TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5918 ~ 5925
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.605
6
5918
Re
cei
v
ed Ap
ril 4, 2014; Re
vised Ma
y 16
, 2014; Accep
t
ed Jun
e
5, 2014
Study on the Influence of Grid Voltage Quality on SVG
and the Suppression
Renjie Hu
*, Guiping Yi,
Wei Jiang, Huichun Hu
an
g
Schoo
l of Elect
r
ical En
gin
eeri
ng, South
east Univers
i
t
y
,
No.2, Sipa
i Lo
u, Xu
an
w
u
Dist
r
ict, 21009
6 Na
njin
g, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: huen
jie
@se
u
.
edu.cn
A
b
st
r
a
ct
Industria
l Stati
c
Var Ge
nerat
or (SVG) is ty
pical
l
y
app
lie
d
at or
ne
ar th
e lo
ad
cent
er
to mitig
a
te
voltag
e fluctu
at
ion, flick
e
r, p
h
a
se
unb
al
ance
,
non-si
ne
dist
ortion
or ot
her loa
d
-rel
a
ted di
sturbanc
e.
Sp
e
c
ial
attention is
pa
id to the influ
ence of gri
d
volt
ag
e qu
ality
on SVG curre
nt, the non-si
ne distorti
on a
n
d
unb
ala
n
ce
of g
r
id vo
ltage
cau
s
es not
only th
e AC cu
rr
ent d
i
stortion a
nd
un
bal
ance
but
als
o
the D
C
vo
lta
g
e
fluctuatio
n. In order to let the
inverter volta
g
e
contai
n the fund
a
m
ent
al ne
gative se
qu
en
ce and
har
mo
n
i
c
compo
nent cor
r
espo
ndi
ng to t
he gri
d
volt
age
, a new
dua
l-lo
op co
ntrol sch
e
m
e
is pro
pos
e
d
to sup
p
ress th
e
influ
ence
in th
i
s
pap
er. T
he
har
mo
nic a
nd
neg
ativ
e s
equ
ence v
o
lta
ge
d
e
co
mp
ositio
n
alg
o
rith
m a
nd
D
C
voltag
e c
ontrol
are
als
o
introd
uced.
A
l
l
these
an
alyses
ca
n
gui
de t
he
pract
i
cal
ap
plic
atio
n
s
. T
he si
mulati
o
n
results verify th
e feasib
ility an
d effectiven
ess
of the present
control
strateg
y
and an
alys
es
.
Ke
y
w
ords
:
SV
G, unbala
n
ce,
har
mo
nic, disto
r
tion, dua
l-lo
op
control
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the fast developm
ent of information
tec
hnol
ogy in recent years,
the req
u
ire
m
ent fo
r
electri
c
ity qua
lity is highe
r a
nd hig
her. In
addition
to
re
quire th
e relia
bility and cont
inuity of powe
r
sup
p
ly sy
ste
m
, stable
vol
t
age a
nd fre
quen
cy a
r
e
a
l
so
expe
cted.
But the lo
ad
s of
distri
buti
o
n
netwo
rk are i
n
crea
sing,
su
ch a
s
re
ctifier, arc fu
rna
c
e and
so on.
The
nonlin
e
a
r, impul
se
a
nd
imbalan
ce
chara
c
te
risti
c
s of the
s
e
l
oad
s
result
in di
stortion
of the
voltage
and
current
waveforms, v
o
ltage flu
c
tua
t
ions a
nd flicker.
Li
ghtnin
g
, sho
r
t ci
rcu
i
t and op
en
circuit in
po
wer
system
ca
n a
l
so
cau
s
e
se
vere di
sruptio
n to el
e
c
tri
c
ity quality. The su
pply cutting off sudde
nly
will bring enormous
economy loss, especially in
significant
industry. Therefore
how to enhance
and en
su
re p
o
we
r quality has b
een a m
a
jor topi
c in the ele
c
trical engin
eeri
ng [1].
