TELK OMNIKA Indonesian Journal of Electrical Engineering V ol. 12, No . 7, J uly 2014, pp . 5430 5437 DOI: 10.11591/telk omnika.v12.i7.5505 5430 Stoc hastic Sync hr onization of Neutral-type Chaotic Mark o vian Neural Netw orks with Impulsive Eff ects Cheng-De Zheng* and Xixi Lv School of Science , Dalian Jiaotong Univ ersity No . 794, Huanghe Road, Dalian, 116028, P . R. China *Corresponding author , e-mail: 15566913851@163.com Abstract This paper studies the globally stochastic synchronization prob lem f or a class of neutr al-type chaotic neur al netw or ks with Mar k o vian jumping par ameters under impulsiv e per turbatio ns . By vir tue of dr iv e- response concept and time-dela y f eedbac k control techniques , b y using the L y a puno v functional method, Jensen integ r al inequality , a no v el reciprocal co n v e x lemma and the free-w eight matr ix method, a no v el sufficient condition is der iv ed to ensure t he asymptotic synchronization of tw o identi cal Mar k o vian jumping chaotic dela y ed neur al netw or ks with impulsiv e per turbation. The proposed results , which do not require the diff erentiability and monoton icity of the activ ation functions , can be easily chec k ed via Ma tlab softw are . Finally , a n umer ical e xample with their sim ulations is pro vided to illustr ate the eff ectiv eness of the presented synchronization scheme . K e yw or ds: Stochastically asymptotic synchronization, chaotic neur al netw or ks , Mar k o vian jump , impulse , reciprocal con v e x Cop yright c 2014 Institute of Ad v anced Engineering and Science . All rights reser v ed. 1. Intr oduction The prob lem of synchronization ar ises in n umerous pr actical prob lems in ph ysics , ecol- ogy , and ph ysiology . In 1990, the pioneer ing w or k of P ecor a and Carroll [6] brought attention to the impor tance of control and synchronization of chaotic systems . In their seminal paper , P ec- or a and Carrol proposed the dr iv e-response concept f or constr ucting synchronization of coupled chaotic systems . The idea is to use the output of the dr iving system to control the response sys- tem so that the y oscillate in a synchronization manner . Since then, chaos synchronization has been widely in v estigated with a vie w to its applications in secure comm unication systems [8]. Mar k o vian jump system, introduced b y Kr aso vskii and Lidskii in 1961, is a special class of h ybr id systems . In a Mar k o vian jump system, the r andom jump of par ameters is go v er ned b y a Mar k o v process which tak es v alues in a finite set. Thus , Mar k o v jump systems can descr ibe some ph ysical systems with abr upt v ar iations v er y w ell, e .g., solar ther mal centr al receiv ers , economic systems [5], and so on. Recently , a lot of research results on the stability analysis f or dela y ed neur al netw or ks with Mar k o vian jumping par ameters ha v e been repor ted, see , f or instance , [8]. Impulsiv e eff ect is lik ely to e xist in a wide v ar iety of e v olutionar y processes in which states are changed abr uptly at cer tain moments of time in the fields such as medicine and biology , eco- nomics , electronics and telecomm unications . Neur al netw or ks are often subject to impulsiv e per- turbation that in tur n af f ect dynamical beha viors of systems . Theref ore , it is necessar y to consider both the impulsiv e eff ect and dela y eff ect when in v estigating the stability of neur al netw or ks . So f ar , se v er al interesting results ha v e been repor ted that ha v e f ocused on the impulsiv e eff ect of dela y ed neur al netw or ks [1, 7]. Motiv ated b y af orementioned discussion, this paper in v estigates the globally stochastic synchronization of a class of neutr al-type chaotic neur al netw or ks with Mar k o vian jumping pa- r ameters under impulsiv e per turbations . The mix ed dela ys consists of discrete and distr ib uted time-v ar ying dela ys . By vir tue of dr iv e-response concept and time-d ela y f eedbac k control tech- niques , b y using the L y apuno v functional method, Jensen integ r al inequality , a no v el reciprocal Receiv ed December 25, 2013; Re vised March 5, 2014; Accepted March 28, 2014 Evaluation Warning : The document was created with Spire.PDF for Python.
