h
a
v
e
b
een
c
o
r
r
u
p
t
e
d
.
R
e
s
t
ar
t
y
o
u
r
c
o
m
p
u
t
er
,
an
d
t
h
en
o
p
en
t
h
e f
ile ag
ain
.
I
f
t
h
e r
e
d
x
s
t
ill ap
p
e
ar
s
,
y
o
u
m
a
y
h
a
v
e
t
o
d
e
let
e
t
h
e im
ag
e
an
d
t
h
en
in
s
e
r
t
it
ag
ain
.
to measure the liquid
moi
s
ture
co
ntent
at different
a
r
eas
of the fab
r
ic a
nd the m
o
isture tra
n
sp
ort
behavio
r in
di
fferent di
re
ctions at
b
o
th surfaces
(upp
er su
rface
a
n
d
lo
wer
surfa
c
e) of th
e fab
r
ic,
eight mea
s
u
r
i
ng ring
s of se
nso
r
s a
r
e a
p
p
lied in
both m
easurin
g hea
ds. By testing
the resi
stan
ce
changes
bet
ween the measuring ri
ngs
of
sensors, whi
c
h will reduc
e
when t
he fabric is
wet or
contai
ns a
qu
antity of moisture, the
cha
nge
s of
wate
r an
d liq
uid
moistu
re
co
ntent on
the fa
bri
c
uppe
r and lo
wer
su
rfaces
(U
U
an
d U
L
)
can be mea
s
u
r
ed.
(a) Sen
s
o
r
s a
rra
ngem
ent in measuri
ng
head
s
(b) Sen
s
o
r
st
ructure
Figure 2. Ske
t
ch of Sensors in Mea
s
u
r
in
g Hea
d
s
Duri
ng te
stin
g, a p
r
ed
efin
ed am
ount
of test
so
lution
is introdu
ce
d
onto the
ce
nter of th
e
uppe
r si
de of
the fabri
c
through a fin
e
water
pi
pe from the water stora
ge b
o
x. Mean
while, t
h
e
liquid moi
s
ture sen
s
o
r
s
sta
r
t to work and
the test data is re
co
rde
d
a
nd save
d.
The real-tim
e
data of the
liquid moi
s
ture
co
ntent ch
ange
s a
gain
s
t time on the
fabric
uppe
r
and
lo
wer
surfa
c
e
s
we
re
a
c
qui
red d
u
rin
g
t
h
e
testing
with
the comp
uter DAQ
sy
stem
of
the cont
rol sy
stem.
2.2. Ev
aluation Metho
d
Derive
d from
the measuri
ng cu
rve
s
an
d the
test da
ta, five indice
s have b
een
defined
and calculat
ed for evalu
a
tion of dynamic liqui
d moistu
re tran
spo
r
t differen
c
e bet
wee
n
two
s
u
rfac
es
of textile fabric
s
.
1) Wetted time: WT
U
and
WT
L
(mm),
WT
U
i
s
defin
e
d
a
s
the tim
e
from te
st sol
u
tion i
s
introd
uce
d
onto
th
e testin
g fab
r
i
c
to the
time wh
en th
e fabri
c
i
s
ju
st wetted o
n
th
e upp
er
su
rfa
c
e of th
e fabric an
d
WT
L
is defined
as th
e
wetted time o
n
the lowe
r surface of the fabri
c
.
2) Wetting sp
eed: WS
U
an
d WS
L
(mm/s),
WS
U
and
WS
L
are d
e
fined
as the liq
uid
moistu
re
wetting speed f
r
o
m
the ce
nter
to the
maximum we
tted radiu
s
on
the upper a
n
d
lowe
r su
rfa
c
e
s
of the fabric.
U
U
U
WR
WS
T
(1)
L
L
L
WR
WS
T
(2)
Whe
r
e, W
R
U
and WR
L
is the maximum radiu
s
of liquid moi
s
ture wetted are
a
on the
uppe
r an
d lo
wer
su
rfa
c
e
s
of the fabri
c
resp
ectively. T
U
and T
L
a
r
e the times
o
f
liquid moi
s
ture
rea
c
hin
g
the maximum we
tted rings o
n
the
upp
er an
d
lower
su
rfaces of the fabri
c
.