Static Var G
enerator
(SVG) is a
n
adv
anced
rea
c
tive power
com
pen
sator
and
it has
attracte
d mo
re and
mo
re
attentions i
n
recent yea
r
s.
It can
be u
s
ed to
control po
we
r fact
or,
regul
ate voltage, stabili
ze
powe
r
flow
and imp
r
ove
dynamic p
e
rforman
c
e
of power syste
m
s.
SVG can al
so provid
e ad
ditional fun
c
tions li
ke h
a
rm
onics comp
e
n
sato
r an
d lo
ad bala
n
cer,
as a
potential tre
n
d
in the pa
st
decade. Th
e majo
r
adv
antage
s of a
SVG includ
e faster
dyn
a
mic
respon
se, th
e ability to
gene
rate the
rated cu
rr
e
n
t at almost any grid voltage, the use of
relatively sma
ll capa
citor o
n
the dc si
de
and a sm
alle
r footprint in a sub
s
tation [2,
3].
In this
pape
r we
co
ncent
rate o
n
SVG
ope
ration
with non
-ide
al
grid
voltage
, whi
c
h
inclu
de unb
al
anced an
d h
a
rmo
n
ic
com
pone
nts. As a con
s
e
que
n
c
e of unb
ala
n
ce
d co
nditio
n
s,
large
ne
gative se
que
nce
curre
n
t may f
l
ow b
e
twe
e
n
the comp
en
sator an
d th
e gri
d
. Ha
rm
onic
curre
n
t may flow b
e
twe
en
the co
mpen
sator a
nd the
grid u
nde
r h
a
rmo
n
ic volta
ges
co
ndition
s.
Unb
a
lan
c
ed
and ha
rmoni
c voltage
s in
the grid ca
u
s
e voltage di
stortion o
n
the dc
side a
nd
con
s
e
c
utively
the gene
rati
on of low
order h
a
rm
oni
cs on the
ac
side.
Unde
r t
he effect of the
control
strate
gy, the ne
gat
ive se
quen
ce
and
ha
rm
oni
c curre
n
ts of
SVG
are co
ntrolled
to ze
ro
and there is n
o
low-order h
a
rmo
n
ics ge
n
e
ration o
n
the
ac sid
e
.
2. Impact of Non-ideal Gr
id Voltage on DC Voltage
The p
r
op
ose
d
co
nfigu
r
ation of the
wh
ole sy
stem i
s
sho
w
n in
Figure 1. Th
ere i
s
n
o
transfo
rme
r
, and the SVG
is dire
ctly co
nne
cted in
pa
rallel with the
three-pha
se
load via a sm
all
indu
ctor for
a
ttenuation of
swit
chin
g fre
quen
cy
cu
rre
n
t ripple
s
. Th
e power
conv
erter of the S
V
G
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on the
Influence of Grid Voltag
e Quality o
n
SVG and the Su
ppre
s
sion
(Renjie Hu)
5919
employs
sev
e
ral serie
s
-conne
cted IG
BTs in each
leg of the three
-
p
h
a
s
e bridg
e
circuit
for
medium volt
age bl
ockin
g
cap
ability. The
DC
cap
a
citors
coul
d
be in
se
rie
s
an
d pa
rall
el
con
n
e
c
tion
s too. The SVG looks li
ke a volt
age sou
r
ce. When the
system volta
ge U incl
ude
s
negative se
q
uen
ce voltag
e and harmo
nic volt
age, negative se
q
uen
ce cu
rren
t and harmo
nic
curre
n
t ca
n flow into th
e
comp
en
sato
r limited only
by the SVG re
acta
nce
X, the value of
harm
oni
c cu
rrent can b
e
ca
lculate
d
by Equation (2) [4
-6].
Figure 1. Structure of SVG
2.1. Impact of Grid Harmonic Voltage
Harmoni
c voltage content can be de
rived
as follows:
H
R
10
0%
n
n
1
U
U=
U
(1)
W
h
er
e
U
n
is
the rm
s val
u
e of n
-
o
r
de
r
harm
oni
c volt
age,
U
1
is th
e rm
s val
ue
of funda
ment
al
positive
seq
u
ence voltage.
