Indonesi
an
Journa
l
of
El
ect
ri
cal Engineer
ing
an
d
Comp
ut
er
Scie
nce
Vo
l.
9
, No
.
1
,
J
anu
a
ry
201
8
,
pp. 1
77
~
1
82
IS
S
N:
25
02
-
4752
,
DOI: 10
.11
591/
ijeecs
.
v9.i
1
.
pp
1
77
-
1
82
177
Journ
al h
om
e
page
:
http:
//
ia
es
core.c
om/j
ourn
als/i
ndex.
ph
p/ij
eecs
The App
lication
of
S
-
T
ra
nsform t
o Reduc
e Bord
er Distorti
on
Effect B
ased on
Wind
ow Length
S
.
H
ab
s
ah A
s
man*,
M
. A
.
T
alib M
at
Yu
s
oh
,
A
.
F
arid
Abi
din
Facul
t
y
of
El
e
c
tr
ic
a
l
Eng
ineeri
ng
,
Univer
si
ti Te
kn
ologi
MA
RA
40
450
Shah
Alam,
Sela
ngor,
Mal
a
ysia
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
A
ug
2
6
, 201
7
Re
vised
N
ov
2
, 201
7
Accepte
d
Nov
20
, 201
7
T
he
enha
n
ce
m
e
nt
of
powerful
signal
proc
essin
g
tool
s
has
br
oade
ned
th
e
scope
re
se
arc
h
i
n
power
qu
al
ity
ana
l
y
sis.
The
necess
ity
of
pro
ce
ss
ing
tool
s
t
o
compute
the
signal
s
accurately
without
borde
r
d
istort
ion
eff
ect
p
re
senc
e
ha
s
demande
d
nowada
y
s
.
Henc
e
,
S
-
Tra
nsform
has
b
ee
n
select
ed
in
t
his
pape
r
as
a
ti
m
e
-
fre
qu
ency
an
aly
sis
tools
for
power
d
isturba
nc
e
dete
ct
ion
and
loc
a
li
z
at
ion
as
it
ca
pable
to
ext
ra
ct
fe
a
ture
s
and
high
re
soluti
on
to
dea
l
with
borde
r
distort
ion
eff
ec
t
.
Vari
o
us
window
le
ngth
signal
has
bee
n
a
naly
z
ed
to
over
come
the
bo
rde
r
distortion
ef
fe
ct
in
S
-
Tra
nsf
orm
.
To
asc
er
ta
in
val
idit
y
of
the
proposed
sche
m
e,
it
is
val
ida
t
ed
with
IE
EE
3
bus
te
st
s
y
stem
and
sim
ula
ti
on
re
sult
s
show
tha
t
the
proposed
te
chn
i
que
ca
n
m
ini
m
iz
e
the
borde
r
eff
ect
while
de
te
c
ti
ng
tra
nsi
ent
and
volt
ag
e
sag
during
fa
ult
s
y
stem.
As
a
re
sult,
the
longes
t
window
le
ngt
h
which
is
four
c
y
cle,
ou
tpe
rfor
m
the
least
MS
E
val
ue
whic
h
indi
cate
th
e
be
st
per
form
anc
e
.
W
hil
e,
th
e
short
est
window
le
ngth
re
sult
ing
highe
st MSE
v
alue
which
ind
ic
a
t
e
th
e
wors
t
p
erf
o
rm
anc
e.
Ke
yw
or
d
s
:
Border
D
ist
ort
ion
Power Q
ualit
y (PQ)
S
-
T
ran
s
f
or
m
W
i
ndow
Len
gt
h
Copyright
©
201
8
Instit
ut
e
o
f Ad
vanc
ed
Engi
n
ee
r
ing
and
S
cienc
e
.
Al
l
rights re
serv
ed
.
Corres
pond
in
g
Aut
h
or
:
S
.
Hab
sa
h As
m
an
,
Faculty
of Elec
tric
al
Engineer
ing
,
Un
i
ver
sit
i Te
knol
og
i M
ARA
,
4045
0
S
ha
h A
lam
, S
el
angor,
Ma
la
ysi
a
.