3) Moi
s
ture transport difference: D
MT
(%
),
D
MT
is define
d
as the diffe
ren
c
e of the
liqui
d moi
s
ture tran
spo
r
t capa
city between the
two su
rfa
c
es
of the fabric.
F
i
xi
ng ca
p
Sp
ri
ng
C
o
nn
e
c
ti
ng
ro
d
Senso
r
he
ad
C
y
lin
drica
l
she
l
l
Lo
w
e
r measur
i
ng he
ad
Upp
e
r measur
i
ng he
ad
F
abric
Moisture sensor
Moisture sensor
W
a
ter pipe
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Test Devi
ce f
o
r Liqui
d Moi
s
ture T
r
a
n
sp
ort Differe
nce
Evaluation of
Fabri
cs
(Bao
-guo Ya
o)
4727
00
()
/
TT
MT
L
U
D
Ud
t
U
d
t
T
(3)
Where, T is
t
he total meas
urement time. U
U
is the li
quid moi
s
ture
content vs. t
i
me on
the
fabri
c
up
per su
rface, and U
L
is th
e liquid
moi
s
ture
conte
n
t
vs. time on t
he fab
r
ic lower
surfa
c
e.
Here
the liquid moisture co
nte
n
t (%)
mean
s the liquid moisture co
nte
n
t in percent
age
relative to the dry weight of
the fabric.
3. Experiments se
tup
Six types of fabri
cs
with di
fferent stru
ct
ural
featu
r
e
s
and mad
e
fro
m
different m
a
terial
s
were teste
d
for the exp
e
ri
ments of m
o
i
s
ture t
r
an
sp
o
r
t differen
c
e
betwe
en two
surfa
c
e
s
of te
xtile
fabrics. Th
e fabri
c
st
ru
ctural
paramete
r
s are liste
d i
n
Table
1. T
he sample
s
were cut into
the
size of 100m
m×10
0mm.
All the spe
c
i
m
ens
we
re
kept in a co
n
d
itioning roo
m
, controll
ed
a
t
21±1
°
C a
nd 6
5
±2% RH a
c
cordin
g to ASTM D177
6, for at least 24 ho
urs b
e
fore testing.
In order to
exclud
e the
imp
a
ct of
the
exter
nal
envi
r
on
ment, all th
e t
e
sts were
carried
out
in a con
d
ition
i
ng ro
om. Fo
r ea
ch set of fabric, 5 pie
c
e
s
of sp
eci
m
ens
we
re cut and taken
into
experim
ents to excl
ude
the
individu
al u
n
c
ertai
n
ty.
Du
ring te
sting, th
e same
qu
an
tity of the test
solutio
n
wa
s i
n
trodu
ce
d ont
o the uppe
r surfac
e of each fabric
spe
c
i
m
en autom
atically.
Table 1. Fab
r
ic Structu
r
al
Paramete
rs
Fabric Fabric
w
e
ight
(g
/
m
2)
Fabric
thick
ness
(mm)
Fiber content
Fabric construction
1 120.0
0.75
100%
pol
yester
knitted
2 136.0
0.56
100%
pol
yester
knitted
3 183.0
0.77
100%
cotton
knitted
4 214.0
0.83
100%
cotton
knitted
5
180.0
0.86
70% cotton + 30
% pol
y
e
ste
r
Single knitted
6 204.0
0.94
100%
pol
yester
knitted
4. Results a
nd Analy
s
is
All the spe
c
i
m
ens
we
re te
sted on th
e test devic
e
and
system of liq
uid moi
s
ture t
r
an
spo
r
t
prop
ertie
s
by
the same te
st
ing p
r
oto
c
ol
a
c
cordi
ng to
th
e expe
rime
nts
setup.
The
mean val
u
e
s
o
f
the liquid moi
s
ture tran
spo
r
t prop
ertie
s
measurement
s are
sum
m
arized in Ta
ble
2.
