TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 80
4
2
~ 805
0
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.67
26
8042
Re
cei
v
ed
Jul
y
21, 201
4; Revi
sed O
c
tob
e
r 27, 201
4; Acce
pted No
vem
ber 1
0
, 2014
Mitigation of SSR Oscillations in Series Compensated
Line using LCAP Subsynchronous Damping Controller
Nare
ndra
Ku
m
a
r, Sanjiv
Kum
a
r*
Dep
a
rtment of Electrical E
ngi
neer
ing, De
lh
i T
e
c
hnolog
ica
l
Univers
i
t
y
, Ba
w
a
n
a
Roa
d
, Delhi, Ind
i
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: activesan
jiv0
07@re
diffmai
l.com
A
b
st
ra
ct
Subsync
h
ronous Res
o
nanc
e (SSR) is
a
grow
ing problem in power
system
s
having series
compe
n
sate
d trans
missi
on l
i
n
e
s. Subsync
h
rono
us reso
nan
ce w
i
th low
fre
que
ncy that su
rpasses a
ggr
e
gat
e
fatigue thr
e
sh
o
l
d of the
gen
er
ator sha
ft frequ
ently co
uld s
i
g
n
ifica
n
tly red
u
c
e
the sh
aft service life, w
h
ich
is
a new
probl
e
m
that emer
ges
in rece
nt years
.
F
l
exible AC t
r
ans
missi
on sy
stems (F
ACT
S
) controll
ers ar
e
w
i
dely a
p
p
lie
d
to al
levi
ate
subsync
h
ron
o
u
s
reson
anc
e. A lin
e curr
e
n
t an
d activ
e
pow
er (L
CA
P)
supp
le
me
ntary
subsy
n
chro
n
ous
da
mp
in
g
contro
ller
(S
SDC) is
pr
op
osed
to
da
mp su
bsync
h
ro
nous
reson
ance c
a
u
s
ed by ser
i
es
capac
itors. Both eig
env
al
u
e
i
n
vestig
atio
n an
d time-do
m
ain
simulati
on res
u
lts
verify that th
e
prop
osed
co
ntrol strate
gy ca
n
effect
ively
d
a
m
p
i
n
g
p
o
w
e
r s
ystem
oscil
l
ati
ons
of the
po
w
e
r
system with S
V
C and SSDC.
Tim
e
dom
ain s
i
mulations
us
ing the nonlinear
system
m
o
del are als
o
c
a
rried
out to
de
mo
n
s
trate the
effectivenes
s
of t
he
prop
ose
d
da
mp
ing
cont
r
o
ller. T
h
e r
e
c
o
mmen
ded
co
ntrol
appr
oach
has
been acc
u
mu
lated w
i
th the
IEEE firs
t bench
m
ark
mo
d
e
l for SSR study. The ana
l
ysis
indic
a
tes th
at SVC us
in
g
the pr
opos
ed
control
st
rategy has better
al
levi
atio
n effect
and
o
u
t
pu
t
character
i
stics. All the simul
a
ti
ons are va
lid
at
ed by usi
ngMA
T
LAB/Simuli
nk
enviro
n
m
ent.
Ke
y
w
ords
:
F
A
CT
S devices, l
i
ne curr
ent an
d active pow
er
(LCAP), sub synchro
nous r
e
son
anc
e (SSR),
supp
le
me
ntary
controll
er da
mpin
g contro
ll
e
r
(SSD
C
)
, e
i
ge
nva
l
ue
i
n
ve
stig
ati
o
n
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g an
d
Scien
ce. All righ
ts reser
ved
.
1. Introduc
tion
The co
nsta
ntly growin
g demand for el
ectri
c
po
wer
necessitate
s the transmi
ssion of
large
amou
nts of po
we
r o
v
er long di
st
ances. An e
c
onomi
c
ally g
o
rge
o
u
s
solu
tion to increa
se
power tran
sfe
r
thro
ugh l
o
n
g
tran
smi
ssi
o
n
line
s
, witho
u
t buildin
g ne
w pa
rallel
ci
rcuits i
s
to i
n
stall
the seri
es ca
pacito
r
s. It is kno
w
n that serie
s
ca
pa
citor com
pen
sat
i
on benefits p
o
we
r system
s in
many ways, such a
s
increa
sing po
we
r transfe
r
ca
pabi
lity, enhancin
g transi
ent st
ability limits etc.
it is also kno
w
n that fixed seri
es
comp
ensat
ion may
cau
s
e sub
-
synchrono
us
reso
nan
ce (S
SR)
in power
syst
ems, which can lead to th
e dama
ge
to
machi
ne
shaf
t. Since the d
i
scovery in 1
970
that SSR wa
s the
main
cause of the
shaft fa
ilu
re
s at the Mo
ha
ve gene
ratin
g
station
(USA)
extensive re
search an
d de
velopm
ent efforts have b
e
e
n
devoted to
the developm
ent of effective
SSR mitigation measures.
Flexible AC transmi
ssion
systems (FACTS) dev
ices
are integ
r
ate
d
in power
system
s to
control power flow, increase
transmission line stability limit
a
nd improve
the
security of
transmissio
n system
s.
FA
CTS cont
roll
ers
a
r
e us
ed
to en
han
ce
system
flexibility and in
cre
a
se
system l
oada
bility [1-2]. Many
co
untermeasures to
sub
-
syn
c
h
r
o
n
ous re
son
a
n
c
e
problem ha
ve
been
re
porte
d in the lite
r
at
ure [3]. Howe
ver sub-syn
c
hron
ou
s reso
nan
ce
cont
rol
throu
gh FA
CT
S
controlle
r is g
a
ining imp
o
rt
ance. Based
on the
above
con
s
ide
r
atio
ns, som
e
pap
ers fo
cu
sed t
he
attention
on control of
su
b-sync
hro
nou
s
resona
nce torque
s with
FACTS controlle
r such a
s
SVC.
SSR an
alysi
s
with
and
wit
hout SVC is
prop
osed.