TELK OMNIKA ISSN: 2302-4046 5431 con v e x lemma and the free-w eight matr ix method, a no v el sufficient condition is der iv ed to as- sure the stochastic synchronization of tw o identical Mar k o vian jumping chaotic dela y ed neur al netw or ks with impulsiv e per turbation. The proposed results , which do not require the diff eren- tiability and monotonicity of the activ ation functions , can be easily chec k ed via Matlab softw are . Finally , a n umer ical e xample with their sim ulations is pro vided to illustr ate the eff ectiv eness of the presented synchronization scheme . Notations : Throughout this paper , W T ; W 1 denote the tr anspose and the in v erse of a square matr ix W ; respectiv ely . W > 0( < 0) denotes a positiv e (negativ e) definite symmetr ic matr ix, I denotes the identity matr ix with compatib le dimension, the symbol “*” denotes a b loc k that is readily inf erred b y symmetr y . The shor thand col f M 1 ; M 2 ; :::; M k g denotes a column matr ix with the matr ices M 1 ; M 2 ; :::; M k : sym ( A ) is defined as A + A T ; diag fg stands f or a diagonal or b loc k-diagonal matr ix. F or > 0 ; C [ ; 0]; R n denotes the f amily o f contin uous functions from [ ; 0] to R n with the nor m jj jj = sup s 0 j ( s ) j : Moreo v er , let ( ; F ; P ) be a complete probability space with a filtr ation f F t g t 0 satisfying the usual conditions and E fg representing the mathematical e xpectation. Denote b y C p F 0 [ ; 0]; R n the f amily of all bounded, F 0 -measur ab le , C [ ; 0]; R n -v alued r andom v ar iab les = f ( s ) : s 0 g such that sup s 0 E j ( s ) j p < 1 : jj jj stands f or the Euclidean nor m; Matr ices , if not e xplicitly stated, are assumed to ha v e compatib le dimensions . 2. Pr ob lem description and preliminaries In this paper , w e consider the f ollo wing neutr al-type chaotic neur al netw or ks with Mar k o- vian jumping par ameters under impulsiv e per turbations 8 < : _ x ( t ) = C ( ( t )) x ( t ) + A ( ( t )) g ( x ( t )) + B ( ( t )) g ( x ( t ( t; ( t ))) + D ( ( t )) R t t ( t ) g ( x ( s ))d s + E ( ( t )) _ x ( t ( t )) + J ; x ( t ) = ' 1 ( t ) ; s 2 [ ^ ; 0] ; (1) where x ( t ) = ( x 1 ( t ) ; x 2 ( t ) ; :::; x n ( t )) T 2 R n is the state v ector associated with n neurons , real con- stant matr ices C ( ( t )) ; A ( ( t )) ; B ( ( t )) ; D ( ( t )) ; E ( ( t )) are the interconnection matr ices repre- senting the w eight coefficient s of the neurons . g ( x ( t )) = g 1 ( x 1 ( t )) ; g 2 ( x 2 ( t )) ; :::; g n ( x n ( t )) T 2 R n denotes the neur al activ ation function. The bounded functions ( t ) ; ( t ) represent un kno wn time- v ar ying dela ys with 0 ( t; ( t )) ( ( t )) ; _ ( t; ( t )) 