Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 2,
May 2016, pp
. 275 ~ 284
DOI: 10.115
9
1
/ijeecs.v2.i2.pp27
5-2
8
4
275
Re
cei
v
ed Fe
brua
ry 3, 201
6; Revi
se
d
April 6, 2016;
Acce
pted April 26, 2016
Daily Constant PV Output Power Supplying AC Pumps
using Batteries
Mohamed M
a
hmoud Ismail
Electrical P
o
w
e
r and Mac
h
in
e Dep
a
rtment, F
a
cult
y
of Engi
neer
ing, He
l
w
a
n
Univ
ersit
y
Al Sikka Al Ha
did Al Ghar
be
ya, Qism
Hel
w
a
n
, Cairo Gover
norate, Eg
ypt
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: m_m_ismai
l
@
yah
oo.com
A
b
st
r
a
ct
This p
aper
pr
e
s
ents 2
0
0
KW three
p
hase
s
t
anda
lo
ne
ph
otovolta
ic syste
m
s s
u
p
p
lyi
n
g
pu
mp
in
g
station cons
ist of four pump
s
40
KW rating. The system utili
z
e
s a
tw
o stage en
ergy
convers
i
on p
o
w
er
cond
ition
i
n
g
u
n
it topol
ogy c
o
mpos
ed of a
DC-DC bo
ost converter an
d
three level-thr
ee ph
ase volt
age
so
u
r
ce i
n
ve
rte
r
(VSI). Th
e
Boo
s
t co
n
v
e
r
te
r in
th
i
s
p
a
p
e
r
i
s
d
e
s
i
g
ne
d to
op
e
r
a
t
e i
n
con
t
in
u
o
u
s
m
o
d
e
and
control
l
ed f
o
r
max
i
mu
m
pow
er po
int tracki
n
g
(MPPT
).
T
he fluctuatin
g o
u
tput pow
er
of the PV array
sys
te
m
during the
day
is the c
o
m
m
only
pr
oblem in
the power syst
em
. T
he PV
ar
ray system
us
ually
cannot give
constant
pow
er
for 24
ho
urs d
a
y. Sup
p
lyi
ng
a certai
n l
o
a
d
from
PV array
s
ystem
usua
lly f
a
ce this
pro
b
l
e
m.
Now
an
d o
n
ly
now
this
prob
le
m
is so
lved
in
this arti
c
l
e.
A ni
ckel-Ca
d
m
i
u
m battery
w
ill be
used
to ma
inta
i
n
the output
pow
er generated from th
e PV
array supplying the
pumps to be c
onstant
all the
day. The syste
m
is mo
de
led a
n
d
studied us
in
g MAT
L
AB/Simul
i
nk.
Ke
y
w
ords
: PV array, AC pu
mps, batteries a
nd consta
nt ou
tput pow
er
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The ele
c
tri
c
it
y demand
in t
he world’
s d
e
v
eloping
co
u
n
tries is i
n
cre
a
sin
g
ra
pidly
and it is
a g
r
eat
ch
alle
nge to
me
et this
dem
and,
without
affect
ing the
cli
m
at
e an
d the
e
n
v
ironme
n
t. T
h
e
main en
ergy
sou
r
ce for p
o
w
er
pro
d
u
c
tio
n
in the wo
rl
d today is th
e petrol
eum f
uels. However
,
with threate
n
i
ng climate
cha
nge the
use of
these must arg
u
ably decrea
s
e. The power
gene
ration i
s
globally the l
a
rge
s
t
sou
r
ce of green
-ho
u
se
ga
se
s an
d, prefe
r
ably,
the gen
erati
o
n
sho
u
ld b
e
shi
fted to more
rene
wable
so
urces. So
l
a
r
power i
s
ofte
n reg
a
rded
a
s
on
e of the
most
promi
s
in
g en
ergy
sou
r
ces
for the futu
re,
but it
is to
da
y one of the
most exp
e
n
s
i
v
e sou
r
ce
s, d
u
e
to high inve
st
ment co
st
s. Ho
wever th
e
price ha
s
ste
adily de
cre
a
sed an
d in
so
me co
untri
es,
grid
con
n
e
c
ted
so
lar pa
nel
s is t
oday e
c
on
om
ically fea
s
ible
. In place
s
with a lot of sola
r ra
diation a
n
d
a we
ak existi
ng po
we
r g
r
i
d
, sp
ecifi
c
ally for off-g
r
id
loc
a
tio
n
s
,
s
o
lar p
o
w
e
r
is
r
ega
r
d
ed
as
a co
s
t
-
effec
t
ive s
o
lut
i
on [1].