S
S
R a
nalysi
s
with SVC u
s
es
co
nsta
nt a
ngle
control meth
od. The
s
e p
apers attem
p
ts to hi
ghli
ght the effectivene
ss
of SVC cont
ro
l in
stabili
zing
the
critical
torsio
nal mo
de
in a
dditi
on to
the
enha
ncement
of po
we
r tra
n
sfer
capa
bili
ty
[4-6].
The
use of
series
com
pensation may l
e
ad to
sustained oscillations
in generator–turbine
shaft syste
m
s in thermal
powe
r
stati
ons
clo
s
ely con
n
e
c
ted to
the comp
en
sated lin
e. This
phen
omen
on
is kno
w
n u
n
d
e
r the
nam
e
sub
s
yn
chron
ous
re
so
nan
ce (SSR). The
probl
em of S
S
R
is relate
d to the interaction betwe
e
n
a seri
es-compen
sate
d
transmi
ssio
n line and
the
mech
ani
cal system into the gene
rato
r u
n
it. SSR can
be divided int
o
two main g
r
oup
s, ste
ady
-
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Mitigation of SSR Oscillati
ons in Se
rie
s
Com
pen
sate
d Line u
s
ing
LCAP… (Na
r
endra Kum
a
r)
8043
state SSR [in
ductio
n
gen
erator effect (I
GE), and to
rsional interacti
on (TI)] an
d transi
ent torq
u
e
s.
IGE is con
s
id
ered
a the
o
re
tical conditio
n
that
unlikely can occu
r
in a
se
rie
s
-co
m
pen
sated po
wer
system,
whe
r
eas SS
R du
e
to TI and TA
are d
ang
ero
u
s
con
d
ition
s
that must b
e
avoided [7
-1
2
].
The SVC i
s
p
r
imarily in
stall
ed to en
han
ce po
we
r t
r
an
sfer
ca
pacity
but with the
p
r
opo
se
d SSDC
controlle
r
can
additio
nally
damp
all
su
b
s
ynchro
nou
s
oscillation
m
ode
s. It is fo
und th
at with
the
remote
ge
ne
rator
sp
eed
a
simple
sub
s
y
n
ch
ron
o
u
s
d
a
m
ping
control
l
er
(SSDC) can d
a
mp
all t
he
SSR mode
s with criti
c
al le
ve
l of c
o
mpens
a
tion [13-16].
The IEEE Firs
t Benc
hmark
(FBM) model is
c
o
ns
idered for the analys
i
s of SS
R [17] and
the complet
e
sim
u
lation
of the
po
wer sy
stem
is
perfo
rm
ed in
the
MATLAB/Simulink
environ
ment.
The study i
s
carried o
u
t b
a
se
d on
da
m
p
ing torque a
nalysi
s
, eige
nvalue an
alysis,
and
t
r
an
sient
sim
u
lation. The re
sults sho
w
th
at
th
e sugg
este
d
c
ontrolle
r i
s
satisfa
c
to
ry for
dampin
g
SSR.The remai
nder of this
pape
r is org
anized as fol
l
ows. Section
2 describ
es the
modelin
g of p
o
we
r sy
stem.
Section 4
explain
s
t
he det
ailed eig
enval
ues
analysi
s
of study sy
ste
m
for different
operating co
ndition
s. Validation
of the eigenvalue
results throu
gh time dom
ain
simulatio
n
is
also
pre
s
e
n
te
d in section
4
.
Fina
lly, Section 5 p
r
e
s
ent
s the maj
o
r
concl
u
si
on of the
pape
r.
2.
Stud
y
Po
w
e
r
Sy
stem Model
The study system, as shown in Fig
u
re
1, co
nsi
s
ts of a st
eam turbi
n
e
driven
synchro
nou
s
gene
rato
r su
pplying bul
k
power to an
infinite bus
o
v
er a long t
r
ansmi
ssion li
ne
(IEEE first benchm
ark model) [17]. An SVC of swit
ched capacitor and thyr
istor controlled reactor
type is
co
nsi
dere
d
lo
cate
d at the
ce
nt
ral of th
e tra
n
smi
ssi
on li
n
e
which
p
r
ovi
des continuo
usly
controllabl
e reactive p
o
we
r at its termin
als in
re
spo
n
s
e to lin
e current an
d a
c
tive po
wer
(L
CAP)
sup
p
leme
ntary controller. T
he serie
s
co
mpen
sati
on i
s
ap
plied
at the sendi
ng e
nd of the lin
e
[18-
20].
Figure 1. IEEE FBM of Stu
d
y Power System
2.1. Modeling of Sy
nchro
nous Gen
e
ra
tor
In the detail
ed ma
chi
ne
model
used
in this
pap
er, the stato
r
i
s
rep
r
esente
d
by a
depe
ndent
current so
urce
parallel
with
the induct
a
n
c
e. The g
ene
rator m
odel i
n
clu
d
e
s
the field
windi
ng 'f'
an
d a
damp
e
r
windi
ng '
h'
along
d-axi
s
a
nd two d
a
mp
er
windi
ng
s '
g' an
d '
k
'
alo
ng q
-
axis. The IEEE type-1 excitation system
i
s
used for the generator [21-23].
The roto
r flux linkag
e
s a
ssociate
d
with d
i
fferent windi
ngs a
r
e defin
ed by:
q
h
g
k
q
k
g
g
d
h
f
h
d
f
h
f
f
I
b
a
a
I
b
a
a
I
b
a
a
I
b
V
b
a
a
6
8
7
.
5
6
5
.
3
4
3
.
2
1
2
1
.
(
1
)
Whe
r
e V
f
is t
he field
excit
a
tion voltage.
Con
s
tant
s a
1
to a
8
a
nd b
1
to b
6
are defined in [24].The i
d,
and i
q
are d
and q axis
compon
ents o
f
the machin
e
terminal
cu
rre
nt re
spe
c
tively which a
r
e
defined
with
resp
ect to
ma
chin
e referen
c
e f
r
ame.