Table 2. The
Mean Valu
es
of the Liquid
Moistu
re Tra
n
sp
ort Prop
erties Mea
s
u
r
e
m
ents
Fabric WT
U
(s
)
W
T
L
(s
)
W
S
U
(mm/s)
WS
L
(mm/s)
D
MT
(%)
1 3.011
3.2346
0.836
0.8016
-48.0332
2 4.8174
12.1784
0.407
0.264
173.5013
3 17.2336
2.3856
0.4271
0.9143
359.5741
4 3.266
4.4828
0.6197
0.6653
-273.1278
5 3.8906
3.7486
0.6695
0.6527
-78.754
6 3.426
119.9538
0.8599
0
-436.4399
The professi
onal
statistical software S
PSS was
used to identify the si
gnificance of the
differen
c
e
s
of
the evaluatio
n indices of a
ll t
he tested fabri
cs
by a o
ne-way ANO
VA analysis.
The
results a
r
e su
mmari
zed in
Table 3.
Table 3. One
-
way ANOVA
Analysis
Re
sults of Evaluation Indice
s
Dependent V
a
ria
b
le
Sum of Squares
df
Mean Square
F
Sig.
WT
U
775.276
5
155.055
2.663
0.047
WT
L
55178.252
5
11035.650
3754.948
0.000
WS
U
0.938
5
0.188
4.275
0.006
WS
L
3.021
5
0.604
209.808
0.000
D
MT
2088272.59
0
5
417654.518
23.673
0.000
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4724 – 4
730
4728
It can
be
co
nclu
ded
from
the
one
-wa
y
ANOVA a
nalysi
s
re
sults that
ea
ch
index i
s
signifi
cantly d
i
fferent (P
<0.
05) a
m
on
g th
e six teste
d
fabri
cs i
n
this
study. The
r
ef
ore, the fa
bri
cs’
behavio
rs
si
gnifica
ntly affect the liq
uid
moistu
re
tra
n
sp
ort p
r
op
e
r
ties of all i
n
dice
s, an
d the
measurement
method
an
d
the indi
ce
s
d
e
fined
are
e
ffective for
cha
r
acte
ri
zing
th
e liqui
d moi
s
t
u
re
transpo
rt differen
c
e bet
wee
n
two su
rfa
c
e
s
of textile fa
brics.
Figure 3. Mean Value of
the Test
Re
su
lts of WT
U
an
d WT
L
The m
ean
va
lue
cha
r
ts
of
the mea
s
u
r
e
m
ent results
for indi
ce
s
WT
U
, WT
L
, WS
U
, WS
L
and D
MT
are shown in Figu
re 3, Figure 4
and Figu
re 5.
Figure 3 i
s
th
e mea
n
value
chat
of the
meas
urement
re
sults fo
r th
e indi
ce
s wetted time
WT
U
and
WT
L
. Fabric 1
was wetted mo
re qui
ckly, where th
e WT
U
is 3.0 (s) an
d WT
L
is 3.2
(s).
Ho
wever, fa
b
r
ic 6
wa
s
not
wetted
on th
e
lower su
rfa
c
e du
ring
the
testing
si
nce t
he
wetted tim
e
is the total measure
m
ent time.
Figure 4. Mean Value of
the Test
Re
su
lts of WS
U
and WS
L
Figure 4
is the m
ean
value
chat
of th
e me
asu
r
em
ent results fo
r the
indi
ce
s wettin
g
spe
ed WS
U
a
nd WS
L
. Fa
bric 6 h
a
s th
e
highe
st value
of wetting
sp
eed differen
c
e between t
w
o
s
u
rfac
es
of fabric
, where the WS
U
is 0.85
99 (mm/
s) an
d WS
L
is 0 (m
m/s).
