TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 10, Octobe
r 20
14, pp. 7092
~ 709
8
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.533
8
7092
Re
cei
v
ed
De
cem
ber 1
1
, 2013; Re
vi
sed
Jun
e
19, 201
4; Acce
pted July 15, 20
14
The Method for Measuring Loop Resistance in Gas
Insulated Substation
Li Zhou*, Tiecheng Lu, Bo Zhang, Gu
angkai Yu, Jia
w
e
i
Wa
n
Schoo
l of Elect
r
ical En
gin
eeri
ng, W
uhan U
n
i
v
ersit
y
, CHINA
,
7 T
eaching Bu
i
l
din
g
, 20
2 Roo
m
, School of El
ectrical En
gin
e
e
rin
g
, W
uhan
Univers
i
t
y
, L
u
o
jia Hi
ll,
W
u
chan
g Distri
c
t, W
uhan 430
072, Hu
be
i, Ch
ina
*Corress
po
ndi
ng auth
o
r, e-mail: 20
10
282
07
020
5@
w
h
u.e
d
u
.cn
A
b
st
r
a
ct
T
h
is p
aper
stu
d
ies
the
metho
d
for
measur
in
g the
lo
op
resis
t
ance of
GIS
c
ond
uctor pol
e basi
ng o
n
the su
per ca
pa
citor pro
duci
n
g
impu
lse c
u
rre
nt up to
sever
a
l tho
u
sa
nd
a
m
p
e
res. T
h
is
meth
od
overc
o
me
s
the l
i
m
itatio
ns
of conv
ent
i
ona
l
di
agn
ostic
method. T
y
p
i
cal
GIS con
ductor
p
o
l
es
are c
hos
en
. Based
o
n
F
E
A
and l
ab tests, the effect of
differ
ent for
m
s
of current an
d contact
con
d
itio
n, relatio
n
s
hip b
e
tw
een
the
temp
eratur
e of contact and th
e loo
p
resistan
ce is res
earc
h
ed. In full-scal
e
testing und
er realistic
oper
ati
n
g
cond
itions
o
n
t
he
new
2
20kV
GIS usin
g
prot
otype
instru
me
ntation
a
very
goo
d se
nsitiv
ity in
an
e
a
rly st
a
g
e
w
a
s obtain
ed.
Ke
y
w
ords
: co
ntact resistanc
e, contacts, impact current, g
a
s insu
late
d su
bstation
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In the opera
t
ion of powe
r
system, ga
s in
sulated
sub
s
tation (GIS) con
d
u
c
tor pole
inse
rtion d
ept
h is not e
nou
gh und
er the
pro
c
e
ssi
on
of installation
, thus the surface of conta
c
t
prod
uces oxi
de film an
d b
u
rr. It cau
s
e
s
the loop
re
si
stance
of GIS
con
d
u
c
tor
pol
e incre
a
ses
a
n
d
lead
s to the tempe
r
ature o
f
contact increases. In
add
ition, the temperatu
r
e of contact in
cre
a
s
e
s
cau
s
e
s
the l
o
op re
si
stan
ce
of GIS con
d
u
ctor pole
f
u
r
t
her in
cr
ea
se
s.
Wh
en
ca
s
e
get
s
se
riou
s,
it
will influen
ce
the ope
rated
safety of power sy
stem
. So accu
rately measuri
ng th
e loop resi
sta
n
ce
of GIS is necessary.
Although the
conventio
nal
diagno
stic
method,
su
ch
as the meth
od of dc voltage drop
has
sta
b
le current
a
nd can
g
r
eatly simplifie
s th
e
re
sista
n
ce
measurement
s. It rate
d f
o
r
kiloam
pe
re
s tend to beco
m
e very bulky and expen
sive, so dc e
x
citation is n
o
t found to be
a
viable option
[1-6].
The studying
method
for m
easurin
g
the
l
oop re
sista
n
ce of GIS
co
n
ducto
r
pole i
s
ba
sed
on the
sup
e
r cap
a
cito
r p
r
odu
ce
kiloam
pere
s
im
pul
se
cu
rrent. Similar to fou
r
-point re
si
stan
ce
measurement
s, the metho
d
relie
s on te
sting p
a
ss
ing
electri
c
currents throug
h
the se
ction a
n
d
recording the
asso
ciated vo
ltage dro
p
s. T
he feasi
b
ility of method an
d the accuracy of results a
r
e
verified by experim
ent.