E
m
a
il
:
sai
datulhabsah
93@
gma
il
.co
m
1.
INTROD
U
CTION
Power
qual
it
y
disturba
nces
(
PQD)
can
be
i
niti
at
ed
by
vari
ou
s
cuas
es
,i.
e
.
fa
ult
a
nd
swit
chin
g
wh
ic
h
can
ca
us
e u
nde
sired
e
ff
ect
t
o
el
ect
rical
syst
e
m
.
These
distu
rb
a
nce
le
a
d
to n
on
-
sta
ti
on
a
ry
sign
al
o
ccu
ra
nc
e
an
d
need
powe
rful
processi
ng
t
ool
w
hich
ca
n
be
use
d
for
co
m
pr
e
ssion
,
reconstr
uction
a
nd
featur
e
e
xtrac
ti
on
of
sign
al
a
naly
sis
[1
]
, [
2]
.
Hen
ce
,
a
dv
a
nc
ed
m
at
he
m
atical
al
go
rithm
an
d
arti
fici
al
intel
li
gen
t
te
chn
i
qu
e
are
pro
posed
to
eff
ect
ively
det
ect
and
local
iz
e
power
dist
urb
ance
[3]
.
H
oweve
r,
with
th
e
adv
a
ncem
ent
of
tim
e
-
fr
eq
uen
cy
analy
sis,
so
m
e
dr
a
wb
ac
ks
ha
s
been
occ
urre
d
on
an
al
yz
ed
sign
al
.
T
he
bord
e
r
dis
to
rtio
n
at
the
end
po
i
nts
is
gen
e
rated
afte
r
the
com
pu
ta
tio
n
process.
T
hi
s
te
chn
ic
al
prob
le
m
s
can
ca
us
e
m
easur
ed
data
fail
ur
es
a
nd
peak
s
at
the
sta
rting
and
e
ndin
g
sig
nal
[
4]
.
Bo
rd
e
r
eff
ect
ca
n
be
reduce
d
by
us
i
ng
t
he
e
xtensi
on
m
od
e
m
et
ho
d
i
n
Wav
el
et
T
ran
s
form
as
pr
op
ose
d
by
[
5]
.
Bu
t
it
nev
er
bee
n
disco
ve
red
usi
ng
S
T
an
al
ysi
s
as
it
visu
al
iz
e
the
disturba
nce
in
tim
e
-
fr
eq
uen
cy
con
to
urs
form
.
The
bor
de
r
cannot
be
detec
te
d
from
that
c
on
t
ours
unle
ss
eac
h
fr
e
qu
e
ncy e
xtr
act
ed
f
ro
m
ST ou
t
pu
t.
Gen
e
rall
y,
ST
is
a
co
m
bin
at
i
on
el
em
ent
of
STFT
an
d
W
T
al
go
rithm
.
In
it
ia
ll
y,
Fo
ur
ie
r
Transf
or
m
is
introd
uced
t
o
deco
m
po
se
t
he
sig
nal
int
o
fr
e
qu
e
ncy
dom
ai
n.
Unfort
un
at
el
y,
it
do
es
not
pro
vide
any
inf
or
m
at
ion
re
gardin
g
on
ti
m
e.
E
xten
ded
of
this
sit
uatio
n,
short
-
tim
e
FT
(S
T
FT)
is
intr
oduce
d
to
s
olve
the
pro
blem
by
us
ing
sli
ding
wi
ndow
c
on
ce
pt.
Howe
ver,
STF
T
com
e
ou
t
wi
th
a
lim
it
a
ti
on
wh
ic
h
is
fi
x
wi
ndow
le
ng
th
th
us
ca
usi
ng the
var
ia
ti
on of
wind
ow
cy
cl
e an
d gi
ve
s low ti
m
e reso
luti
on
at
hi
gh freq
ue
ncy.
In
1980s,
I.