0 ( ( t )) 0 < 1 ; 0 ( t ) ; _ ( t ) 0 < 1 ; 0 ( t ) ; _ ( t ) 0 < 1 ; where ; ; are positiv e scalars , ^ = max f ; ; g : J is an e xter nal input, ' 1 ( t ) is a real-v alued initial v ector function that is contin uous on the inter v al [ ^ ; 0] . f ( t ) ; t 0 g is a homogeneous , fin ite-state Mar k o vian process with r ight contin uous tr ajector ies and taking v alues in finite set N = f 1 ; 2 ; :::; N g based on giv en probability space ( ; F ; P ) with and the initial model 0 : Let = [ ij ] N N denote the tr ansition r ate matr ix with tr ansition probability: P ( ( t + ) = j j ( t ) = i ) = ij + o ( ) ; i 6 = j ; 1 + ii + o ( ) ; i = j ; where > 0 ; lim ! 0 + o ( ) = 0 and ij is the tr ansition r ate from mode i to mode j satisfying ij 0 f or i 6 = j with ii = N X j =1 ;j 6 = i ij ; i; j 2 N : F or c o n v enience , each possib le v alue of ( t ) is denoted b y ( 2 N ) in the sequel. Then w e ha v e A = A ( ( t )) ; B = B ( ( t )) ; C = C ( ( t )) ; D = D ( ( t )) ; E = E ( ( t )) : Throughout this paper , w e mak e the f ollo wing assumptions: Synchronization of Neutr al-type Chaotic Mar k o vian Impulsiv e ... (Cheng-De Zheng) Evaluation Warning : The document was created with Spire.PDF for Python.
5432 ISSN: 2302-4046 Assumption 1 . Each neur al activ ation function g j ( )( j = 1 ; 2 ; :::; n ) is b ounded, diff eren- tiab le and satisfies the f ollo wing condition j g j ( ) g j ( ) + j ; 8 ; 2 R ; 6 = ; where j ; + j are kno wn real constants . F or simplicity , w e denote 1 = diag 1 ; 2 ; ; n ; 2 = diag + 1 ; + 2 ; ; + n ; 3 = diag 1 + 1 ; 2 + 2 ; ; n + n g ; 4 = 1 2 diag 1 + + 1 ; 2 + + 2 ; ; n + + n . The system (1) is considered as a dr iv e system, the correspon ding response system of (1) is giv en in the f ollo wing f or m: 8 > > < > > : _ y ( t ) = C y ( t ) + A g ( y ( t )) + B g ( y ( t ( t )) + D R t t ( t ) g ( y ( s ))d s + E _ y ( t ( t )) + J + u ( t ) ; t > 0 ; t 6 = t k ; y ( t k ) = y ( t k ) y ( t k ) = k y ( t k ) x ( t k ) ; k 2 Z + ; y ( t ) = ' 2 ( t ) ; s 2 [ ^ ; 0] ; (2) where y ( t ) = ( y 1 ( t ) ; y 2 ( t ) ; :::; y n ( t )) T 2 R n is the state v ector associated with n neurons , u ( t ) = ( u 1 ( t ) ; :::; u n ( t )) T 2 R n is the state f eedbac k controller giv en to achie v e the e xponential synchro- nization betw een the dr iv e and response systems , k is a kno wn matr ix, ' 2 ( t ) is a real-v alued contin uous v ector function on the inter v al [ ^ ; 0] : In order to in v estigate the synchronization f or t he chaotic dela y ed neur al netw or ks with impulsiv e per turbation, e j ( t ) = y j ( t ) x j ( t ) is defined as the synchronization error , where x j ( t ) and y j ( t ) are the i -th state v