Based o
n
the analysi
s
of
typical GIS con
d
u
c
tor pol
e, a thermal
model of co
n
t
actor i
s
prop
osed i
n
t
h
is
pap
er. T
h
e tempe
r
atu
r
e di
stribut
io
n of
the
GIS co
ndu
ctor pole
wa
s
a
c
hi
eved
by
FEM sim
u
lati
on a
nd the
re
sults were
p
r
oved by
expe
riment
s
.
The
effec
t
of the different forms o
f
curre
n
t and d
i
fferent conta
c
t con
d
ition o
f
contac
t on the temperatu
r
e of conta
c
t are rese
arch
ed.
Furthe
rmo
r
e,
the relatio
n
s
hip
betwee
n
the te
mpe
r
ature of co
ntact surfa
c
e
and the l
o
op
resi
stan
ce of
GIS cond
ucto
r pole a
r
e an
alyzed.
2. Resistanc
e
Measur
e
m
e
nt
The p
r
op
ose
d
metho
d
for
measuri
ng th
e loop
re
si
sta
n
ce
of GIS co
ndu
ctor
pole i
s
ba
se
d
on the impu
lse current. The supe
r capa
citor,
sta
ndard re
si
sta
n
ce a
nd tests com
pone
n
t
s
constitute second-order ci
rcui
t
of non
oscillation
and produce
kA-level
impul
s
e current.
T
he
pea
k current
and the
corre
s
po
ndin
g
voltage d
r
o
p
of t
he GIS
con
d
uctor pol
e a
r
e used to
get
the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The Metho
d
for Mea
s
u
r
ing
Loop
Re
sista
n
ce in G
a
s In
sulate
d Subst
a
tion (Li Zh
ou
)
7093
loop resi
stan
ce, in o
r
d
e
r to
eliminate the
impact
of
the
indu
ctan
ce o
n
the me
asurement result [7-
9].
Figure 1. The
Main Disch
a
rge Circuit Eq
uivalent Circu
i
t
The
relatio
n
s
hip
bet
wee
n
voltage
d
r
op a
nd
cu
rrent a
c
ross t
he GIS
se
ct
ion a
r
e
determi
ned b
y
the Equation (1).
()
()
(
,
)
(
)
di
t
ut
R
i
t
i
t
L
dt
.
(1)
Whe
r
e
R an
d L are th
e resi
stan
ce
a
nd indu
ctan
ce, respe
c
tively, of the part of the circuit
betwe
en the
voltage pro
b
e
s
, see Fi
gure 1.
Figure 2. Voltage Drop M
e
asu
r
ed a
c
ro
ss a GIS
Section (solid line
)
when a
Current Pulse
(broken line
)
is Passed T
h
rough
As can be
se
en from
Figu
re 2, the de
rivative
of the current is l
a
rg
e and
po
sitive in the
first milli
se
co
nds, th
e in
du
ctive pa
rt of v
o
ltage
dro
p
i
s
sig
n
ifica
n
tly greate
r
th
an t
he resi
stive p
a
rt.
Whe
n
the
cu
rre
nt ha
s it
s
maximum val
ue,
/
di
dt
equal
s zero and
the voltage
d
r
op
is
p
u
rely
resi
st
iv
e.
()
(
1
)
(
)
()
()
()
u
n
in
in
Rn
L
in
in
t
.
(2)
Whe
r
e
C
rep
r
es
e
n
t
s
th
e s
u
pe
r
c
a
pac
ito
r
,
R
is t
he total ci
rcuit resi
stan
ce incl
uding
sup
e
r
cap
a
cito
r re
si
stan
ce, wire resi
stan
ce, sh
unt
re
si
stan
ce an
d th
e m
e
asu
r
ed
GIS
condu
ctive p
o
le
loop re
si
stan
ce, and
L
i
s
indu
ctan
ce of GIS cond
ucto
r pole.
Having determined
L
, th
e
indu
ctive pa
rt of the volt
age d
r
op
is
cal
c
ulate
d
an
d then
subtracte
d
from
()
un
for all
n
.By dividing this re
sult
with
()
in
, a t
i
me se
rie
s
()
R
n
being the
resi
stan
ce of
the GIS secti
on, is found.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 709
2
– 7098
7094
()
Rn
is, h
o
wever,
not
con
s
tant
, due to
vari
a
t
ions i
n
the
current p
enetration d
epth. I
n
orde
r to avoi
d this
sou
r
ce
of error, the
resi
stan
ce val
u
e from
a me
asu
r
em
ent is
alway
s
taken
as
the value found at the sa
me point
of the cu
rre
nt pulse, nam
ely, as the curre
n
t pulse is at
its
pea
k value.