Whe
n
the
h
a
rmo
n
ic volta
ge content i
s
HR
U
n
, the h
a
rmo
n
ic
cu
rrent
flowing throu
gh the SVG is expre
s
sed [
1
]:
22
2
2
HR
()
(
)
n1
n
1
n
n
00
UU
U
U
I
X
Rn
ω
LR
ω
L
(2)
A
ssu
med t
h
a
t
φ
1
is the phase a
ngle of
the fundam
e
n
tal positive
seq
uen
ce
cu
rrent. The
harm
oni
c cu
rrent flowing th
r
oug
h the SVG is expresse
d.
0
0
()
(
120
)
(
120
)
an
0
1
bn
n
0
1
cn
0
1
ic
o
s
n
ω
t+
φ
iI
c
o
s
n
ω
t+
φ
+
ic
o
s
n
ω
t+
φ
-
(3)
By consid
eri
ng only the fundam
ental
comp
one
nts,
the switchi
n
g function of
the SVG
conve
r
ter
can
be simplified.
0
0
(
120
)
2
(
120
)
a0
b0
c0
Ss
i
n
ω
t
λ
S=
s
i
n
ω
t-
Ss
i
n
ω
t+
(4)
Whe
r
e
λ
is m
odulatio
n dep
th of the SVG
. From (3
) ~ (4), we
can
co
nclu
ded that:
°
N
°
{
[
(
-
1
)
](1
+
2
[(
-
1
)1
2
0
])
-
[
(
1
)
]
(
1
+
2
[
(
1)
120
]
)
}
da
a
n
b
b
n
c
c
n
01
01
i=
S
i
+
S
i
+
S
i
=
=I
c
o
s
n
ω
t+n
φ
co
s
n
co
s
n
+
ω
t+n
φ
co
s
n
+
(5)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 591
8 –
5925
5920
°
N
°
(
)
{
[
(
-
1
)
](1
+
2
[(
-
1
)
1
2
0
])
/(
1)
-
[
(
1
)
](1
+
2
[(
1)12
0
]
)
/
(
1
)
}
dn
c
0
1
01
u=
i
Z
=
U
c
o
s
n
ω
t+
n
φ
cos
n
n-
c
o
s
n
+
ω
t+
n
φ
cos
n
+
n
+
(6)
Whe
r
e:
N
22
0
3
,
4R
(
n
L
)
nN
N
0
UI
IU
ω
C
From Equ
a
tio
n
(6), we ca
n con
c
lu
de that
:
(1) DC volta
ge flu
c
tuatio
n fre
quen
cy
is o
n
ly
rel
a
tive to the f
r
e
quen
cy of
h
a
rmo
n
ic
voltage.
(2) In case of the pre
s
e
n
ce of 3
k
±1 orde
r ha
rmo
n
ic voltage
s
,
a 3k ord
e
r
harm
oni
c
comp
one
nt appea
rs in the
dc voltage. Fi
gure 2
~
3
sho
w
s the
simula
tion results (k=1,2,3…
)
.
(3) 3
k
o
r
de
r h
a
rmo
n
ic volta
ge ha
s no im
pact on d
c
vo
ltage.
DC voltag
e fluctuatio
n am
plitude is
rel
a
ti
ve to the harm
oni
c voltage and m
o
dulation
depth
λ
. Wh
en the
harm
onic volta
ge
is con
s
tant, the g
r
eate
r
λ
is, the g
r
eate
r
the flu
c
tuati
on
amplitude
of dc voltag
e. Theoretically,
dc volt
ag
e flu
c
tuation
ca
n
be supp
re
sse
d
by red
u
ci
ng
λ
.
But redu
cing
λ
will affect waveform qu
ali
t
y and increa
se the conte
n
t of harmoni
c cu
rrents. A
nd
lower
λ
req
u
ires
a
highe
r
d
c
voltag
e in
t
he
ca
se
of
a
n
certai
n rate
d capa
city. In
order to
red
u
ce
the co
ntent o
f
harmo
nic
current
s
and i
m
prove th
e reliability of SVG, lowe
r d
c
voltage with
a
highe
r
λ
is usually used.