ar iab les of dr iv e system (1) and response system (2), respectiv ely . Theref ore , the error dynamical system betw een (1) and (2) is giv en as f ollo ws: 8 > > < > > : _ e ( t ) = C e ( t ) + A f ( e ( t )) + B f ( e ( t ( t )) + D R t t ( t ) f ( e ( s ))d s + E _ e ( t ( t )) + u ( t ) ; t > 0 ; t 6 = t k ; e ( t k ) = e ( t k ) e ( t k ) = k e ( t k ) ; k 2 Z + ; e ( t ) = ' ( t ) : = ' 2 ( t ) ' 1 ( t ) ; t 2 [ ^ ; 0] ; (3) where e ( t ) = ( e 1 ( t ) ; e 2 ( t ) ; :::; e n ( t )) T ; f j ( e j ( t )) = g j ( y j ( t )) g j ( x j ( t )) : In this paper , the control input v ector with state f eedbac k is designed as f ollo ws: u ( t ) = Y 1 e ( t ) + Y 2 e ( t ( t )) : (4) Theref ore , it f ollo ws from [2] that system (3) admits a tr ivial solution e ( t ) = 0 : The de v elopment of the w or k in this paper requires the f ollo wing lemmas . Lemma 1 (see [4]). Let z ( t ) 2 R n has contin uous der iv ed function _ z ( t ) on inter v al [ a; a + ! ] ; then f or an y n n matr ix > 0 ; the f ollo wing inequality holds: Z a + ! a _ z T ( s ) _ z ( s )d s 2 ! 1 ! Z a + ! a z ( s )d s z ( a ) T 1 ! Z a + ! a z ( s )d s z ( a ) : Lemma 2 (see [9]). Assume th at ; ; # ; # are real scalars such that 1 ; + 4 ; and # < #: Let # : R ! ( # ; # ) be a real function. Then f or an y non-negativ e scalars a; b; the f ollo wing inequality holds a # ( t ) # b # # ( t ) 1 # # max f a b; a b g : TELK OMNIKA V ol. 12, No . 7, J uly 2014 : 5430 5437 Evaluation Warning : The document was created with Spire.PDF for Python.
TELK OMNIKA ISSN: 2302-4046 5433 3. Main result No w , w e begin to state our result f or error system (3) with input (4). Theorem 1 . Assume that Assumpt ion 1 hold, the dr iv e system (1) and the respon se system (2) with (4) can be stochastically asymptotically synchroniz ed in mean square if there e xist positiv e definite matr ices P ; Q ; R ; S ; Z ; U i ( i = 1 ; :::; 7) ; positiv e diagonal matr ices ; ; T ; W ; real matr ices X 1 ; X 2 of appropr iate dimensions such that N X j =1 j Q j < U 1 ; N X j =1 j R j < U 2 ; (5) N X j =1 j S j < U 3 ; N X j =1 j j S < U 4 ; (6) P ( I k ) P P 0 ; k 2 Z + ; (7) ( I k ) T P ( I k ) P l ; l 6 = ; l ; 2 N ; (8) 4( $ 8 $ 2 ) T S ( $ 8 $ 2 ) < 0 ; (9) 4( $ 9 $ 3 ) T S ( $ 9 $ 3 ) < 0 ; (10) where = [ ij ] 9 9 ; $ i = 0 ( i 1) n n I 0 (10 i ) n n ; i = 1 ; 2 ; :::; 10 ; with 1 ; 1 = Q + U 1 + U 6 W 3 + X N j =1 j P j ; 1 ; 4 = W 4 ; 1 ; 7 = P 1 + 2 C Z + X 1 ; 2 ; 2 = (1 0 ) Q T 3 2 S + X N j =1 j j Q ; 2 ; 5 = T 4 ; 2 ; 7 = X 2 ; 2 ; 8 = 2 S ; 3 ; 3 = U 6 2 S ; 3 ; 9 = 2 S ; 4 ; 4 = R + U 2 + 2 U 5 W ; 4 ; 7 = + A T Z ; 5 ; 5 = (1 0 ) R T + X N j =1 j j R ; 5 ; 7 = B T Z ; 6 ; 6 = U 5 ; 6 ; 7 = D T Z ; 7 ; 7 = 2 S + 2 2 U 3 + U 4 + U 7 2 Z ; 7 ; 10 = Z E ; 8 ; 8 = 2 S ; 9 ; 9 = 2 S ; 10 ; 10 = (1 0 ) U 7 ; j = max f j ; 0 g ; and the control gain matr ices Y 1 and Y 2 in (4) are giv en as Y T 1 = X 1 Z 1 ; Y T 2 = X 2 Z 1 : Pr oof . Constr uct a L y apuno v-Kr aso vskii functional in the f ollo wing f or m V ( t; e ( t )) = e ( t ) T P e ( t ) + 3 X i =1 V i ( t; e ( t )) ; where V 1 ( t; e ( t )) =2 n X j =1 Z e i ( t ) 0 n i f i ( s ) i s + i + i s f i ( s ) o d s + Z t t ( t ) e ( s ) T Q e ( s ) + f ( e ( s )) T R f ( e ( s )) d s + Z t t Z t _ e ( s ) T S _ e ( s )d s d ; V 2 ( t; e ( t )) = Z t t Z t e ( s ) T U 1 e ( s ) + f ( e ( s )) T U 2 f ( e ( s )) d s d + Z t t Z t Z t _ e ( s ) T U 3 _ e ( s )d s d d + Z t t Z t _ e ( s ) T U 4 _ e ( s )d s d ; V 3 ( t; e ( t )) = Z t t ( t ) Z t f ( e ( s )) T U 5 f ( e ( s ))d s d + Z t t e ( s ) T U 6 e ( s )d s + Z t t ( t ) _ e ( s ) T U 6 _ e ( s )d s: Synchronization of Neutr al-type Chaotic Mar k o vian Impulsiv e ... (Cheng-De Zheng) Evaluation Warning : The document was created with Spire.PDF for Python.
5434 ISSN: 2302-4046 Denoting e = e ( t ( t )) , calculating the w eak infinitesimal oper ator along the system (3) giv es L V ( t; e ( t )) =2 e ( t ) T P _ e ( t ) + N X j =1 j e ( t ) T P j e ( t ) + 3 X i =1 L V i ( t; e ( t )) ; (11) where L V 1 ( t; e ( t )) =2 _ e ( t ) T [ f ( e ( t )) 1 e ( t )] + [ 2 e ( t ) f ( e ( t ))] + e ( t ) T Q e ( t ) + f ( e ( t )) T R f ( e ( t )) (1 _ ( t )) e T Q e + f ( e ) T R f ( e ) + N X j =1 j Z t t ( t ) e ( s ) T Q j e ( s ) + f ( e ( s )) T R j f ( e ( s )) d s + N X j =1 j j ( t ) e T Q e + f ( e ) T R f ( e ) + 2 _ e ( t ) T S _ e ( t ) Z t t _ e ( s ) T S _ e ( s )d s + N X j =1 j Z t t Z t _ e ( s ) T S _ e ( s )d s d + N X j =1 j j Z t t _ e ( s ) T S _ e ( s )d s; (12) L V 2 ( t; e ( t )) = e ( t ) T U 1 e ( t ) + f ( e ( t )) T U 2 f ( e ( t )) Z t t e ( s ) T U 1 e ( s ) + f ( e ( s )) T U 2 f ( e ( s )) d s + 2 2 _ e ( t ) T U 3 _ e ( t ) Z t t Z t _ e ( s ) T U 3 _ e ( s )d s d + _ e ( t ) T U 4 _ e ( t ) Z t t _ e ( s ) T U 4 _ e ( s )d s; (13) L V 3 ( t; e ( t )) = ( t ) f ( e ( t )) T U 5 f ( e ( t )) Z t t ( t ) f ( e ( s )) T U 5 f ( e ( s ))d s + e ( t ) T U 6 e ( t ) e ( t ) T U 6 e ( t ) + _ e ( t ) T U 7 _ e ( t ) (1 _ ( t )) _ e ( t ( t )) T U 4 _ e ( t ( t )) : (14) F or 0 < ( t ) ; define 1 ( t ) = 1 ( t ) R t t ( t ) e ( s )d s: It is easy to see tha t 1 ( t ) ! e ( t ) while ( t ) ! 