Da
ub
ec
hies
propo
sed
w
avelet
tra
ns
f
or
m
(
W
T
)
ba
sed
on
dec
ompo
sit
io
n
sig
nal
accor
ding
to
ti
m
e
-
scal
e
i
ns
te
ad
of
fr
e
quency
an
d
us
i
ng
m
oth
er
wa
velet
with
ada
ptable
scal
i
ng
pro
per
ti
es
known
as
m
ul
ti
res
olu
ti
on
[6]
–
[
8]
.
WT
featu
r
es
giv
e
eff
ect
ive
tim
e
and
f
reque
ncy
inf
or
m
at
ion
f
or
real
powe
r
qu
al
it
y
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
47
52
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
1
,
Jan
ua
ry 2018
:
1
77
–
1
82
178
even
ts
su
c
h
as
transie
nt
a
nd
vo
lt
age
e
ven
ts
[
9]
.
E
xten
ded
from
it
,
S
-
Tra
ns
f
or
m
(S
T
)
is
pro
posed
by
[
10
]
t
o
increase the e
ffec
ti
ven
ess
of
de
te
ct
ion
and lo
cal
iz
at
ion
PQD
ev
ent.
In
sim
p
ly
w
ords,
it
is Con
ti
nu
ou
s
W
avelet
Transf
or
m
with
ph
a
se
c
orrec
ti
on
a
nd
us
es
t
he
window
t
o
local
iz
e
the
s
pe
ct
ru
m
in
tim
e
sim
il
ar
to
ST
FT
[
9],
[11]
.
T
he
m
ain
ad
va
ntage
of
ST
is
it
prov
i
de
s
m
ult
i
reso
lu
ti
on
analy
sis
w
hile
m
ai
ntaining
the
a
bsolute
ph
a
se
for
eac
h fr
e
qu
e
ncy.
Ma
ny
resea
rchers
us
e
d
ST
to
extract
t
he
fe
at
ur
es
t
o
be
use
d
as
an
in
pu
t
in
cl
assif
ie
r
t
echn
i
qu
e
.
In
[12]
,
S.
Sh
a
bu
dd
i
n
et
.
al
pro
po
s
ed
S
-
T
ransf
or
m
to
detect
va
rio
us
po
wer
di
sturb
a
nces
i
n
transm
issi
on
ne
twork
syst
e
m
.
In
[1
3]
,
M.
H.
Jo
pri
et
.
al
us
ed
ST
to
analy
ze
disturba
nces
sign
a
l
of
power
distrib
ution
syst
em
.
The
featur
e
s
are
e
xtracted
in
for
m
of
tim
e
-
fr
equ
e
ncy
re
pr
es
entat
ion
s
in
order
to
cl
assify
the
har
m
on
ic
sign
al
.
Be
sides,
S
T
ha
s
bee
n
us
ed
f
or
i
m
age
detect
io
n.
I
n
[
13
]
, D
.
Mi
nghu
i
et
. a
l
pro
po
se
d
ST
a
nd
H
ough
-
Tra
ns
f
or
m
to
re
pr
ese
nt
bette
r
local
iz
a
ti
on
of
ti
m
e
-
fr
eq
ue
ncy
an
d
yi
el
ded
r
obust
waterm
aking
al
gorithm
against
geo
m
et
ric at
ta
c
ks
. B
ut, n
on
e
of them
f
oc
us
in
g on bo
rd
e
r dis
tortio
n
ef
f
ect
ge
ner
at
e
d
in
ST
analy
sis.
Ther
e
f
or
e,
t
his
pap
e
r
pro
pose
d
an
idea
t
o
id
entify
bor
der
di
stortion
m
agni
tud
e
base
d
on
fr
e
qu
e
ncy
le
vel
extra
ct
ed
from
the
sig
na
l
analy
sis
in
ST.
Win
dow
le
ng
t
h
of
ori
gi
na
l
distu
rb
a
nce
sign
al
has
bee
n
var
i
e
d
to
te
st
their
ef
fi
ci
ency
in
the
analy
sis.
The
longest
wind
ow
le
ng
t
h
is
r
ecorde
d
to
be
the
best
use
d
for
a
n
analy
sis du
e t
o l
ow
est
bord
e
r m
agn
it
ud
e
pres
ented.