Figure 2. DC
Voltage Whil
e Grid
Contai
ns
Harmoni
c Vol
t
age
Figure 3. DC Voltage Whil
e Grid 30% 5
Orde
r
Contai
ns 5
0
%
7 Orde
r Ha
rmoni
c Voltag
e
2.2. Impact of Grid Ne
g
a
ti
v
e
Sequence
Voltage
Neg
a
tive seq
uen
ce voltag
e conte
n
t can
be quantified
using the foll
owin
g definition [3-6]:
1
100%
U
K
U
(7)
Whe
r
e
U
-
is
the rms valu
e of the negative seque
n
c
e voltage. Whe
n
the ne
gative sequ
e
n
ce
voltage co
nte
n
t is
K
-
, the negative se
qu
ence cu
rrent flowin
g throu
g
h
the SVG is:
22
()
1
0
UK
U
I
X
R
ω
L
(8)
A
ssu
med t
h
a
t
φ
2
is the phase an
gle of the fundam
en
tal negative seque
n
ce cu
rrent, the
negative seq
uen
ce current
is:
2
0
2
0
2
()
(1
2
0
)
(1
2
0
)
a0
b0
c0
is
i
n
ω
t+
φ
iI
s
i
n
ω
t+
φ
+
is
i
n
ω
t+
φ
-
(9)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on the
Influence of Grid Voltag
e Quality o
n
SVG and the Su
ppre
s
sion
(Renjie Hu)
5921
By consi
d
e
r
in
g only the fu
ndame
n
tal freque
ncy
com
p
one
n
ts, the
swit
chin
g fun
c
tion of
the SVG con
v
erter can be
simplified a
s
Equat
ion (4). From (4) a
nd
(9), we obtain
:
2
(2
)
da
a
b
b
c
c
0
i=
S
i
+
S
i
+
S
i
=
I
c
o
s
ω
t+
φ
(10)
2
()
(
2
)
/
2
dd
c
0
u=
i
Z
=
U
c
o
s
ω
t+
φ
(11)
Whe
r
e:
22
0
3
,
4R
(
L
)
0
UI
IU
ω
C
From Eq
uation (1
1), we can
see th
at negative se
quen
c
e volta
ges
cau
s
e
s
a se
con
d
harm
oni
c co
mpone
nt in
the dc volta
ge. Fluctu
ation amplitu
d
e
is rel
a
tive to the ne
gati
ve
seq
uen
ce vol
t
age and the
modulatio
n d
epth
λ
.
Figu
re
4 sho
w
s t
he
simulat
i
o
n
re
sult
s.
Figure 4. DC
Voltage Whil
e Grid
Contai
ns 10% Nega
tive Sequence Voltage
3. Influence
of Non
-
ideal
Grid Voltage
on The AC
Curre
nt
3.1. Influenc
e of Grid Ne
gativ
e
Sequence Volta
g
e
The SVG
a
c
cu
rre
nt in
clud
es ne
gat
ive
se
que
nce current
when th
e g
r
id
incl
ude
s
negative se
q
uen
ce voltag
e. The ampl
itude of
the negative cu
rre
nt c
an be
calculated
by
Equation (8).
We a
s
sume
that dc voltage is co
nsta
nt while anal
yzing the effect of the negative
seq
uen
ce
vol
t
age o
n
the
ac
cu
rrent. F
r
om
Figu
re
5
,
we
obtain
that the
ac current a
p
pe
a
r
s
obviou
s
u
n
b
a
lan
c
e
whe
n
the g
r
id volt
age
s in
clud
e
1% ne
gative sequ
en
ce
voltage. Figu
re 6
sho
w
s that the simulatio
n
value of neg
ative sequ
en
c
e
c
u
rrent is
c
l
os
e to the theoretic
a
l value.