0 : Theref ore w e can define 1 ( t ) = e ( t ) when ( t ) = 0 : Similar ly , f or 0 ( t ) < ; define 2 ( t ) = 1 ( t ) R t ( t ) t e ( s )d s ; when ( t ) = ; define 2 ( t ) = e ( t ) : F or 0 < ( t ) < ; utilizing Lemma 1 giv es Z t t _ e ( s ) T S _ e ( s )d s = Z t t ( t ) _ e ( s ) T S _ e ( s )d s Z t ( t ) t _ e ( s ) T S _ e ( s )d s 2 ( t ) 1 2 ( t ) 2 ; (15) where 1 = [ 1 ( t ) e ] T S [ 1 ( t ) e ] ; 2 = [ 2 ( t ) e ( t )] T S [ 2 ( t ) e ( t )] : It is easy to see that inequality (15) holds f or an y t > 0 with ( t ) = 0 or ( t ) = : F rom inequality (15) and Lemma 2, w e get the f ollo wing inequality Z t t _ e ( s ) T S _ e ( s )d s 2 max 1 3 2 ; 3 1 2 : (16) Fur ther more , from the Jensen inequality w e ha v e Z t t ( t ) f ( e ( s )) T U 5 f ( e ( s ))d s   Z t t ( t ) f ( e ( s ))d s ! T U 5   Z t t ( t ) f ( e ( s ))d s ! : (17) TELK OMNIKA V ol. 12, No . 7, J uly 2014 : 5430 5437 Evaluation Warning : The document was created with Spire.PDF for Python.
TELK OMNIKA ISSN: 2302-4046 5435 Moreo v er , based on (H2), the f ollo wing matr ix inequalities hold f or an y positiv e diagonal matr ices L ; T 0 e ( t ) T W 3 e ( t ) + 2 e ( t ) T W 4 f ( e ( t )) f ( e ( t )) T W f ( e ( t )) ; (18) 0 e T T 3 e + 2 e T T 4 f ( e ) f ( e ) T T f ( e ) : (19) Fur ther more , the f ollo wing equality is tr ue f or an y real matr ix Z 0 = 2 _ e ( t ) T Z T _ e ( t ) C e ( t ) + A f ( e ( t )) + B f ( e ( t ( t )) + D Z t t ( t ) f ( e ( s ))d s + E _ e ( t ( t )) + Y 1 e ( t ) + Y 2 e ( t ( t )) : (20) Denoting Z Y 1 = X T 1 ; Z Y 2 = X T 2 ; substituting (12)-(20) into (11) and taking mathemati- cal e xpectation giv es d E V ( t; e ( t )) d t = E ( t ) T ( t ) ; t 2 [ t k 1 ; t k ) ; k 2 Z + : (21) where ( t ) =col ( e ( t ) ; e ; e ( t ) ; f ( e ( t )) ; f ( e ) ; Z t t ( t ) f ( e ( s ))d s; _ e ( t ) ; 1 ( t ) ; 2 ( t ) ; _ e ( t ( t )) ) ; = + 4 max ( $ 8 $ 2 ) T S ( $ 8 $ 2 ) ; ( $ 9 $ 3 ) T S ( $ 9 $ 3 ) : W e deduce that in equality < 0 is equiv alent to in equalities (9) and (10) respectiv ely . Theref ore , if inequalities (9) and (10) hold, then from (21) w e der iv e that d E V ( t; e ( t )) d t < 0 ; 8 t 2 [ t k 1 ; t k ) ; k 2 Z + : (22) When t = t k ; k 2 Z + ; from the condition (H5), w e ha v e V ( t k ; e ( t k )) = V ( t k ; e ( t k )) + e ( t k ) T ( I k ) T P ( I k ) P e ( t k ) : (23) On the other hand, it f ollo ws from (7) that I 0 0 P 1 P ( I k ) P P I 0 0 P 1 0 ; that is P I k P 1 0 : F rom the Schur complement, w e ha v e P ( I k ) T P ( I k ) 0 : (24) Combining (23) with (24), w e can deduce that V ( t k ; e ( t k )) V ( t k ; e ( t k )) ; k 2 Z + : By simple calculation, it can be v er ified from (8) that V ( t k ; e ( t k )) V l ( t k ; e ( t k )) : (25) F or t 2 [ t k 1 ; t k ] ; k 2 Z + , in vie w of (22) and (25), w e ha v e V ( t k ; e ( t k )) V l ( t k ; e ( t k )) V l ( t k 1 ; e ( t k 1 )) : (26) By the similar proof and Mathematical induction, w e can der iv e