Thus, a
se
cti
on of a GIS is examined by
passi
ng
cu
rrent pulses
of different mag
n
itude
s,
cal
c
ulatin
g th
e re
si
stance
whe
n
the
current pul
se
is at its p
e
a
k
value
ea
ch
time. And, as
descri
bed
ea
rlier, if the
resi
stan
ce va
rie
s
, this i
ndi
cate
s that o
ne
or
more
of the
contact
s
ha
s t
oo
high of a re
si
stan
ce.
3. Modeling and Simulation
3.1. Ph
y
s
ics
of He
at Sour
ces
In the FEM thermal
-
ele
c
tri
c
al coupl
ed sim
u
latio
n
analysi
s
,
make th
e followin
g
assumptions
to facilitate the cal
c
ulation [10].
In order to fi
nd the
el
ectrical
re
si
stan
ce at th
e m
a
i
n
conta
c
ts, t
he
radi
us
e
a
of th
e
elasti
cally def
orme
d co
ntact area is exp
r
essed by:
22
1
12
3
12
1
2
11
31
1
()
(
)
4
ek
aF
EE
r
r
.
(3)
Whe
r
e
k
F
is
the c
o
n
t
ac
t fo
rc
e,
i
E
and
i
are th
e mod
u
li of el
asticity an
d t
he Poi
s
son’
s
ratios,
respe
c
tively, and
i
r
are radii
of the sphe
ri
cal mem
bers
in conta
c
t. Th
e radiu
s
e
a
is then used to
cal
c
ulate the
conta
c
t re
sist
ance.
2
k
e
R
a
.
(4)
Accordi
ng to
Holm’
s
ellipsoid
model. The average speci
fi
c el
ect
r
ical re
sistivity of the two
different mate
rials in
conta
c
t is denoted b
y
.
It is known th
at the impact of heating is con
s
id
ere
d
in the resist
ance chan
ge
s. Therefo
r
e
the tempe
r
at
ure
dep
end
e
n
t term:
whe
r
e
is coefficient of
res
i
s
t
ivity,
T
is
tem
peratu
r
e
differen
c
e.
2
(1
)
3
kk
o
RR
T
.
(5)
An applie
d
curre
n
t
fl
o
w
i
ng in the
el
ectri
c
ally co
ndu
c
ting p
a
th ca
uses
Jo
ule he
at
2
PR
I
to be gene
ra
ted. This he
a
t
incre
a
ses th
e te
mperature of the con
d
u
cting p
a
rt
s. Due to
the re
sultin
g
temperature
differen
c
e
s
, h
eat is tr
an
sp
orted
by mea
n
s of
co
ndu
ction, conve
c
ti
on
and ra
diation.
3.2. Simulation Model
a) physi
cal m
odel
b) sim
u
lation
model
Figure 3. Typical GIS Co
nd
uctor Pol
e
Model
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The Metho
d
for Mea
s
u
r
ing
Loop
Re
sista
n
ce in G
a
s In
sulate
d Subst
a
tion (Li Zh
ou
)
7095
Cho
o
se typical sp
ring
con
ductive conn
ector
as
simu
lation model
,
it contact
s
by spri
ng
deform
a
tion
on eve
r
y poi
nt of co
ntact
pre
s
sure, en
sure the
co
ntact
well. As
sho
w
n i
n
Fig
u
re
3(a
)
, where t
he mate
rial
of
No.1
-No.3 a
nd
No.5 i
s
al
uminum, th
e
material
of
No.4 is copp
er,
and
the material o
f
No.6 is insulating. In this model
, co
mpl
e
tely insertio
n depth is 55
mm, as sh
own in
Figure 3(b
)
.
3.3. Result o
f
Simulation
3.3.1.