To vali
da
te
the r
esult, t
he
sig
nal is sim
ula
te
in
three
p
ha
se
bu
s
syt
em
in
MATLAB/Si
m
ulink.
2.
RESEA
R
CH MET
HO
D
2.1
S
-
Tr
ansf
orm
(S
T)
The
ory
S
-
tra
ns
f
orm
is
extend
e
d
ide
a
fr
om
Con
ti
nuous
W
a
vele
t
Tran
sf
orm
(
C
W
T)
based
on
m
ov
in
g
Gau
s
sia
n
wind
ow
[14]
with
a
ph
as
e
co
rr
ect
i
on.
It
pr
ov
i
de
fr
e
qu
e
ncy
co
nt
our
w
hic
h
can
local
iz
e
the
sig
nal
at
the h
i
gh
e
r n
oise le
vel. T
hus,
it
can be
def
i
ne
d
as
(1)
Wh
e
re t
he
m
oth
er
w
a
velet
is
def
i
ne
as
(2)
T
he
scal
e
pa
ra
m
et
er o
f
d
is
in
ver
se
of
fr
e
que
ncy
f
. howe
ver, m
oth
er
wav
el
et
eq
uati
on in (
1) does
not sat
isfy
with ze
ro m
ea
n
pro
per
ty
. T
hu
s, S
-
T
ra
ns
f
or
m
can
be
de
fin
e as
(3)
T
he S
-
T
ransf
orm
a
lso can be
wr
it
te
n
i
n
F
our
ie
r
Tra
nsfo
rm
f
or
m
(4)
Fr
om
eq
.
(3) a
nd (4), the
d
isc
rete t
i
m
e
-
series o
f
S
-
tra
ns
f
or
m
corres
pond t
o g(
t)
b
y m
aking
an
d
.
(5)
Wh
e
re
k, m
=0,
1
,
……
., N
-
1
and n =
0,1,….
.,N
-
1.
Fo
r
n
=
0
(6)
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Th
e
Ap
plicati
on
of S
-
Tr
ansfor
m
to
Re
du
ce
B
or
de
r
Distorti
on… (
S. H
absah
Asma
n
)
179
2.2
E
xt
r
ac
t
ed Freq
uenc
y L
evel Base
d
on Wi
nd
ow Le
ng
t
h
The
co
nvolu
ti
on
the
or
em
and
eff
ic
ie
ncy
of
the
FFT
hel
p
to
acce
le
rate
the
discrete
S
-
T
ran
s
f
or
m
com
pu
ta
ti
on
pr
ocess.
S
-
tra
ns
f
or
m
resu
lt
ing
the
com
plex
va
lue
m
at
rix
wh
e
re
each
colum
n
corres
pond
to
tim
e
and r
ow c
orres
pond to
freq
ue
ncy
[
9]
. T
he
i
nst
antane
ou
s
m
a
xim
u
m
a
m
pli
tud
e ca
n be
ob
ta
i
ned f
ro
m
(7)
Wh
il
e th
e
ph
as
e an
gle ca
n be
cal
culat
ed usin
g
(8)
Ba
sed
on
this r
esearch
sc
op
e
, th
e
m
ini
m
iz
ed
bor
der
d
ist
ort
ion
wa
s d
isc
ove
red
at
im
aginar
y
par
t o
f
the
hi
gh
e
st
fr
e
qu
e
ncy lev
e
l of S
-
t
ran
s
f
orm
w
hich
is
(9)
Wh
e
re
K
repr
esent
sam
pling
inter
val
of
t
he
sig
nal
at
the
highest
fr
e
qu
ency
le
vel.
Th
e
wind
ow
le
ngth
of
sam
pling
inter
val h
a
s
been se
le
ct
ed
as
on
e
-
c
yc
le
, two
-
cy
cl
e, fo
ur
-
cy
cl
e an
d fu
ll
-
cy
cl
e sig
nal for
the a
nal
ysi
s.
3.