Figure 5. Output Curre
n
t while Grid
Cont
ains
1% Negative
Sequen
ce Vo
ltage
Figure 6. Rel
a
tionship bet
wee
n
the
Amplitude of Neg
a
tive Sequen
c
e Curren
t and
Neg
a
tive Sequen
ce Voltag
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 591
8 –
5925
5922
3.2. Influenc
e of Grid Ha
r
m
onic Voltage
Takin
g
5 o
r
de
r ha
rmoni
c a
s
an exampl
e. The a
c
curre
n
t appe
ars co
rre
sp
ondi
ng n
u
mbe
r
harm
oni
c cu
rrent wh
en grid
voltage
in
clud
es
ha
rm
onic voltage.
Equatio
n (1
2)
ca
n
cal
c
ul
ate
curre
n
t amplitude [2].
5
5
22
HR
(5
)
1
0
UU
I
R
ω
L
(12)
Assu
me that
dc voltag
e is con
s
tant. From Fi
gu
re 7,
we o
b
tain th
at the output
curre
n
t
appe
ars o
b
vious ha
rmo
n
ic cu
rrent
whe
n
the g
r
id
volta
ge in
clu
d
e
5
%
5 o
r
de
r
harmonic voltag
es.
Figure 8 sh
o
w
s the
simula
tion value of harm
oni
c
cu
rrent clo
s
ed to
the theoreti
c
a
l
value.
Figure 7. Output Curre
n
t While G
r
id Contain
s
5% 5 Orde
r Harmo
n
ic Volta
g
e
Figure 8. Rel
a
tionship bet
wee
n
5 Ord
e
r
Harmoni
c
Cu
rre
nt and 5 O
r
de
r Ha
rmo
n
i
c
Voltage
4. Influence
of the
DC Vo
ltage Fluc
tu
ation on th
e AC
Curre
nt
of SVG
A dc voltage with fluctuatio
ns can be ex
pre
s
sed a
s
:
00
[1
(
)
]
dc
d
c
UU
k
s
i
n
n
t
(13)
Whe
r
e
U
dc
0
is the average
voltage,
k
is fluctuatio
n co
efficient and
n
ω
0
is fluctua
t
ion freque
ncy.
The output vo
ltage of SVG can b
e
expre
s
sed a
s
:
°
()
1
(1
2
0
)
2
(
120
)
Ga
0
°
Gb
d
c
0
Gc
0
Us
i
n
ω
t+
φ
U=
U
s
i
n
ω
t-
+
φ
Us
i
n
ω
t+
+
φ
(14)
Subs
titute (13) into (14), we c
an obtain:
00
0
00
0
s
i
n(
)
/
2
c
os
[
(
1
)
]/
4
c
o
s
[
(
1
)
]/
4
Ga
d
c
d
c
dc
UU
t
k
U
n
tk
U
n
t
(15)
0
00
0
00
00
0
s
i
n(
120
)
/
2
c
os
[
(
1
)
120
]
/
2
c
os
[
(
1
)
1
2
0
]
/
2
G
b
dc
dc
dc
UU
t
k
U
n
tk
U
n
t
(16)
0
00
0
00
00
0
si
n
(
1
2
0
)
/
2
c
o
s
[
(
1
)
120
]
/
2
c
os
[
(
1
)
12
0
]
/
4
Gc
d
c
d
c
dc
UU
t
k
U
n
tk
U
n
t
(17)
From Eq
uatio
n (1
5)~(17)
we ca
n
see th
a
t
n±1
or
de
r
ha
r
m
on
ic
c
u
r
r
en
t a
p
p
e
a
r
s
in th
e
ac
curre
n
t whe
n
dc voltage h
a
s
n ord
e
r h
a
rmonic flu
c
tua
t
ions.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on the
Influence of Grid Voltag
e Quality o
n
SVG and the Su
ppre
s
sion
(Renjie Hu)
5923
5. Control S
t
rateg
y
To re
strain th
e harmo
nic a
nd negative seque
nc
e cu
rrents whi
c
h a
r
e the con
s
eq
uen
ce of
harm
oni
c a
n
d
unb
alan
ce
d
grid
voltage,
a control
st
ra
tegy is
propo
sed
in thi
s
pa
per. T
he
co
ntrol
block di
ag
ra
m is
sho
w
n
in
Figure 9, it
contain
s
two
major
se
ction
s
, one
is the
positive
seq
u
ence
control loo
p
, the othe
r is
ne
gative se
que
nce
co
ntro
l lo
op. The in
put
s of du
al-lo
o
p
cont
rol a
r
e t
he
curre
n
t gen
erated by SVG
and th
e g
r
id
voltage. The
cu
rre
nt is
di
vided into
po
sitive se
que
n
c
e
comp
one
nt a
nd ne
gative seque
nce com
pone
nt, whi
c
h is
fed
into p
o
sitive sequ
e
n
ce
co
ntrol l
o
op
and ne
gative
sequ
en
ce control loo
p
. The sum
of output sign
al of positive and ne
gat
ive
seq
uen
ce
co
ntrol loo
p
ca
n be u
s
ed
a
s
voltage of
impeda
nce. The differen
c
e between g
r
id
voltage and
sum can b
e
used as mo
dula
t
ion sign
al [7-10].