Differen
t for
m
s of curre
n
t
Thro
ugh the f
o
rmul
a cal
c
ul
ate the conta
c
t resi
stan
ce
of GIS condu
ctor pol
e that conta
c
t
well. Accordi
ng to the basi
s
of the experiment
mea
s
u
r
ed the impul
se cu
rr
ent (current amplit
ude
is 24
24A, time is 1
s
). In th
e sam
e
condi
tions
of
curre
n
t amplitude
and du
ratio
n
, GIS cond
uct
o
r
pole
can
be
use
d
for th
ermal sim
u
latio
n
. Figure
4
sho
w
s the te
mperature
is effected of
dc
slightly gre
a
ter than the im
pact current.
a) cu
rrent so
urce is d
c
b) cu
rrent so
urce is imp
u
lse curre
n
t
Figure 4. Cal
c
ulatio
n Re
su
lts of the Tem
peratu
r
e of Di
fferent Form
s of Current
3.3.2. Diffe
re
nt Con
t
a
c
t Condition
Thro
ugh the
formula
cal
c
ulate th
e contact re
si
st
ance of different conta
c
t con
d
ition.
Und
e
r the co
ndition
s of impulse cu
rrent, GIS condu
ct
or pole
can b
e
use
d
for thermal
simulat
i
on.
Figure 5 sh
o
w
s the tem
p
e
r
ature is hig
h
e
r wh
en the contact conditi
on is worse.
a) co
ntact resistan
ce is 1
0
b) co
ntact resistan
ce is 1
5
c)
cont
a
c
t
re
s
i
st
an
ce is 2
0
Figure 5. Cal
c
ulatio
n Re
su
lts of the Tem
peratu
r
e of Di
fferent Conta
c
t Con
d
ition
4. Experiment Tes
t
s
4.1. Labora
t
or
y
Tests
Table 1 sho
w
s different test method
s
of
measu
r
ing
GIS condu
ctor pole that conta
c
t
well. T
w
o m
e
thods of testing
hav
e the stability of test
results.
What’s more the
result
s are
basi
c
ally iden
tical. It is means that two
method
s of measuri
ng are accurate. Furthe
rmo
r
e, the
result of te
m
peratu
r
e
is a l
i
ttle influen
ce
, due
to
the
amplitude
of
dc
is not la
rg
e; as well a
s
t
h
e
amplitude of
impact cu
rre
n
t
is
larg
e
but the
time
of d
u
ration i
s
sho
r
t, so a
s
the t
e
mpe
r
ature i
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 709
2
– 7098
7096
The re
sults also proved
the
co
rre
c
tness of th
e
simul
a
tion
ca
l
c
ulatio
n. The p
r
ototyp
ical
instrumentati
on, shown in
Figure 6, is built
to verify the feasi
b
ility of this method.
Table 1. Diffe
rent Te
st Method of Mea
s
u
r
ing Resi
stan
ce
current source is
dc
current
source is
impulse current
current(
A
)
resistance(
)
current(
A
)
resistance(
)
100 16.10
1000
15.98
200 16.15
1500
15.99
300 16.23
2000
15.91
400 16.27
2500
16.00
500 16.30
3000
16.06
Figure 6. Prototypical Instrumentation
Table
2
sho
w
s diffe
rent te
st meth
od
s o
f
mea
s
uri
ng
GIS co
ndu
cto
r
pol
e u
nde
r
different
conta
c
t
con
d
i
t
ions. Th
e
result of d
c
volta
ge d
r
op
have
n't ch
ang
ed
much. It
sho
w
s that un
de
r the
con
d
ition
i
s
b
ad,
the co
nve
n
tional diagn
ostic
meth
o
d
can't
find th
e
defect
of GIS
co
ndu
ctor po
le.
Ho
wever, the
result of the conta
c
t re
sist
ance increa
ses alo
ng with
the risin
g
of the test cu
rren
t in
the method
o
f
impact
current voltage d
r
op. It m
ean
s that this met
hod
can
re
sp
onse the
cont
act
con
d
ition of GIS cond
ucto
r pole effectiv
ely.
Table 2. Diffe
rent Te
st Method of Mea
s
u
r
ing GIS Co
n
ducto
r Pole u
nder
Differe
nt Conta
c
t
Condition
current source is
dc
current
source is
impulse current
insertion depth (
mm)
resistance(
)
insertion depth (
mm)
resistance(
)
55 16.25
55 16.01
50 16.43
50 17.43
45 17.55
45 18.55
40 18.17
40 19.17
35 18.53
35 22.53
30 18.55
30 24.55
25 18.58
25 27.58
4.2. Full-Scale Tests
Duri
ng th
e
comprehe
nsiv
e lab
o
rato
ry
measurement
s a
s
well
a
s
full-scale
test
s u
nde
r
reali
s
tic cond
itions on GIS
s
install
ed in
220kV
g
r
id
s, a few results will be prese
n
ted in th
is
se
ct
ion.