RESU
LT
S
A
ND AN
ALYSIS
3.1
Sim
ulat
i
on
of
T
ra
nsie
nt
an
d
V
olt
ag
e Sag Si
gnal
A
sin
gle li
ne
-
to
-
gro
und fault
is creat
ed
i
n
th
ree phase
bus s
yst
e
m
f
or
sig
na
l analy
sis. For
ex
am
ple,
in
Figure
1,
trans
ie
nt
and
vo
lt
ag
e
sag
fau
lt
f
or
the
durati
on
of
0.
1s
is
create
d
on
phase
A
at
0.
1s.
The
distance
relay
at
300k
m
locat
ed
bet
we
en
bus
1
an
d
bus
2
i
s
c
onside
red
i
n
this
stu
dy
.
Figure
2
sho
ws
the
tra
ns
ie
nt
and
sag
volt
age
m
e
asur
e
d
by
the
distance
relay
betwee
n
bus
1
and
bu
s
2.
O
nc
e
the
fau
lt
oc
curred
i
n
the
s
yst
e
m
,
the sig
nal at t
he
upstream
is fu
rt
her
sim
ulated
at
0.35s sim
ulati
on
ti
m
e sto
p.
Figure
1
.
Th
re
e phase
3 b
us
s
yst
e
m
Figure
2
.
Tra
nsi
ent and
vo
lt
a
ge
sag i
nput si
gnal
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
47
52
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
1
,
Jan
ua
ry 2018
:
1
77
–
1
82
180
3.2
S
-
Tr
an
s
fo
rm
C
ont
ou
r
Sim
ula
tion
In
this
par
t,
S
-
Transf
or
m
an
al
ysi
s is app
li
ed t
o
the sig
nal to
d
et
ect
the transi
ent and volt
age sag
fa
ult.
Fig
ur
e
3
(a)
s
hows
S
-
tra
ns
f
or
m
con
to
ur
of
fu
ll
-
cy
cl
e
sig
nal
to
il
lustrate
the
fa
ult
occ
urred
at
0.1
s.
Wh
il
e
Figure
3
(
b)
s
hows
t
he
S
-
Tra
ns
f
or
m
ou
t
pu
t
extracte
d
from
the
analy
sis
to
determ
ined
bo
rd
e
r
dist
or
ti
on
eff
ect
at
the starti
ng a
nd endin
g si
gn
al
.
(a)
(b)
Figure
3
.
(a
)
S
-
Transf
or
m
co
nt
ours
,
(
b)
B
ord
er
distor
ti
on e
f
fect
3.3
Ef
fect
of
Window L
en
gth
W
i
ndow
le
ngth
va
riat
ion
af
fecti
ng
the
ti
m
e
and
fr
e
qu
ency
reso
l
utio
n
of
the
signa
l.
Fi
gure
5
dem
on
strat
e
the
var
yi
ng
wind
ow
le
ngth
ha
s
been
em
plo
ye
d
for
the
analy
sis.
The
analy
sis
sign
al
detect
ed
at
0.093
67
s
w
hic
h
is
befor
e
t
he
distu
rb
a
nce
occurre
d
for
a
ll
cases.
The
longest
window
le
ngt
h
(full
-
cy
cl
e
sign
al
)
base
d
in
F
ig
ur
e
1
was
analy
zed
first
as
a
ref
ere
nced
as
it
resu
lt
ing
the
lowest
bor
der
m
agn
it
ud
e
base
d
in
F
ig
ure
4
(
b).
Figure
4
.
(a
) O
ne
-
cy
cl
e
window len
gth
,
(b)
T
wo
-
cy
cl
e w
i
ndow len
gt
h, (c
) Fo
ur
-
cy
cl
e w
in
dow
le
ng
t
h
Ba
sed
on
T
a
ble
1
the
highest
wind
ow
le
ngt
h
re
su
lt
in
g
t
he
lowe
st
bo
rd
e
r
m
agn
it
ud
e
at
the
sta
rtin
g
and
en
ding
of
the
s
-
tra
nsfo
r
m
ou
tpu
t
w
hic
h
are
13
7.2
an
d
79
.44.