The de
reg
u
l
a
tion of ele
c
tricity market
s and
req
u
irement to re
d
u
ce g
r
e
enh
o
u
se g
a
s
emission
fro
m
the
conve
n
t
ional ele
c
tri
c
power
gen
eration ma
ke
th
e dist
ribute
d
gene
ration
(DG)
rene
wa
ble e
n
e
rgy
system
s gain a
great
oppo
rtunity
as a
ne
w me
ans
of po
we
r gene
ration
that
meet the accelerate
d dem
and for ele
c
tri
c
ene
rgy [2, 3].
Among all
th
e vario
u
s
DG
techn
o
logi
es, sola
r
ph
otovoltaic system
s
a
r
e rapi
dly
gro
w
in
g
in ele
c
tricity
markets
due
to the de
clini
ng cost of
PV
module
s
[4,
5], incre
a
si
ng
efficien
cy of PV
cell
s, ma
nuf
acturi
ng
- te
chnolo
g
y en
h
ancement
s
and
econom
ics of
scale
.
Ho
weve
r,
the
increa
sing
pe
netration
leve
ls of
PV sy
stems into th
e
grid
have
giv
en
rise to
pot
ential p
r
obl
e
m
s
relating to po
wer q
uality and PV performance [6-8].
One
of the
m
o
st im
porta
nt appli
c
atio
ns
of phot
ovoltai
c
(PV)
stan
d
a
lone
sy
stem
s i
s
fo
r
rural a
r
ea
s th
at have a
co
nsid
era
b
le a
m
ount of
sol
a
r radiatio
n a
nd no
acce
ss to national
g
r
ids
[9].The pe
rfo
r
man
c
e
of P
V
system
is
affected
due
to the
amo
unt of
sun
radiation
an
d
the
environ
menta
l
ambient temperature [1
0]. Many te
chniqu
es of th
e VSI are implemente
d
o
n
the
PV grid
co
nn
ected
sy
stem
s [11
-
13]. So
me of th
e p
r
e
v
ious
articl
es we
re
usi
ng t
he b
a
tterie
s
with
PV array syst
em as in [14
-
20] but none
of them us
in
g
the batterie
s
as a resto
r
e
r
of the PV array
sou
r
ce. Th
e f
l
uctuatio
n of
the PV outp
u
t
power
du
rin
g
the day
i
s
one of
the m
o
st comm
only
probl
em
s ap
peared in th
e power
system and u
s
u
a
lly lead to make th
e re
newable e
n
e
r
gy
resou
r
ces to
be non
-de
p
e
ndabl
e power source
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 275 –
284
276
In this
articl
e
,
the batte
rie
s
a
r
e i
m
plem
ented
online
with the
PV
array all th
e
time to
maintain the
PV output po
wer
and volta
ges to b
e
co
nstant all the
day unde
r dif
f
erent op
erati
ng
conditions
The
simulatio
n
is i
m
plem
e
n
ted o
n
20
0
KW sta
ndal
o
ne PV sy
ste
m
su
pplying
pumpin
g
station
co
nsi
s
t of fou
r
4
0
KW p
u
mp
s.
The
syst
e
m
is te
sted
d
u
ring
the
different
ope
rati
ng
con
d
ition
s
usi
ng MATLAB SIMULINK to demon
strate
the validation
of the propo
sed tech
niqu
e.