(a) T
he Co
ntrol Block
Diag
ram
(b) A Simplified Co
ntrol Bl
oc
k Dia
g
ra
m
Figure 9. The
Block
Diag
ra
m of Dual-l
oo
p Control
The po
sitive seq
uen
ce
co
ntrol loop
co
nsi
s
ts of two
loops, PI0 a
nd PI1; the negative
seq
uen
ce
co
ntrol loo
p
also con
s
i
s
ts of
two
loop
s, PI2 and PI3. PI0 and PI2 are to
con
t
rol
rea
c
tive cu
rre
nt. Their inpu
ts are the diff
eren
ce b
e
twe
en the refe
re
nce rea
c
tive curre
n
t and the
rea
c
tive cu
rre
nt generated
by SVG. Their output
s
ca
n be used a
s
the rea
c
tor volt
age ge
nerate
d
by rea
c
tive current. PI1 and PI3 are to
control activ
e
cu
rre
nt. Th
eir outp
u
ts
ca
n be u
s
ed a
s
the
rea
c
tor voltag
e ge
nerated
by active
cu
rrent. The
i
npu
t of PI1 is th
e same
to d
c
voltage
co
ntrol
loop. The
inp
u
t of PI3 is the differe
nce
betwe
en the
referen
c
e a
c
tive cu
rrent
and the
activ
e
curre
n
t gen
erated by SVG.
The o
u
tputs
of positiv
e se
quen
ce co
ntrol
loop
are
th
e
funda
ment
al
positive
se
qu
ence voltag
e
of re
ac
ta
nce; the
output
s
of neg
ative
seque
nce
cont
rol l
oop
are t
he
fundame
n
tal negative seq
uen
ce voltag
e of rea
c
tance [12].
6. Simulatio
n
Resul
t
s
In ord
e
r to v
e
rify the valid
ity of the an
a
l
yses, th
e
si
mulation
re
su
lts ba
se
d o
n
the SVG
are
sh
own in
Figures
as fol
l
ows. The full
y digi
tal and
dual-l
oop
co
n
t
rol st
rategy i
s
u
s
ed.
Wh
ere
U
dc
=8
00V,
C
=75
0uF,
a
311c
o
t
u
, the co
nne
cted
reacto
r value
of the co
mpe
n
sato
r i
s
4.5
m
H,
the c
a
pac
i
ty of SVG is
20kvar.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 591
8 –
5925
5924
(a) Before Compens
a
tion
(b) After Co
mpen
sation
Figure 10. SVG Re
spo
n
se to 10% Unb
a
l
anced Gri
d
-V
oltage
Whe
n
the S
V
G re
sp
ond
s to 10% u
n
b
a
lan
c
ed
gri
d
voltage befo
r
e compe
n
sation, the
simulatio
n
re
sult
i
s
sho
w
n
in Figu
re
10(a
)
.