To
have a
comm
on axi
s
of
rep
r
esentation
with
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8042 – 80
50
8044
the netwo
rk and SVC, th
ese flux lin
ka
ges a
r
e tr
an
sformed to th
e synchrono
u
s
ly rotating
D-Q
frame of refe
rence usi
ng th
e followin
g
transfo
rmatio
n:
Q
D
q
d
i
i
I
I
cos
sin
sin
cos
(
2
)
Whe
r
e i
D,
i
Q
are the re
spe
c
tive machine
curre
n
t comp
onent
s along
D and Q axis.
δ
is the angle
by whi
c
h d
-
ax
is lea
d
s th
e D-axis.
Current
s I
d
and
I
q
, wh
ich a
r
e th
e co
mpone
nts of t
he de
pen
dent
curre
n
t sou
r
ce along d a
n
d
q axis re
spe
c
tively, are expre
s
sed a
s
:
I
d
= c
1
ψ
f
+ c
2
ψ
h
I
q
= c
3
ψ
g
+ c
4
ψ
k
(3)
Whe
r
e con
s
tants c
1
-c
4
are
defined in [20]. The above
nonlinea
r
differential e
quat
ions a
r
e used
in
the power sy
stem mod
e
lin
g.
2.2. Modeling of Six Mas
s
Mecha
n
ica
l
Sy
stem
In the m
e
cha
n
ical
mod
e
l d
e
tailed
sh
aft torqu
e
dyn
a
mi
cs [2] ha
s be
en
con
s
id
ere
d
for the
analysi
s
of to
rsio
nal
mod
e
s
d
u
e
to SSR. The
me
cha
n
ical
sy
stem i
s
d
e
scribe
d
b
y
the
six spri
ng-
mass model
as shown in
Figure 2. This sh
ows th
e electrome
c
hani
cal ma
ss-sp
r
in
g damp
e
r
system. It co
nsi
s
ts of exci
ter (EXC), ge
nerato
r
(GEN), low pressu
re of two sections (LPA a
nd
LPB),
interm
ediate pressu
re (IP) and
hi
gh
p
r
e
s
sure
(
H
P
)
t
u
rbi
ne
s
e
ct
ion
s
.
E
v
er
y
se
ct
ion
ha
s
it
s
own
ang
ular
momentum
(M) an
d da
m
p
ing
coeffici
e
n
t (D), an
d e
v
ery two
su
cce
ssive
ma
sses
have their
own sh
aft stiffness
co
nsta
nt (K).All masse
s
are me
ch
ani
cally conne
ct
ed to ea
ch ot
her
by elastic
sha
fts [25].The data for elect
r
i
c
al
an
d mech
anical system
are provided
in appe
ndix.
HP
IP
LP
A
LP
B
G
EN
EX
C
Tm
1
Tm
2
T
m
3
Tm
4
Te
1
2
3
4
5
6
D
12
D
23
D
34
D
45
D
56
K
12
K
23
K
34
K
45
K
56
D
11
D
22
D
33
D
44
D
55
D
66
Figure 2. Six
mass sprin
g
mech
ani
cal system (Typi
c
al SSR Studies) [18]
The leadi
ng e
quation
s
an
d the state and
output equ
ations a
r
e given
as follows:
i
=
i
i
=
1, 2, 3, 4, 5,
6
1
)
(
)
(
1
2
1
12
2
12
1
12
11
1
1
M
T
K
D
D
D
M
dt
d
2
1
2
12
3
23
2
23
22
12
1
12
2
2
)
(
)
(
1
M
T
K
D
D
D
D
D
M
dt
d
3
)
(
)
(
)
(
1
4
3
34
2
3
23
4
34
3
34
33
23
2
23
3
3
M
T
K
K
D
D
D
D
D
M
dt
d
4
)
(
)
(
)
(
1
5
4
45
3
4
34
5
45
4
45
44
34
3
34
4
4
M
T
K
K
D
D
D
D
D
M
dt
d
e
T
K
K
D
D
D
D
D
M
dt
d
)
(
)
(
)
(
1
6
5
56
4
5
45
6
56
5
56
55
45
4
45
5
5
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Mitigation of SSR Oscillati
ons in Se
rie
s
Com
pen
sate
d Line u
s
ing
LCAP… (Na
r
endra Kum
a
r)
8045
)
(
)
(
1
5
6
56
6
66
56
5
56
6
6
K
D
D
D
M
dt
d
)
(
"
D
Q
Q
D
d
e
I
i
I
i
X
T
(
4
)
Whe
r
e
1,
2,
3,
4,
5,
6
are the angul
ar
displ
a
cement
s and
ω
1
,
ω
2
,
ω
3
,
ω
4
,
ω
5
,
ω
6
are the a
ngu
lar
velocitie
s
of different shaft
segm
ents a
s
sho
w
n in Fig
u
re 2.
2.3. Modeling of Excita
tion Sy
stem
The IEEE typ
e
-1 excitation system [26]
is described by t
he following equations:
r
E
f
E
E
E
f
V
T
V
T
S
K
V
dt
d
1
)
(
r
F
E
F
S
E
f
F
E
E
E
F
S
V
T
T
K
V
T
V
T
T
S
K
K
V
dt
d
1
)
(
(5)
REF
A
A
A
A
r
A
S
A
A
r
V
T
K
Vg
T
K
V
T
V
T
K
V
dt
d
1
2.4. Modeling of T Ne
t
w
o
r
k
The ac transmissi
on line
in this study
sy
stem is adapted from the IEEE first SSR
ben
chma
rk
system [17]. T
he tran
smissi
on lin
e i
s
rep
r
ese
n
ted
by st
anda
rd l
u
mp
ed p
a
ra
meter T-
circuit. The n
e
twork h
a
s
b
een represen
ted by its
–a
xis equivale
nt circuit, whi
c
h
is identi
c
al with
the po
sitive seque
nce net
work. Th
e g
o
v
erning
equ
ations
of the
-a
xis
,
T
-
ne
tw
or
k
r
e
pr
es
en
tatio
n
is derived as
follows:
1
2
2
2
1
2
1
1
1
V
L
V
L
i
L
R
dt
di
4
1
1
"
1
1
2
1
1
1
V
L
dt
di
L
L
i
L
R
V
L
dt
di
d
(6)
1
2
2
1
1
1
i
C
i
C
i
C
dt
V
d
n
n
n
i
C
dt
dV
se
1
4
Whe
r
e C
n
=
C
T
+
C
FC
,L
1
= L +
L
A,
L
2
= L + L
T2
,L
A
= L
T1
+ L"
n
and R
1
= R +
R
a
Similarly, the
equatio
ns ca
n be
de
rived
for the
- n
e
twork. T
he
-
network e
q
uation
s
a
r
e th
en
trans
formed to D-Q frame
of reference.