The test re
su
lts of
the evaluation index
D
MT
, which reflects the dif
f
eren
ce of the liquid
moistu
re tran
spo
r
t capa
cit
y
betwee
n
two su
rfa
c
e
s
of
fabric,
are
sh
own i
n
Fig
u
re
5. Fabri
c
3 h
a
s
the high
est v
a
lue of m
o
ist
u
re tran
spo
r
t
differen
c
e
wh
ere
D
MT
is
35
9.5741%, a
n
d
fabri
c
6
ha
s the
lowe
st value
of moistu
re
transport difference wh
ere D
MT
is -4
36.4
399%. The
result
s sh
ow t
hat
fabric
3 ha
s very good
perf
o
rma
n
ce in transportin
g
an
d absorbi
ng li
quid moi
s
ture
and ha
s be
st
liquid m
o
isture transport
ability from
inner surface
to outer surface,
while fabri
c
6
cannot absorb
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Test Devi
ce f
o
r Liqui
d Moi
s
ture T
r
a
n
sp
ort Differe
nce
Evaluation of
Fabri
cs
(Bao
-guo Ya
o)
4729
and
sp
rea
d
li
quid m
o
istu
re
very well a
n
d
ha
s
wo
rst
moistu
re tran
spo
r
t ability from inn
e
r surf
ace
to outer surfa
c
e.
Figure 5. Mean Value of the Test
Re
su
lt
s of Moisture Tran
sp
ort Difference (D
MT
)
5. Conclusio
n
A new te
st d
e
vice a
nd
system a
nd the
test metho
d
were devel
o
ped a
nd p
r
o
posed to
obje
c
tively and automatical
ly measure a
nd cha
r
a
c
te
ri
ze the liquid
moistu
re tran
spo
r
t differen
c
e
betwe
en t
w
o
su
rfa
c
e
s
of
textile fabri
c
s by
simula
tin
g
the
conta
c
t process
of
skin
with
fabri
c
s
unde
r huma
n
perspiratio
n conditio
n
s.
Five indi
ce
s we
re defin
ed to chara
c
teri
ze dyna
mic
moistu
re tra
n
s
po
rt pro
p
e
r
ties an
d liquid
moistu
re
tra
n
s
po
rt differen
c
e de
rived fro
m
the test dat
a.
Six types of fabrics
with
different
stru
ctural
feature
s
an
d ma
de
from different
material
s
were
tested. Th
e t
e
st results
sh
ow th
at the t
e
st d
e
vice
an
d sy
stem i
s
e
ffective for
ch
ara
c
teri
zin
g
t
he
liquid m
o
istu
re tran
spo
r
t
differen
c
e
be
tween t
w
o
surfaces of te
xtile fabrics
and i
s
a
b
le
to
determi
ne th
e sig
n
ifica
n
t
differen
c
e
s
in
fabri
c
liqui
d
moistu
re tran
spo
r
t p
r
ope
rti
e
s to
all d
e
fined
indices.
Fab
r
i
c
1
wa
s
wetted m
o
re
qui
ckly than
any
other
fabri
c
s. Fabri
c
3 (pu
r
e
cotton, knitted)
has the best l
i
quid moi
s
ture tran
sport ability from inner
surface to
outer surface
wi
th the
highest
value of m
o
i
s
ture
tra
n
spo
r
t differe
nce, while
fa
b
r
ic
6 (1
00% p
o
l
y
ester,
knitte
d) h
a
s the
worst
moisture transport ability from i
nner surf
ace to outer
surface
with
the lowest val
ue of moisture
transpo
rt differen
c
e.
Ackn
o
w
l
e
dg
ements
This work wa
s su
ppo
rted
by National
Natural Scien
c
e Fou
ndatio
n of China (Grant No.
5117
5487
) a
nd Zhejia
ng
Provinci
al Na
tural Scie
nce Found
ation of
China (Grant
No. Y11107
2
0
).
Referen
ces
[1]
Y Li.
T
he Scien
c
e of Clothi
ng
and C
o
mfort.
T
e
xti
l
e Pro
g
ress
, Vol. 31.
T
he
T
e
xtile Institute
.
2001.
[2]
ASW
W
ong, Y
Li. Comp
ariso
n
of different h
y
brid mo
dels
’
pe
rformances i
n
pred
iction
of overall c
l
othi
n
g
comfort from fabric ph
ys
ical pr
operti
es.
J. Soc. F
i
ber Sci. T
e
chno
l
. 200
2.
[3]
Umbac
h K. Moisture trans
po
rt and
w
e
ar co
mfort in microfiber fabr
ics.
Internatio
nal T
e
x
t
ile Re
ports
.
199
3; 74: 174-
178.