Table 3. Diffe
rent Te
st Method of Mea
s
u
r
ing Resi
stan
ce
current(
A
)
resistance(
)
1000
256.52
1500
256.89
2000
257.03
2500
257.43
3000
257.63
3500
257.87
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The Metho
d
for Mea
s
u
r
ing
Loop
Re
sista
n
ce in G
a
s In
sulate
d Subst
a
tion (Li Zh
ou
)
7097
Table 3 sh
o
w
s resi
stan
ce values me
asu
r
ed o
n
a new 22
0kV
GIS by applying cu
rre
nt
pulses with
p
eak value
s
u
p
to a
r
ou
nd
3
.
5kA. The
re
sistan
ce
s in
thi
s
se
ction
are
the same fo
r
all
curre
n
ts withi
n
stand
ard d
e
viations of 0
.
5%. Henc
e t
he co
ntact
s
in this se
ction
sho
w
no sig
n
s of
aging.
Test
s have
also
ca
rrie
d
out on an 8
-
m-lon
g
labo
ratory mo
cku
p of a GIS condu
ctor
se
ction co
nsi
s
ting of
two
con
c
e
n
tric
al
uminum
tube
s of
50
and
10
cm di
am
eters.
The
to
tal
resi
stan
ce
wa
s in
crea
se
d t
o
ap
proximately 300
by a
dding
a
sh
ort
stainle
s
s
stee
l se
ction.
A
some
wh
at po
or co
ntact (around 4
0
) made by partiall
y
unscre
w
ing
the bolts wa
s inserted in
the circuit. Figure 7 sho
w
s resi
stan
ce pl
otted as
a function of cu
rrent when 9 current pulses of
varying am
pli
t
ude were
pa
ssed throug
h
this mod
e
l
si
mulating a
GIS se
ction wit
h
a po
or
cont
act.
Re
sista
n
ces obtaine
d whe
n
current pul
ses of
diffe
rent
amplitud
es
were p
a
sse
d
throug
h a
mo
del
of a GIS cont
aining a
poo
r conta
c
t. The
resi
stan
ce
i
n
cre
a
s
e
s
wit
h
i
n
cr
ea
sing
cu
r
r
ent
s i
ndi
cat
i
ng
that the conta
c
t spot
s be
co
me si
gnifi
cant
ly heated at high cu
rrents.
Figure 7. Re
sistan
ce
s Obta
ined when
Cu
rre
nt
were Pa
ssed Th
rou
g
h
GIS Containi
ng a Poor
Conta
c
t
5. Conclusio
n
The followi
ng
con
c
lu
sion
s
can b
e
dra
w
n
from this pap
er.
This metho
d
can
not
o
n
ly provide
excit
a
tion current
s
u
p
to seve
ral kiloam
pe
res
, but
also
can ma
ke the devi
c
e of portabl
e. What’s
m
o
re, it can
accurately measure the l
oop
resi
stan
ce of
GIS cond
ucto
r pole.
Thro
ugh the
simulatio
n
re
sults p
r
oved t
hat wh
e
n
GIS condu
cto
r
pole conta
c
ts well, the
variation
of tempe
r
ature i
s
n
o
t obviou
s
. Howeve
r whe
n
GIS co
ndu
ctor pole
conta
c
ts
ba
d,
the
temperature i
s
high
er whe
n
the conta
c
t con
d
ition is
worse.
Thro
ugh
exp
e
rime
nt re
sult
s p
r
oved
that
wh
en
GIS condu
ctor pol
e
ha
s a
go
od
conta
c
t,
two meth
od
s
of testing
ca
n
accu
rately m
easure
resi
st
ance. Ho
wev
e
r
whe
n
GIS
con
d
u
c
tor
pol
e
has
a po
or
contact, the m
e
thod of imp
a
ct cu
rrent v
o
ltage d
r
op
can be
used t
o
dete
c
t co
ntact
degradatio
n in GIS at an early stage.