2.5. Modeling of Static V
AR
Compen
sator
The terminal
voltage pe
rtu
r
bation
∆
V
an
d the SVC in
cre
m
ental
cu
rrent weighte
d
by the
fac
t
or K
D
re
pre
s
entin
g
current d
r
oo
p
are
f
ed t
o
the refe
re
nce jun
c
tion. T
M
repre
s
ent
s the
measurement
time
con
s
ta
nt, whi
c
h
for
simpli
city is a
s
sumed
to
b
e
eq
ual fo
r
b
o
th voltage
a
n
d
curre
n
t mea
s
urem
ents. Th
e voltage re
gulator i
s
a
s
sume
d to be
a pro
portio
n
a
l- integ
r
al (PI)
controlle
r. Th
yristor
co
ntrol
action
is
rep
r
ese
n
ted by
a
n
average
de
ad time T
D
a
nd a firi
ng d
e
l
a
y
time T
s
.
∆
B is
the variation in TCR
su
sce
p
tance.
∆
V
F
repre
s
e
n
ts the
incre
m
ental
sup
p
leme
ntary
control co
ntro
ller [27].
The
α
-
β
axes current
s ente
r
ing T
CR fro
m
the netwo
rk are exp
r
e
ssed as:
2
2
2
V
i
R
d
t
di
L
s
s
2
2
2
V
i
R
dt
di
L
s
s
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8042 – 80
50
8046
Whe
r
e R
S
, L
S
represent
TCR
re
si
stan
ce a
nd ind
u
ctanc
e
s
respe
c
tively. The other e
quatio
ns
descri
b
ing th
e SVC model
are:
Z
1
=
V
ref
– Z
2
+
V
F
2
)
2
2
2
.
1
(
1
Z
T
i
K
V
T
Z
M
D
M
(8)
F
p
ref
S
P
s
S
P
I
V
Ts
K
V
T
K
Z
T
Z
T
K
Z
T
K
Z
3
2
1
3
3
.
1
∆
B =
(Z
3
-
∆
B)/ T
D
W
h
er
e
∆
V
2
,
∆
i
2
are
in
cre
m
ental ma
gnitu
des of SVC voltage
and
current, resp
e
c
tively, obtai
ned
by lineari
z
ing.
2
2
2
2
2
2
Q
D
V
V
V
,
2
2
2
2
2
2
Q
D
i
i
i
3.
Design o
f
Subs
y
n
chronous Damping
Con
t
roller (S
SDC)
The supple
m
entary controller is im
pl
em
ented th
rough a first
orde
r su
ppl
ementa
r
y
controlle
r tran
sfer fun
c
tion.
3.1. Line Cur
r
ent (LC) Supplementar
y
Contr
o
ller
The line curre
n
t entering to
SVC Bus fro
m
gene
rator
end bu
s is giv
en by:
2
Q
2
2
D
2
2
2
i
i
i
+
=
(9)
Linea
rizi
ng (1
1) gives the d
e
viation in line curre
n
t:
Q
Q
D
D
i
i
i
i
i
i
i
0
0
0
0
(10)
Whe
r
e ‘0’ rep
r
esents o
p
e
r
a
t
ing point or steady state value
s
.
3.2. Activ
e
Po
w
e
r (AP)Su
pplementar
y
Contr
o
ller
The line a
c
tive power ente
r
ing to SVC bus from g
ene
rator e
nd is gi
ven by:
P
2
= V
2D
i
D
+ V
2Q
i
Q
(11
)
W
h
er
e V
2D
a
nd V
2Q
a
r
e
di
rect
an
d q
u
a
d
ratu
re
axis
SVC bu
s voltage
s & i
D
an
d i
Q
a
r
e
direct and
quad
ratu
re a
x
is curre
n
ts.
Linea
rizi
ng a
bove equ
atio
n gives the d
e
viation in active powe
r
∆P
which i
s
sel
e
ct
ed as
sup
p
leme
ntary control
sign
al:
∆
P
2
= V
2D0
∆
i
D
+ i
D0
∆
V
2D
+ V
2Q0
∆
i
Q
+ i
Q0
∆
V
2
Q
(12
)
Whe
r
e '0
' rep
r
esents o
p
e
r
a
t
ing point or steady state value
s
.