that (26) is tr ue f or an y m; l ; (0) = 0 2 N ; k 2 Z + V ( t k ; e ( t k )) V l ( t k ; e ( t k )) V l ( t k 1 ; e ( t k 1 )) V 0 ( t 0 ; e ( t 0 )) : Theref ore , the system (4) is asymptotically stab le in mean square . This completes the proof of Theorem 1. Synchronization of Neutr al-type Chaotic Mar k o vian Impulsiv e ... (Cheng-De Zheng) Evaluation Warning : The document was created with Spire.PDF for Python.
5436 ISSN: 2302-4046 4. Illustrative e xample In this section, w e giv e a e xample to demonstr ate the eff ectiv eness of our theoretical results . Example 1 . Consider system (1) with n = N = 2 and the f ollo wing par ameters: A 1 = 1 : 9 0 : 18 4 : 2 3 : 0 ; A 2 = 2 : 0 0 : 23 4 : 1 3 : 1 ; B 1 = 1 : 8 0 : 3 0 : 4 2 : 7 ; B 2 = 1 : 9 0 : 4 0 : 3 2 : 8 ; C 1 = 2 : 7 0 0 2 : 2 ; C 2 = 2 : 8 0 0 2 : 1 ; D 1 = 2 I ; D 2 = 1 : 8 0 0 2 : 1 ; E 1 = 0 : 25 I ; E 2 = 0 : 5 0 : 4 1 0 : 6 ; J = 0 : The activ ation functions are g 1 ( x ) = g 2 ( x ) = tanh( x ) ; and the time-v ar ying dela ys are 1 ( t ) = 0 : 8 + 0 : 3 sin t; 2 ( t ) = 0 : 65 + 0 : 25 sin t; ( t ) = 0 : 5 + 0 : 3 cos t; ( t ) = 0 : 6 + 0 : 2 cos t: Then Assumption 1 is satisfied with 1 = 0 ; 2 = I ; 3 = 0 ; 4 = 0 : 5 I and = 1 = 1 : 1 ; 2 = 0 : 9 ; 0 1 = 0 : 3 ; 0 2 = 0 : 25 ; = 0 : 8 ; 0 = 0 : 3 ; = 0 : 8 ; 0 = 0 : 2 : In this paper , the tr ansition r ate matr ix is giv en as f ollo ws = 0 : 7 0 : 7 0 : 3 0 : 3 : Solving the LMIs (5)-(10) in Theorem 1 b y resor ting to the Matlab LMI Control T oolbo x, w e can obtain one f easib le solution. The control input v ector with state f eedbac k is designed as (4) with Y 11 = 15 : 4038 I ; Y 12 = 12 : 7158 I ; Y 21 = 2 : 0655 I ; Y 22 = 2 : 4185 I : Theref ore , w e conclude that system (1) and (2) with (4) can be stochastically asymptotically syn- chroniz ed. −1 . 5 −1 −0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 3 −4 −3 −2 −1 0 1 2 3 4 x1 (t ) x2 (t ) Fig. 1. Chaotic attr actor of Example 1. Fig. 1 sho ws the neur al netw or k model has a chaotic attr actor with initial v alues x 1 ( t ) = 0 : 3 ; x 2 ( t ) = 0 : 4 ; t 2 [ 1 ; 0] : The initial v alues of the response system are tak en as y 1 ( t ) = 1 : 1 ; y 2 ( t ) = 1 : 6 ; t 2 [ 1 ; 0] : Fig. 2 sho ws the error states . By n umer ical sim ulation, w e can see that the dynamical beha viors of response system (2) synchroniz e with master system (1). 5. Conc lusion This paper deals with the synchronization prob lem f or a class of neutr al-type chaotic neur al netw or ks with both leakage dela y and Mar k o vian jumping par ameters under impulsiv e TELK OMNIKA V ol. 12, No . 7, J uly 2014 : 5430 5437 Evaluation Warning : The document was created with Spire.PDF for Python.