The
bor
der
ef
fec
t
ca
n
be
cl
early
obser
ve
d
from
F
ig
ure
6
wh
ere
is
one
-
cy
cl
e
window
le
ng
t
h
der
i
ved
the
highe
st
bo
r
der
m
agn
it
ud
e
a
nd
f
our
-
cy
cl
e
window le
ng
t
h de
rive
d
the
lo
west
bord
e
r
m
agn
it
ude
res
pe
ct
ively
.
T
able
1
.
Ma
gn
i
tud
e
of Bo
r
der
Distortio
n
Fs
(kHz)
W
in
d
o
w
len
g
th
(cy
cl
e)
Sa
m
p
lin
g
in
d
ex
Frequ
en
cy
(kHz)
Magn
itu
d
e
Starting
End
in
g
2
5
.6
21
8961
4
.48
1
4
.83
4
.16
4
1708
0
.85
5
4
6
.06
3
9
.96
2
854
0
.42
8
9
1
.20
7
9
.44
1
427
0
.21
5
1
3
7
.20
1
1
7
.20
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Th
e
Ap
plicati
on
of S
-
Tr
ansfor
m
to
Re
du
ce
B
or
de
r
Distorti
on… (
S. H
absah
Asma
n
)
181
3.4
Bor
der
I
ndex A
n
al
ys
is
Fu
rt
her
analy
si
s
exte
nd
e
d
fro
m
pr
evio
us
bord
e
r
m
agn
it
ude
has
bee
n
a
na
ly
zed
by
m
easur
i
ng
m
ean
sq
ua
re
e
rro
r
(
MSE)
for
t
he
bor
der
.
T
hu
s
,
5
po
i
nt
at
sta
rt
ing
a
nd
e
nd
i
ng
sig
nal
le
ngth
resp
ect
ively
e
xt
racted
from
analy
sis
s
ign
al
ha
ve
bee
n
cal
culat
ed
to
def
ine
MS
E
a
s
in
T
able
2.
T
ho
s
e
point
in
de
x
is
ch
os
en
ba
sed
on
the
gr
a
ph
at
the
bord
e
r
sta
rte
d
increas
e
an
d
decr
ease
res
pe
ct
ively
.
The
MSE
for
each
sel
ect
ed
cy
cl
e
has
been
com
par
ed
wi
th
f
ull
-
cy
cl
e
bor
der
i
ndex
(F
ig
ure
6)
to
i
de
ntify
the
op
ti
m
u
m
value
ba
sed
on
t
heir
window
le
ng
th
.
(a)
(b)
Figure
5
.
(
a
)
B
order i
ndex
sel
ect
ed
at
starti
ng
po
i
nt, (b
)
B
orde
r
in
de
x
sel
e
ct
ed
at
e
nd
i
ng
po
i
nt
Ba
r
cha
rt
in
F
ig
ure
7
in
dicat
es
MSE
at
the
sta
rting
bor
de
r
is
the
highes
t
for
on
e
-
cy
cl
e
wind
ow
le
ng
th
.
Wh
il
e
four
-
cy
cl
e
window
le
ng
t
h
in
dicat
es
the
lo
west
MSE
val
ue
wh
ic
h
are
731.
Eq
uiv
al
e
nt
to
th
e
MSE
at
the
en
ding
bor
der
,
in
dicat
e
the
opti
m
u
m
value
for
longest
wind
ow
le
ngth
wh
ic
h
is
490.
Wh
il
e
MSE
at
sta
rting
a
nd
end
i
ng
bo
rd
e
r
for
on
e
-
cy
cl
e
widow
le
ngth
ou
t
perform
the
highest
MS
E
value
w
hich
a
r
e
7690
and 30
73 r
es
pe
ct
ively
. F
urt
he
r
a
naly
sis res
ult can
ref
e
r
in
T
able 2.
Figure
6
.
MSE
of
bord
e
r dist
ort
ion
T
able
2
.
MS
E
Value
f
or
Va
riou
s
W
i
ndow L
eng
t
h
W
in
d
o
w
len
g
th
(cy
cl
e)
Bo
rder
in
d
ex
MSE
Starting
End
in
g
1
5
7690
3073
2
3212
1821
4
731
490
4.