4. Resul
t
s
and
Analy
s
is
The stu
d
y po
wer
system
consi
s
ts of 11
10
MVA synchron
ou
s gen
e
r
ator
sup
p
lyin
g power
to an infinite bus ove
r
a 4
00 kV, 600 km long se
rie
s
com
pen
sat
ed sin
g
le ci
rcuit transmi
ssi
on
line. The
study system i
s
as per the
IEEE
first bench m
a
rk m
odel. The
sy
stem data
and
torsio
nal
sp
ri
ng m
a
ss
syst
em d
a
ta a
r
e
given in
ap
pe
ndix. The
SVC
rating
for the lin
e h
a
s b
een
cho
s
e
n
to be
100 MVAR i
ndu
ctive to 300 MVAR ca
pacitive. The
40% se
ries
comp
en
satio
n
is
use
d
at the sendin
g
end of
the transmi
ssion lin
e [28-29].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Mitigation of SSR Oscillati
ons in Se
rie
s
Com
pen
sate
d Line u
s
ing
LCAP… (Na
r
endra Kum
a
r)
8047
4.1. Eigenv
alue
Inv
estigation
The eige
nval
ue investigati
on has b
een
carrie
d usin
g the lineari
z
e
d
system mod
e
ling of
power sy
ste
m
. The
natu
r
al sy
stem
da
mping
ha
s
be
en
c
o
ns
ide
r
ed
to
be
z
e
r
o
in
or
d
e
r
to s
i
mu
la
te
the wea
k
e
s
t system
con
d
i
t
ions. Tabl
e 1 sh
o
w
s the
eigenvalu
e
s without any
suppl
ement
ary
controlle
r incorpo
r
ate
d
in the SVC. Mod
e
0 is
un
stabl
e at P=800 M
W
. Table 2
shows the sy
st
em
eigenvalu
e
s
at P = 20
0,
500
and
80
0
MW with
serie
s
com
p
e
n
sate
d L
C
AP
su
pplem
ent
ary
controlle
ris stable. Th
e
supplem
enta
r
y co
ntro
ll
er
p
a
ram
e
ters are
sele
cted
based on a
n
extensive roo
t
locus.All the
electri
c
al a
n
d
el
ect
r
ome
c
hani
cal mod
e
s
are found t
o
be sta
b
le when
the prop
osed
sup
p
leme
ntary controlle
ri
s applie
d.
Table 1. System Eigenvalu
e
s of T Net
w
ork
without S
upplem
enta
r
y Controll
er
Torsional Mode
P =200 MW
P =500 MW
P =800 MW
Mode # 5
Mode # 4
Mode # 3
Mode # 2
Mode # 1
Mode # 0
Other
Modes
-0.00±j298.1
-0.22236
±j202.8
8
-0.010518
±j160.
52
-0.005104
±j126.
97
-0.026618
±j98.7
57
-0.33922
±j4.033
9
-13.132±j833.
01
-532.8±j3.361
9i
-12.767±j 442
.17
-5.4252±j311.
97
-34.282±j189.
06
-3.2239±j187.
16
-57.127±j86.3
1
7
-25.634±j24.2
5
8
-39.674
-27.443
-2.5406
-0.5906±j0.74
6
8
2
-0.00±j298.1
-0.27157
±j202.8
4
-0.047052
±j160.
53
-0.010512
±j126.
96
-0.030093
±j98.6
65
-0.098976
±j4.28
64
-13.133±j833
-532.82±j4.46
0
6
-12.769±j442.
15
-5.4245±j311.
97
-35.515±j187.
54
-3.2602±j188.
75
-53.469±j85.4
5
9
-25.689±j24.3
5
7
-40.643
-31.073
-2.8919
-0.5662±j0.79
1
9
1
-0.00±j298.1
-0.3371±j202.
78
-0.09618
±j160.5
2
-0.01716
±j126.9
5
-0.02494
±j98.51
7
+
0.079±j4.128
4
-13.133±j833
-532.83±j4.72
2
1
-12.769±j442.
16
-5.4245±j311.
97
-35.498±j187.
12
-3.4007±j189.
12
-52.804±j85.6
6
9
-25.744±j24.3
0
9
-40.979
-31.573
-2.9457
-0.6652±j0.84
6
6
7
Note: Bold values rep
r
e
s
en
t unstable mo
de.
Table 2. System Eigenvalu
e
s of T Net
w
or
k
with LCA
P
Supplemen
tary Controlle
r
Torsional Mode
P =200 MW
P =500 MW
P =800 MW
Mode # 5
Mode # 4
Mode # 3
Mode # 2
Mode # 1
Mode # 0
Other
Modes
-0.00±j298.1
-0.2226±j202.
88
-0.0104±j160.
52
-0.0051±j126.
97
-0.0267±j98.7
5
7
-0.3391±j4.03
3
6
-13.135±j833.
01
-532.8±j3.696
8
-12.763±j442.
18
-5.4251±j311.
97
-34.302±j189.
15
-3.2247±j187.
22
-57.047±j85.8
9
2
-25.629±j24.2
6
-39.728
-27.445
-4.9466
-2.5451
-0.58208
±j0.735
35
-1.3895
-0.00±j298.1
-0.2717±j202.
84
-0.0469±j160.
52
-0.0105±j126.
96
-0.0302±j98.6
6
5
-0.0942±j4.31
0
1
-13.137±j833
-532.82±j4.93
0
1
-12.763±j442.
17
-5.4248±j311.
97
-35.497±j187.
66
-3.2289±j188.
8
-53.426±j84.9
7
9
-25.687±j24.3
6
-40.74
-31.076
-4.981
-2.9035
-0.5545±j0.77
7
3
5
-1.3909
-0.00±j298.1
-0.3368±j202.
78
-0.0956±j160.
52
-0.0175±j126.
95
-0.0259±j98.5
1
4
-0.8365±j3.75
5
2
-13.135±j833
-532.84±j4.38
4
3
-12.773±j442.
16
-5.4199±j311.
97
-35.866±j187.
04
-3.4121±j189.
1
-51.232±j85.5
1
8
-25.767±j24.3
3
1
-42.376
-31.595
-5.0682
-3.0897
-0.26586
±j1.628
3
-0.89987
4.2. Time Domain Simula
tions of SSR Stud
y
Table 3. Sup
p
lementa
r
y controlle
r pa
ra
meters
Table 4. To
rsi
onal sprin
g
-m
ass syste
m
d
a
ta
SVC Supplement
ar
y
Controller
K
B1
T
1
T
2
Line Curr
ent (L
C
)
Active Pow
e
r (A
P)
-0.043
-0.009
0.39
0.01
0.02
0.009
Inertia H
(s
ec
)
Spring constant
K
(pu torq
ue/ra
d.)