Due
to the
ado
ption of
co
ntro
l strategy, the
fundame
n
tal
negative seque
nce cu
rr
ent of indi
vidual pha
se
is lower t
han 0.5% a
fter
compensation, the simul
a
tion resu
lt is shown in Fi
gure
10(b).
The dc voltage is
still steady
arou
nd the
set value an
d
a 2 o
r
de
r
harm
oni
c co
mpone
n
t app
ears un
de
r the conditio
n
of
unbal
an
ced v
o
ltage.
(a) Before Compens
a
tion
(b) After Co
mpen
sation
Figure 11. SVG Re
spo
n
se to 10% 5 Ord
e
r Ha
rmo
n
ic
Grid
-Voltage
Whe
n
the SVG re
spo
n
d
s
to 10% 5 ord
e
r
ha
rmoni
c grid
voltage before com
p
ensation,
the sim
u
latio
n
re
sult i
s
sh
own i
n
Fig
u
re
11(a).
Du
e
to the a
p
pli
c
at
ion of
cont
rol
strate
gy, the
5
orde
r harmon
i
c curre
n
t
are
lower
th
an 1
%
after com
p
ensation,
the
simulatio
n
re
sult
i
s
sho
w
n
in
Figure 11(b).
The dc voltag
e is still
stea
d
y
around the
given value 8
00V.
(a) Before Compens
a
tion
(b) After Co
mpen
sation
Figure 12. SVG Re
spo
n
se to 10% Unb
a
l
anced Gri
d
-V
oltage an
d 10
% 5 Orde
r Ha
rmoni
c G
r
id-
Voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on the
Influence of Grid Voltag
e Quality o
n
SVG and the Su
ppre
s
sion
(Renjie Hu)
5925
Whe
n
the
SVG re
sp
ond
s t
o
10%
unb
al
anced
and
1
0
% 5 o
r
de
r
h
a
rmo
n
ic gri
d
voltage
before
com
p
ensation, the
simulation
re
sult is
sho
w
n
in Figure 1
2
(
a). Be
cau
s
e
of the dual-lo
o
p
control st
rate
gy, the funda
mental ne
gati
v
e seq
uen
ce
and 5
ord
e
r h
a
rmo
n
ic
cu
rrent of individ
ual
pha
se is lo
wer than 1% after com
pen
sa
tion, the si
mu
lation re
sult is sh
own in Figure 1
2
(b
). T
he
dc voltage re
mains
stable
at the refere
n
c
e value 8
0
0
V
.
7. Conclusi
on
In this pape
r,
detailed an
a
l
yses a
nd de
sign
con
s
id
erations a
r
e
ca
rrie
d
out to look into
the influen
ce
of system vol
t
age qu
ality on SVG
. The
harm
oni
c an
d
negative
co
mpone
nts of
grid
voltage
will
cause the
fluct
uation
of SVG d
c
voltag
e
and
also resu
lt in ha
rmful
compon
ents of
ac
curre
n
t. A co
ntrol
strate
gy is p
r
op
osed t
o
supp
re
ss th
e influen
ce
of
non
-ide
al g
r
i
d
voltage
on t
h
e
ac
cu
rrent. All these an
alyse
s
can
guid
e
the p
r
a
c
tical appli
c
atio
n
s
; a
relia
ble
comp
en
sato
r will
be de
signe
d. The simulati
on re
sults ve
rify t
he validity and feasib
ility of above
analyse
s
an
d
con
c
lu
sio
n
s.
Referen
ces
[1]
RD He
nd
erso
n, PJ Rose.
Harmon
i
cs: T
he effects o
n
po
w
e
r q
ual
ity a
nd tra
n
sfo
rmers.
IEEE
T
r
ansactio
n
s o
n
Industria
l Ap
plicati
ons
. 1
9
9
4
; 30(3): 52
8-5
32.
[2]
Kale. M, Ozdemir. E. Harmonic an
d reactiv
e
po
w
e
r comp
ensati
on
w
i
t
h
shunt activ
e
po
w
e
r filter un
de
r
non-
ide
a
l mai
n
s voltage.