CONCL
US
IO
N
The
at
ta
inm
ent
of
le
ast
bor
der
m
agn
it
ude
has
been
dis
cov
e
re
d
by
e
xt
racti
ng
th
e
hi
gh
e
st
le
vel
fr
e
qu
e
ncy
of
im
aginar
y
ph
a
s
e
ST.
W
i
ndow
le
ngth
of
sign
al
a
naly
sis
giv
es
the
m
ain
factor
af
fect
ing
t
he
bor
der
dist
or
ti
on
m
agn
it
ud
e
.
The
lo
ng
est
wi
ndow
le
ng
t
h
yi
el
de
d
lo
west
bor
der
m
agn
it
ude.
The
pe
rfo
r
m
ance
of
bor
de
r
distor
ti
on
re
du
ct
io
n
ca
n
be
obse
rv
e
d
from
the
MSE
of
va
rio
us
wind
ow
le
ngth
sig
nal.
F
r
om
the
resu
lt
,
fou
r
-
cy
cl
e
window
l
eng
t
h
sig
nal
pr
ese
nted
the
le
ast
MSE
wh
il
e
on
e
-
cy
c
le
window
le
ng
t
h
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
47
52
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
1
,
Jan
ua
ry 2018
:
1
77
–
1
82
182
ou
t
perform
ed
the
worst
MSE
resu
lt
.
The
le
ast
MSE
ind
ic
at
e
the
best
perform
ance
fo
r
bo
rd
e
r
distor
ti
on
reducti
on
rath
er
than
hi
gh
e
r
MSE
value.
This
te
chn
i
que
is
pr
oven
to
detect
diff
e
r
ent
border
dis
torti
on
m
agn
it
ud
e
w
it
h diff
e
re
nt w
i
ndow le
ng
t
h of
sign
al
.
ACKN
OWLE
DGE
MENTS
The
aut
hor
ac
knowle
dges
th
e
finan
ci
al
s
uppo
rt
giv
e
n
by
Mi
nistry
of
Higher
E
ducat
ion
(M
O
HE
)
Ma
la
ysi
a fo
r s
ponsori
ng this
researc
h
i
n
the
form
o
f gr
a
nt
-
in
-
ai
d 600
-
RM
I
/FR
GS
5/3 (
0103
/
2016)
.
REFERE
NCE
S
[1]
R.
Sugi,
‘Est
imati
on
of
Pow
er
Q
ual
ity
Indi
ce
s Us
ing
Discre
te Wavel
e
t
Tr
ansform
’,
IE
EE
,
2016
.
[2]
U.
Singh
and
S
.
N.
Singh,
‘Ti
m
e
–
fr
eque
nc
y
–
sca
le
tra
nsform
for
anal
y
s
is
of
PQ
disturba
nc
es’,
IET
Sci.
M
eas.
Technol
.
,
vo
l. 11
,
no
.
3
,
pp
.
305
–
314,
2017
.
[3]
O.
P.
Mah
el
a
an
d
A.
G.
Shaik,
‘
Rec
ognition
of
p
ower
qualit
y
d
ist
urba
nce
s
using
S
-
tra
nsform
base
d
rul
ed
d
ec
isio
n
tre
e
and
fuz
z
y
C
-
m
ea
ns c
lusterin
g
class
ifi
ers’,
Ap
pl.
So
ft
Comput
.
J.
,
vol
.
59
,
pp
.
2
43
–
257,
2017
.
[4]
T.
Yal
ci
n
and
M.
Ozde
m
ir,
‘N
oise
ca
n
cellatio
n
and
fe
at
ure
g
ene
ra
ti
on
of
vo
l
ta
ge
d
isturba
nc
e
for
ide
nt
ifica
t
io
n
sm
art
grid
f
aul
ts
’,
E
EE
IC
2016
-
Int.
Con
f. E
nv
iron.
E
lectr.
Eng.
,
2
016.
[5]
S.
Habsah
As
m
an
and
A.
Fari
d
Abidin,
‘Com
par
ative
Stud
y
of
Extension
Mode
Method
in
Reduc
ing
Bord
e
r
Distorti
on
Eff
ect
for
T
ra
nsien
t
Volta
ge
Disturb
anc
e’
,
Indon
es.