H
1
= 0.10335
86
H
2
= 0.17311
06
H
3
= 0.95536
91
H
4
= 0.98379
09
H
5
= 0.96630
06
H
6
= 0.03806
97
K
12
=25.772
K
23
=46.635
K
34
=69.478
K
45
=94.605
K
56
=3.768
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8042 – 80
50
8048
(a)
(b)
(c
)
(d)
(e)
(f)
(g)
(h)
Figure 3. Vari
ation of (a) P
o
we
r Angle (b) SVC
Susceptan
ce (c) T
e
rmin
al Voltage (d
) SVC Bus
Voltage (e
) Angula
r
Velo
city (f) Torqu
e
(HP-
IP) (g)T
orque (LPB
-GE
N
) (h)T
orq
ue
(GEN-EXC)
respon
se
with LCAP su
ppl
ementa
r
y con
t
roller
0
1
2
3
4
5
6
7
8
9
10
-1
.
7
-1
.
6
-1
.
5
-1
.
4
-1
.
3
-1
.
2
-1
.
1
-1
-0
.
9
-0
.
8
Ti
m
e
(
s
e
c
)
P
o
w
e
r A
n
g
l
e
(ra
d
)
0
1
2
3
4
5
6
7
8
9
10
0.
6
5
0.
7
0.
7
5
0.
8
0.
8
5
0.
9
0.
9
5
Ti
m
e
(
s
e
c
)
S
V
S
Su
s
c
ept
an
c
e
(
p
u
)
0
1
2
3
4
5
6
7
8
9
10
0.
9
0.
9
5
1
1.
0
5
1.
1
1.
1
5
1.
2
1.
2
5
Ti
m
e
(
s
e
c
)
T
e
r
m
in
a
l
V
o
l
t
ag
e
(p
u)
0
1
2
3
4
5
6
7
8
9
10
0.
7
0.
8
0.
9
1
1.
1
1.
2
1.
3
1.
4
1.
5
1.
6
Ti
m
e
(
s
e
c
)
SV
S B
u
s
Vo
l
t
a
g
e
(
p
u
)
0
1
2
3
4
5
6
7
8
9
10
-3
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
Ti
m
e
(
s
e
c
)
A
ngu
lar
V
e
loc
i
t
y
0
1
2
3
4
5
6
7
8
9
10
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
Ti
m
e
(
s
e
c
)
T(
H
P
-
I
P
)
(
p
u
)
0
1
2
3
4
5
6
7
8
9
10
0.
2
0.
4
0.
6
0.
8
1
1.
2
1.
4
1.
6
1.
8
Ti
m
e
(
s
ec
)
T(
L
P
B
-
G
E
N
)
(
p
u
)
0
1
2
3
4
5
6
7
8
9
10
-0
.
0
6
-0
.
0
5
-0
.
0
4
-0
.
0
3
-0
.
0
2
-0
.
0
1
0
0.
0
1
0.
0
2
0.
0
3
Ti
m
e
(
s
ec
)
T(
GE
N
-
E
X
C
)
(p
u
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Mitigation of SSR Oscillati
ons in Se
rie
s
Com
pen
sate
d Line u
s
ing
LCAP… (Na
r
endra Kum
a
r)
8049
A digital com
puter
simulati
on stu
d
y, usi
ng a no
nline
a
r sy
stem m
odel, ha
s be
en carried
out to validat
e the effe
ctivene
ss
of the
LCAP s
uppl
e
m
entary
cont
rolle
r un
der l
a
rge
di
sturb
a
n
ce
con
d
ition
s
. Disturb
a
n
c
e i
s
simul
a
ted
b
y
30% s
udd
en in
crea
se i
n
input to
rq
u
e
for
0.1
s. The
simulatio
n
st
udy has b
e
e
n
carrie
d out
at P=
800M
W. The natu
r
al dampin
g
o
f
the mechan
ical
sub
s
ystem
is assum
ed to
be
ze
ro in
orde
r to
sim
u
late
the wo
rst system condition
s
a
n
d
to
demon
strate
the da
mpi
ng effe
ctiveness
of th
e
pro
p
o
s
ed
SVC controll
er al
one
wit
hout
con
s
id
erin
g the al
ready
e
x
isting natu
r
a
l
system
dam
ping [30
-
31].
Figure 3
sho
w
s th
e respo
n
se
curve
s
of the termin
al v
o
ltage, SVC bus vo
ltage
, SVC su
sce
p
tance, po
wer a
ngle,an
g
u
lar
velocity and torqu
e
s
of sha
ft section
s
wit
h
LCAP
supp
lementa
r
y co
ntrolle
r after the distu
r
b
ance.
It can b
e
see
n
that there i
s
tend
en
cy toward
s sta
b
ility when
LCA
P
sup
p
leme
n
t
ary co
ntrolle
r is
used in the SVC cont
rol
system. The
torsio
nal osci
llations are stabilized and the LCAPSVC
sup
p
leme
ntary controller
a
ttains a
signif
i
cant im
prove
m
ent in the t
r
an
sient
perf
o
rma
n
ce of t
he
seri
es
comp
ensated po
wer system.T
h
e
suppl
emen
tary co
ntroll
e
r
pa
ram
e
ters and
torsion
a
l
mass
sp
ring
data a
r
e
give
n in A
ppen
di
x (Tabl
e 3
a
nd T
able
4).
The
co
ntrol
strategy i
s
e
a
sily
implemental as it utilizes the locally
deri
v
ed controllers from the SVC bus.
5. Conclu
sion
A suppl
eme
n
tary subsy
n
ch
ron
o
u
s
d
a
mping
co
ntrolle
r (SSDC) for a
stat
ic VAR
comp
en
sato
r (SVC)
ha
s been
desi
g
n
ed for g
ene
rator excitatio
n
system
ab
le to damp
all
unstable torsi
onal modes. The I
EEE first benchmark
model i
s
used
to show the effectiveness of
the controller.