Elect
r
ic Power System
s Research.
2005; 7
4
(3): 3
63-3
70.
[3]
Moha
ddes M, Gole AM, Elez S. St
ead
y
stat
e freque
nc
y
r
e
spons
e of ST
AT
COM.
IEEE Transactions
o
n
Po
we
r D
e
li
ve
ry
. 2001; 1
6
(1
): 18-23.
[4
]
L
i
X
i
ao
lu
, D
u
a
n
X
i
a
n
z
ho
ng
, H
e
Ya
ng
zan.
Dynam
i
c
model of ASV
G
in unbalanced system
s
.
Procee
din
g
s of
the CSEE. 1999; 19(9): 7
6
-8
0.
[5]
Caval
i
er
e CAC
,
W
a
tanab
e E
H
, Aredes M.
Multi-pu
lse stat
com
op
erati
on
und
er u
nba
la
n
c
ed vo
ltag
es
.
Procee
din
g
s of
the IEEE Po
w
e
r Engi
ne
erin
g Societ
y
Winter
Meetin
g, Ne
w
York, USA. 2002: 567-
57
2.
[6]
Sensarm
a
PS, Padiy
a
r KR, Ramanaray
a
nan V. A
nal
y
s
is an
d performa
nce
eval
uatio
n of a
distributi
o
n
ST
AT
C
O
M for
compe
n
satio
n
voltag
e fluctu
ations.
IEEE Transactions on P
o
wer Delivery
. 200
1;
16(
2):
259-
264.
[7]
Ron
g
F
e
i, Luo
An, F
an Qing. A novel vo
ltag
e control meth
od ap
pli
ed i
n
ST
AT
C
O
M unde
r unba
lanc
e
d
sy
s
t
e
m
.
T
r
ans
actions of Ch
in
a Electrotech
n
i
c
al Soci
ety
. 2010; 25(3): 1
38-
143.
[8]
T
ang Jie, L
u
o
An, Z
h
ou
Ke. Desi
gn
a
nd re
al
iz
atio
n
volta
ge c
ont
rol for static
s
y
nchro
n
o
u
s
compensator.
T
r
ansactio
n
s o
f
China El
ectro
t
echnic
a
l Soci
e
t
y.
2006; 21(8):
103-1
07.
[9]
Hoch
graf C,
Lasseter
RH.
Statcom co
ntro
ls
for op
eratio
n
w
i
t
h
unb
ala
n
ce
d
v
o
ltag
es.
IE
EE
Tra
n
s
a
c
ti
on
s on
Po
we
r D
e
l
i
v
ery
. 1998, 13(
2): 538-5
44.
[10]
Li Ku
an
g, Li
u
Jinj
un, W
a
n
g
Z
haoa
n, et a
l
.
Static Var g
ener
ator co
ntro
l strategy
for
unb
al
ance
d
system
s in
m
e
dium
v
o
ltage applic
ations.
Pow
e
r Electronic
s
Specialists
Conference, 2004. PESC 04.
2004 IEEE 35th Annual
, Aachen, Germany
. 2004: 4257-4262.
[11]
Che
n
W
L
, Hsu
YY. Direct output
volta
ge co
ntrol of a stati
c
s
y
nc
hron
ous
compens
ator
usin
g curre
nt
sensor
less
d-q
vector-bas
ed
po
w
e
r b
a
la
ncin
g schem
e.
IEEE Transactions
on P
o
wer Delivery.
2
0
03;
2(7- 12): 54
5-5
49.
[12]
Blazic B, Papic I.
ST
AT
COM Control for O
perati
on w
i
th Un
b
a
la
nce
d
Voltag
es[C]. Pow
e
r Electronic
s
and
Motio
n
Co
ntrol C
onfer
en
ce.
EPE-PEM
C 2
006.1
2
th In
ternatio
nal,
Po
rtoroz, Slov
eni
a. 20
06:
145
4
-
145
9.
Evaluation Warning : The document was created with Spire.PDF for Python.