J.
El
e
ct
r.
Eng
.
Comput.
Sc
i.
,
v
ol.
6
,
no
.
3,
p.
6
28,
2017.
[6]
I.
Daube
chies,
‘
The
W
ave
let
Tr
ansform
,
Ti
m
e
-
Freque
nc
y
Loca
li
z
at
ion
and
Sig
nal
Anal
y
s
is’
,
IEE
E
Tr
ans.
Inf.
Theory
,
vol
.
36
,
no.
5
,
pp
.
961
–
1
001,
1990
.
[7]
S.
Ventosa
,
C.
Sim
on,
M.
Schim
m
el
,
J.
J.
Dañobe
it
i
a,
and
A.
Mà
nuel
,
‘Th
e
S
-
Tra
nsform
Fro
m
a
W
ave
le
t
Point
o
f
View’,
I
EE
E
Tr
ans.
Signal P
roc
ess.
,
vo
l. 56, no.
7,
pp
.
2771
–
278
0,
2008
.
[8]
P.
Dash,
B.
K.
P
ani
gra
h
i,
and
G.
Panda,
‘Pow
er
Quali
t
y
An
aly
s
is
Us
ing
S
-
Tra
nsform
’,
IEE
E
Tr
ans.
Powe
r
De
li
v
.
,
vol.
18
,
no
.
2
,
pp
.
406
–
411
,
2003
.
[9]
D.
Saxena,
S.
N.
Singh, and
K.
S
.
Verm
a,
‘Ana
l
y
s
is
of
Com
posite
Pow
er
Quali
t
y
E
vent
s Us
ing
S
-
T
ra
nsform
’,
IEEE
PE
S
ISGT
AS
IA
,
pp.
1
–
7,
2012.
[10]
R.
G.
Stockwel
l
,
L.
Mansinha
,
a
nd
R.
P.
Lowe
,
‘Loc
a
li
z
at
ion
of
the
complex
spec
trum:
The
S
tra
nsform
’,
IEE
E
Tr
ans.
Signal
Pr
oce
ss
.
,
vol. 44, n
o.
4
,
pp
.
998
–
10
01,
1996
.
[11]
S.
R.
Sata
o
and
R.
S.
Kanka
le,
‘
Cla
ss
ifi
c
at
ion
of
Pow
er
Quali
t
y
Eve
nts
using
Im
prove
d
S
-
Tra
nsform
’,
Int.
J.
S
ci.
Technol
.
Eng
.
,
v
ol.
2
,
no
.
5
,
pp
.
1
–
5,
2015
.
[12]
D.
De
Yong,
S.
Bhowm
ik,
and
F.
Magna
go,
‘An
eff
ec
t
ive
power
qual
ity
c
la
ss
i
fie
r
using
wave
l
et
tra
nsform
and
support
vector
m
ac
hin
es’,
Ex
p
ert Syst.
Appl.
,
vol.
42,
no
.
15
–
16
,
p
p.
6075
–
6081
,
2
015.
[13]
M.
H.
Jopri,
A.
R.
Abdulla
h
,
M.
Mana
p,
M.
F.
Habba
n,
and
T.
Sutikno,
‘An
Acc
ura
t
e
Cla
ss
ifica
ti
on
Method
of
Harm
onic
Signal
s
in
Pow
er
Distribut
ion
S
y
s
t
em
b
y
Util
ising
S
-
Tra
nsform
’,
TEL
KOMNIKA
(
Te
le
communic
a
ti
o
n
Comput.
E
lectron.
Control
.
,
vol
.
15,
no
.
1
,
p
.
62
,
2017.
[14]
N.
Huang
and
L
.
Li
n
,
‘Rev
ie
w
of
Pow
er
-
Quali
t
y
Disturbanc
e
Re
c
ognit
ion
Us
ing
S
-
tra
nsform
’,
IE
EE
,
pp.
438
–
441
,
2009.
Evaluation Warning : The document was created with Spire.PDF for Python.