[4]
Jun-
ya
n Hu, Y
Li, K
w
ok-
w
i
n
g
Yeun
g, Antho
n
y
SW
W
o
n
g
, W
enlin
Xu. Mo
isture ma
nag
e
m
ent tester:
a
method to c
har
acterize fa
bric
liqu
i
d mo
isture
manag
eme
n
t prop
erties.
Tex
t. Res. J.
2005
; 75 (1): 57-
62.
[5]
Baog
uo
Ya
o, Yi
Li, J
u
n
y
a
n
H
u
, Yil
i
n
K
w
o
k
, K
w
o
k
w
i
n
g
Ye
un
g. An
impr
oved
tes
t
method
fo
r
character
i
zin
g
the d
y
n
a
mic li
qui
d moistur
e
transfer in p
o
r
ous po
l
y
meric
materials.
Poly
m
e
r Testing
.
200
6; 25(5): 67
7-68
9.
[6]
Namli
goz
ES,
Cob
an S,
Ba
h
t
i
y
ar
i MI. C
o
mpariso
n
of moisture trans
po
rt properties of
the
v
a
rio
u
s
w
o
ven fabrics.
Tekstil ve konf
eksiyon
. 201
0; 20(2): 93-
10
0.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4724 – 4
730
4730
[7]
Gauthier B
ede
k, F
abien Sa
la
ün, Z
u
zan
a
Martinko
vsk
a, Eric Deva
u
x
, Da
niel
Dup
ont. Evalu
a
tion
o
f
thermal a
nd m
o
isture ma
na
g
e
ment pr
operti
es on kn
i
tted fabrics a
nd co
mpariso
n
w
i
th
a ph
ysi
o
l
ogic
a
l
mode
l in
w
a
rm
cond
itions.
Ap
plie
d Ergo
no
mi
cs
. 2011; 42: 7
92-8
00.
[8]
W
u
HY,
Z
hang
Y,
Xie
H.
Stud
y on the
Mo
isture
T
r
ansfer Pr
incip
l
e
of W
a
terproof Bre
a
tha
b
le F
a
bric
b
y
Different T
r
eat
me
nts Usin
g MMT
.
T
e
xtile Bioe
ngi
ne
erin
g
and Informati
cs S
y
mp
osium
Proceed
in
gs
.
201
0; 1(3): 122
5-12
31.
[9]
E Önera, HG
Atasa
ğ
unb, A
Okura, AR B
ede
nc, G Dur
u
rd. Eval
uati
o
n of mo
isture
mana
gem
en
t
prop
erties o
n
knitted fabrics.
J
ourn
a
l of the T
e
xtile Institute
. 201
3; 104(
7): 699-7
07.
[10]
McQueen
RH,
Batchel
ler J
C
, Mah T
,
H
oop
er PM
. De
velo
pment of
a protoc
ol to
assess fabr
i
c
suitab
ilit
y
f
o
r testing liq
ui
d moi
s
ture transport
prop
erties.
Jou
r
nal of T
he T
e
xtile Institute
. 20
13; 104(
8):
900-
905.
[11]
Xu
R
C
, Ch
en
LN. Stud
y
o
n
t
he
orie
nted
li
q
u
id
moistur
e
tr
ansmittin
g
pr
o
pert
y
of s
ports
w
e
ar
fabrics.
Internatio
na
l T
e
xtile Sci
ence
and T
e
ch
no
log
y
F
o
rum
. 20
10;
340-3
43.
[12]
AAT
CC T
e
st Method.
1
95-
2
009.
L
i
qu
id M
o
isture Ma
nag
e
m
e
n
t Prop
ertie
s
of T
e
xtile F
a
brics
. AAT
CC
Committee RA
63. 200
9.
[13]
Bao-g
uo Ya
o, Yi Li, Yi-lin K
w
o
k
. Precisio
n
of
Ne
w
T
e
st
Method for Ch
aracterizi
ng D
y
n
a
mic Li
qu
i
d
Moisture T
r
ansfer in T
e
xtile Fabrics.
AATCC
Review
. 2008;
8(7): 44-48.
Evaluation Warning : The document was created with Spire.PDF for Python.