TELK OMNIKA ISSN: 2302-4046 5437 Fig. 2. The error state of t e 1 ( t ) e 2 ( t ) : per turbations . By vir tue of dr iv e-response concept and time-dela y f eedbac k control techniques , b y using the L y apuno v functional method, Jensen integ r al inequality , a no v el reciprocal con v e x lemma and the free-w eight mat r ix method, a no v el sufficient condition is der iv ed to assure the stochastic synchronization of tw o identical Mar k o vian jumping chaotic dela y ed neur al netw or ks with impulsiv e per turbation. The proposed results , which do not require the diff erentiability and monotonicity of the activ ation functions , can be easily chec k ed via Matlab softw are . Finally , a n umer ical e xample with their sim ulations is pro vided to illustr ate the eff ectiv eness of the presented synchronization scheme . Ac kno wledg ement This w or k w as suppor ted b y the National Natur al Science F oundation of China No . 61273022. Ref erences [1] M. Dong, H. Zhang, and Y . W ang, “Dynamics analysis of impulsiv e stochastic Cohen- Grossberg neur al netw or ks with Mar k o vian jumping and mix ed time dela ys , Neurocomputing, 2009,72:1999-2004. [2] A. F r iedman, Stochastic diff erential equations and applications , Ne w Y or k: Academic Press , 1976. [3] K. Gu, “An integ r al inequality in the stability prob lem of time-dela y systems , in: Proc. 39th IEEE Conf . Decision and Control, Sydne y , A ustr alia, 2000, pp . 2805-2810. [4] Z. Liu, J . Y u, and D . Xu, “V ector Wir tinger-type inequality and the stability analysis of dela y ed neur al netw or k, Comm un. Nonlinear Sci. Numer . Sim ulat., 2013,18: 1246-1257. [5] M. Mar iton, J ump Linear Systems in A utomatic Control, Ne w Y or k: Dekk er , 1990. [6] L. P ecor a, and T . Carroll, “Synchronization in chaotic systems , Ph ys . Re v . Lett., 1990,64:821- 824. [7] X. Song, X. Xin, and W . Huang, “Exponential stability of dela y ed and impulsiv e cellular neu- r al netw or ks with par tially Lipschitz contin uous activ ation functions , Neur al Netw ., 2012,29- 30:80-90. [8] Y . T ang, J . F ang, and Q. Miao , “On the e xponential synchronization o f stochastic jumping chaotic neur al netw or ks with mix ed dela ys and sector-bounded non-linear ities , Neurocom- puting, 2009,72:1694-1701. [9] C .-D . Zheng, Q.-H. Shan, H. Zhang, and Z. W ang, “On stabilization of stochastic Cohen- Grossberg neur al netw or ks with mode-dependent mix ed time-dela ys and mar k o vian s witch- ing, IEEE T r ans . Neur al Netw . Lear n. Syst., 2013,(5):800-811. Synchronization of Neutr al-type Chaotic Mar k o vian Impulsiv e ... (Cheng-De Zheng) Evaluation Warning : The document was created with Spire.PDF for Python.