Eigenvalu
e
i
n
vestigatio
n
and tim
e
d
o
m
a
in
simulatio
n
s
u
s
in
g the
n
online
a
r
syst
em
model
are
ca
rrie
d
o
u
t to in
vestigate th
e
perfo
rm
an
ce
of SVC SSDC. Th
e an
alyzed
re
sult
s
show
that the prop
ose
d
co
ntroll
ers
ca
n effectively st
abilizes the
comm
on mod
e
torsional o
scill
ations.
The propo
sed LCAP supplem
enta
r
y controller
with se
rie
s
comp
en
sated
line use
s
an
unsophi
sticated and
ea
sy to impleme
n
t to c
ope
with the SSR phe
nom
en
on. The sch
e
me
enha
nces the
system perfo
rman
ce con
s
i
dera
b
ly
and torsi
onal o
s
cillations a
r
e da
mped out at all
levels of
se
ries
comp
en
sation an
d ef
fective
co
ntrol of po
we
r flow is obt
ained. Exten
s
ive
simulation results in MAT
L
AB/Simulink show t
hat a
n
SVC install
ed in a transmissi
on sy
stem
with the prim
ary objective
of improving
power tr
ansfer capability
can al
so damp SSR
with the
sup
p
leme
ntary controlle
r.
Ackn
o
w
l
e
dg
ements
The
wo
rk p
r
ese
n
ted i
n
t
h
is
re
se
arch
paper ha
s
been pe
rformed und
er the proj
ect
AICTE R&
D,
“Enha
nci
ng t
he po
we
r
system pe
rfor
m
a
nce
u
s
ing
FACTS d
e
vice
s” in the
Flexibl
e
AC Tra
n
smi
s
sion
Re
sea
r
ch Labo
rato
ry at Delhi Te
ch
nologi
cal Uni
v
ersity, Delhi
(India
)
.
Referen
ces
[1]
NG Hin
gor
ani
, L G
y
ug
yi.
Und
e
rstand
in
g
F
A
CT
S: Co
ncepts
and
T
e
chn
o
lo
gy
of F
l
exib
le A
C
Transmission System
s.
IEEE Press, Ne
w
Y
o
rk. 2000.
[2]
YH Song, AT
Johns, eds.
F
l
ex
ible A
C
T
r
ans
miss
ion Syste
m
s (F
ACT
S
).
IEE Press, U.K., 1999.
[3]
IEEE SSR Workin
g Group.
Cou
n
ter
m
eas
ures to Su
bs
ynchro
nous
R
e
son
anc
e Pro
b
le
ms.
IEEE
T
r
ansactions o
n
Po
w
e
r Ap
par
atus and
S
y
ste
m
s. 1980; PAS-99(5): 18
10-1
816.
[4]
KR Padiy
a
r,
RK Varm
a.
Static Var
System A
u
xiliary
Co
ntrol
l
er for D
a
mpin
g Torsio
na
l
Oscillatio
n
s.
Internati
ona
l Jour
nal of Po
w
e
r a
nd E
ner
g
y
S
y
st
ems. 1990; 1
2
(
4
): 271-2
86.
[5]
KR Padiy
a
r,
RK Varm
a.
Da
mpi
n
g
T
o
rq
ue A
nalys
is
of Static Var
System C
o
n
t
rollers.
IE
EE
T
r
ansactions o
n
Po
w
e
r S
y
ste
m
s. 1991; 6(2):
458-4
65.
[6] KR
Padiy
a
r.
F
a
cts Controll
ers in Pow
e
r
T
r
ansmissio
n
and D
i
stribut
ion.
Ne
w
De
l
h
i: Ne
w
A
g
e
Publ
icatio
n. 20
07.
[7]
PM Anderso
n,
BL Agra
w
a
l, JE Van Ness.
Subsync
h
ron
ous Res
o
n
anc
e in Pow
e
r S
ystems.
IEEE
Press, Ne
w
Yo
rk. 1990.
[8]
IEEE Subs
y
n
chron
ous
Re
sona
nce
Working
Group.
Te
rm
s De
fin
i
ti
on
s an
d
Sym
b
o
l
s fo
r
Subsync
h
ro
no
us Oscill
atio
ns
.
IEEE T
r
ansaction P
o
w
e
r
A
ppar
atus
a
nd
S
y
stems. 1
9
8
5
;
5(6): 13
26-
133
4.
[9]
IEEE Committee Report.
Re
ader
’
s
Guid
e to Subsync
h
ro
nous R
e
so
nan
ce.
IEEE T
r
ansactions
o
n
Po
w
e
r S
y
stem
s. 1992; 7(1): 1
50-1
57.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8042 – 80
50
8050
[10]
IEEE
T
o
rsional Issues WG.
F
ourth sup
p
le
me
nt to a Bib
l
i
ogra
phy for th
e Study of Su
bsynchr
ono
u
s
Reso
nanc
e b
e
tw
een Rotati
ng
Machi
nes a
nd
Pow
e
r Systems
. IEEE
T
r
ansactions
on Pow
e
r S
y
stems.
199
7; 12(3): 12
76-1
282.
[11] KR
Padi
ya
r.
Analysis
of Subs
ynchro
nous
Re
sona
nce i
n
Po
w
e
r System.
Klu
w
er Aca
dem
i
c
Publis
hers
,
Boston. 19
99.
[12]
RM Mathur, RK Varma.
T
h
yristor-Base
d
F
A
CT
S Controll
ers for Electrical T
r
ans
missi
on Syste
m
s
.
IEEE Press and John Wil
e
y
&
Sons, Ne
w
Yo
rk, USA, 2002.
[13]
A Ghorban
i, B Mozaffari, AM Ranj
bar,
App
l
i
c
ation of su
bs
ynchro
nous
da
mp
in
g control
l
e
r (SSDC) to
ST
AT
COM. El
ectrical Pow
e
r
and En
ergy Sy
stems
. 20
12; 4
3
(1): 418-
42
6.