Referen
ces
[1]
Magn
e Ru
nde,
Odd Lil
l
evik,
Vegar
d Lars
e
n
.
Condi
ti
on As
sessment of
Contacts i
n
Gas-Insul
a
te
d
Substations.
IEEE Transactions on Power Delivery
. 2
004; 1
9
(2): 609-
61
7.
[2]
H F
u
jin
ami, T
T
a
kuma,
T
Kaw
a
moto. Dev
e
l
opme
n
t of detection meth
od
w
i
t
h
a mag
neti
c
field sens
o
r
for incomp
lete
contacts in g
a
s insu
lated s
w
itc
hes a
nd b
u
s conn
ectin
g
parts.
IEEE Trans.
Power
Deliv
ery
. 199
5; 10(1): 229
–2
3
6
.
[3]
Michel
La
ndr
y,
Olivier T
u
rcotte, F
ouadBrikc
iA. Co
mpl
e
te
Strateg
y
f
o
r C
ond
uctin
g
D
y
n
a
mic Co
ntact
Resista
n
ce Me
asurem
ents on
HV Circuit Breakers.
IEEE Tr
ansactions
on Power Deliv
ery
. 2008; 23(2
)
:
710-
716.
[4]
A Matasuza
wa. Lo
w
-
V
o
ltag
e an
d Lo
w
-
P
o
w
e
r C
i
rcuit
Desig
n
for Mi
xe
dAn
a
lo
g/Di
gi
tal S
y
st
em i
n
Portabl
e Equ
i
p
m
ent.
IEEE Journal of So
lid State Circuits.
1
994: 14
0-1
45.
[5]
Gamb
y J, T
aberna P
L
, Simo
n P, etal. Stu
d
i
es a
nd
Char
a
c
terizatio
n
s of
vario
u
s activat
ed C
a
rbo
n
s
used for Car
b
o
n
/Carb
on Su
pe
rcapac
itors.
Journa
l of Pow
e
r Sources
. 20
01:
109-1
16.
50
0
100
0
15
00
2
000
25
00
300
0
35
00
4
000
310
315
320
325
330
335
340
345
350
355
(
Cu
r
r
e
n
t
A
)
R
e
s
i
s
t
anc
e(
μΩ
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 709
2
– 7098
7098
[6]
Shen
g
y
i Liu, Dou
gal
RA.
D
e
sig
n
a
nd
an
a
l
ysis of
a C
u
rr
ent-mod
e
co
ntrolle
d
battery/u
ltra-cap
acito
r
hybri
d
.
Co
nfer
ence
Rec
o
rd
o
f
the 20
04
IEEE Industr
y
A
p
plicati
ons
Co
nferenc
e. 20
04;
28(2): 1
1
4
0
-
114
5.
[7]
Hary
ono V, Sirait K,
T
u
miran, Berahim, Hamzah.
T
h
e
Co
mp
uter Si
mulati
on for
Hi
g
h
A
m
pl
itud
e
Impu
lse C
u
rre
nt Desig
n
.
Inte
rnatio
nal Conf
erenc
eon Hig
h
Voltag
e Eng
i
n
eeri
nga
nd A
ppl
icatio
n. 200
8;
18(5): 20
7-2
1
0
.
[8] Johal
H.
Co
il
Current A
nalys
is Metho
d
for
Predi
ctiv
e Mai
n
tena
nce
of Ci
rcuit Break
ers
. T
r
ansmission
and D
i
stributi
o
n Confer
enc
e and E
x
p
o
siti
on
, 2008: 14
0-14
5.
[9]
Yong
pe
ng M
e
ng. T
he Detec
t
ion of th
e C
l
o
s
ing M
o
ments
of a Vac
uum
Circuit
Br
eaker
b
y
Vi
bratio
n
Anal
ys
is.
IEEE Transactions
on Power Deliv
e
ry
. 2006; 2
1
(2
): 652-65
8.
[10]
Monze
l
C, H
e
nne
berg
e
r G.
T
e
mperature s
o
lver fo
r
hi
ghl
y non
li
near
ferr
omag
netic m
a
terials
for thi
n
movin
g
she
e
ts in transv
e
rsal fl
ux
in
ductio
n
h
e
a
ting.
IEEE Tra
n
sactio
n o
n
Ma
gnetics
. 2
0
0
2
; 38(3): 9
37-
940.
Evaluation Warning : The document was created with Spire.PDF for Python.