[14] IEEE
Special
Stabilit
y
Contr
o
l Working gr
oup.
Static VAR Compens
ator Mode
ls for Pow
e
r F
l
ow and
Dyna
mics P
e
rformanc
e Si
mul
a
tion.
IEEE
T
r
ansacti
on Po
wer S
y
stem. 19
8
4
; 9(1): 229-2
4
0
.
[15]
Z
a
kiel
dee
n El
h
a
ssan,
Li Y
a
n
g
, T
ang Yi.
A
Novel
SSR M
i
tigati
on M
e
tho
d
Based on GCSC in DFIG
w
i
thSeries Co
nnecte
d
C
o
mp
ensator
. T
E
LK
OMNIKA Indo
nesi
an J
our
nal
of El
ectrical
Engi
neer
in
g.
201
4; 12(7): 50
22-5
036.
[16]
N Kumar, S Kumar.
SSR
Allevi
atio
n usi
ng BVL
C Su
ppl
e
m
entary
Contro
lle
d SV
C of Serie
s
Co
mp
ensate
d
Pow
e
r System
.
T
E
LKOMNIKA Indones
ian
Journ
a
l of
Ele
c
trical Engi
ne
erin
g. 2014
;
12(9): 65
51-
65
59.
[17]
IEEE SSR T
a
sk Force.
F
i
rst b
ench
m
ark
mo
d
e
l for
co
mputer
si
mul
a
tio
n
of s
ubsync
h
ron
ous
reso
na
nce
.
IEEE
T
r
ansactions on PAS, 1
977; PAS-9
6
:1
565-
157
2.
[18] N
Kumar.
Dev
e
lo
p
m
ent of a
new
sche
m
e fo
r dampi
ng torsi
ona
l mod
e
s in
a series co
mpe
n
sated p
o
w
e
r
system
. Journ
a
l of IE(I). 2006; 87: 23-2
8
.
[19]
F
ouad AA, Kh
u
KT
.
Dam
p
ing
of torsional osc
illati
ons i
n
pow
e
r system
s w
i
t
h
series c
o
m
pensated
lines
.
IEEE
T
r
ansaction on PAS. 19
78; PAS 97(3):
744-7
53.
[20] Edris
Ab
del-At
y
.
Seri
es co
mp
ensati
on sch
e
m
es r
e
d
u
cin
g
t
he p
o
tenti
a
l of
sub sync
h
ron
o
us reso
nanc
e.
IEEE
T
r
ansaction on Po
w
e
r S
y
st
ems. 19
90; 5(1): 219-
22
6.
[21]
E
Lerch, D Povh,
L Xu.
Advanc
ed SV
C control for
dam
p
in
g pow
er system
oscillati
on.IEEE
T
r
ansactio
n
s Pow
e
r Systems
.
1991; 6(2): 5
2
4–5
35.
[22]
RSRamsa
w
, K
R
Padi
ya
r.
Genera
l
i
z
e
d
Syst
em Mo
de
l for Slip R
i
ng Mac
h
ines
. IEE Proc., Part C, 1973
;
120(
6): 647-
65
8.
[23]
RK Varma, A Mohar
ana.
SS
R in Dou
b
l
e
-C
age Ind
u
ctio
n Generator-B
as
ed W
i
nd F
a
r
m
Conn
ected to
Se
ri
e
s
-Com
pen
sa
te
d Tra
n
s
mi
ssi
o
n
Li
n
e
. IE
EE T
r
ansactio
n
s o
n
p
o
w
e
r
s
y
stems. 2
0
1
3
;
28(3):
257
3-
258
3.
[24]
SK Gupta, NK
umar, AK Gupt
a.
Dam
p
ing subsynchr
onous
re
sonance in power system
s.
IEE Proc. on
Generati
on, T
r
ansmissi
on a
n
d
Distr
ib
ution.
200
2; 149(
6): 679-6
88.
[25]
N Kum
a
r, MP
Dave.
A
ppl
icati
on
of static V
A
R
system
auxiliary
controll
ers to i
m
prove the transient
perfor
m
a
n
ce of
series co
mpen
sated lo
ng tra
n
s
miss
ion
lin
es
. Electric Po
w
e
r S
y
stems R
e
se
arch. 19
95
;
34: 75-8
3
.
[26] PKund
ur.
Pow
e
r System Stabi
l
i
ty and Co
ntrol
.
McGra
w
Hi
ll In
c. 1994.
[27] N
Kum
a
r.
Dam
p
ing SSR in a s
e
ries
com
p
ens
ated power system
. I
EEE Proc. of
Po
w
e
r Ind
i
a
Confer
ence, N
e
w
Del
h
i. 20
06
.
[28]
N Kumar, MP
Dave.
Applic
ation of auxiliary
c
ontrolled static var system
for dam
p
ing s
ub synchronous
resonance in power system
s
. Electric Po
w
e
r S
y
stem Res
e
a
r
ch. 1996; 3
7
: 189
–2
01.
[29] N
Kumar.
A SVC control
strategy for d
a
mpi
ng torsi
o
nal osc
ill
atio
n
s
due to SS
R in a s
e
ries
compensated power system
.
IE (I) Journal-E
L. 2011; 9
1
: 9-17.
[30]
AE Hamma
d, MEl-Sad
e
k.
Appl
icatio
n of
a T
h
yristor
Contro
lle
d VA
R Co
mp
ens
ator for Da
mpin
g
Subsync
h
ro
no
us Oscill
atio
ns in Power
System
s.
IEE
E
T
r
ansaction
son Po
w
e
r A
ppar
atus a
n
d
S
y
stems. 19
84
; PAS-1-3(1): 198-2
12.
[31] AE
Hammad.
Analys
is of power system
stability enh
anc
ement by static var com
p
ensators
. IEEE
T
r
ansactions Po
w
e
r S
y
stems.
1986; PW
RS-
1
(4): 222
–2
27.
Evaluation Warning : The document was created with Spire.PDF for Python.