2.
The PV Model
In
this
p
ape
r,
the
assemb
ly of
PV model co
nne
cted to th
e pumpi
ng
station indi
cate
d in
Figures 1 a
n
d
2 re
spe
c
tively. The total power
requi
re
d for the pum
ping statio
n is abo
ut 175
KW.
The pum
ping
station is
con
s
ist of four pu
mps d
r
iven b
y
AC motor 40 KW rating a
nd 15 KW oth
e
r
load
s incl
udi
ng lighting a
nd air
con
d
i
t
ioning.
Co
n
s
tant output
powe
r
an
d
voltage ca
n
be
achi
eved by con
n
e
c
ting b
a
tteries o
n
lin
e with t
he PV array syste
m
as sh
own in Figure 3. The
battery cont
ro
l system is d
e
s
cribe
d
in det
ails in Figu
re
s 4 and 5.
Figure 1. PV
sup
p
lying the
pumping
station
Figure 2. The
PV array systems
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Dail
y Co
nsta
nt PV Output
Powe
r Suppl
ying AC Pum
p
s u
s
ing Batterie
s
(M. Mah
m
oud
Ism
a
il)
277
Figure 3. Onli
ne PV and ba
tteries
supplyi
ng the
pumpi
ng station for
con
s
tant outp
u
t powe
r
Figure 4. Battery cont
rol sy
stem
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 275 –
284
278
Figure 5. Det
a
ils of the bat
tery controller
3.
Centrifugal Pump Model
In gene
ral, two types
of pu
mps
are
com
m
only u
s
ed f
o
r
water-p
u
m
p
ing a
ppli
c
ati
ons [2
1].
One i
s
positi
v
e displacem
ent pum
p a
n
d
an
other is
centrifu
gal
pu
mp. In di
spla
ceme
nt pu
m
p
s,
the wate
r o
u
tput is di
re
ctly pro
portio
nal
to
the speed
of the pum
p
,
but
almo
st indep
ende
nt
of
head. Centrif
ugal pum
ps
are u
s
ed fo
r low-hea
d app
lication
s
. Ce
n
t
rifugal pum
p
s
are d
e
si
gn
ed
for fixed-hea
d ap
plication
s
, an
d the
p
r
essure
diffe
rence g
ene
rat
ed in
crea
se
s in
relatio
n
to
the
spe
ed of the pump. Ce
ntrifugal pum
ps
also hav
e rel
a
tively high efficiency and
are capa
ble of
pumpin
g
a hi
gh volume of
water. Th
e centrifu
gal p
u
mp is u
s
e
d
in this arti
cl
e. Any pump
is
cha
r
a
c
teri
ze
d
by its ab
so
rptive po
wer
whi
c
h i
s
obvi
ously
a m
e
chani
cal
po
we
r o
n
the
sha
ft
cou
p
led to th
e pump, whi
c
h is given by:
(1)
Useful po
wer:
powe
r
co
nsu
m
ed of t
he ab
sorptive power is given by
:
(2)
whe
r
e
η
, the
total output;
ρ
, density (K
g/m3); G, acceleratio
n
of
g
r
avity (m2/S); H, height of
rise
(m); Q, flow(m3/S). The p
u
mps a
r
e d
r
iven usi
ng AC i
ndu
ction mot
o
rs.
4.
Induction M
o
tor Mod
e
l
The moto
rs
use
d
to d
r
ive the pum
ps i
n
this a
r
ticle
taking th
e m
agneti
c
saturation in
con
s
id
eratio
n
base
d
on the
π
- model [22
].
The
π
-m
odel
for the co
m
p
lete motor,
at zero s
pee
d, is sh
own i
n
Figu
re (4).
The two
pha
se
ele
c
tri
c
al
equ
ation
s
for
an i
ndu
ction ma
chin
e
in a
n
arbit
r
a
r
y fram
e
rota
ting with
spe
e
d
(
ω
0) a
r
e give
n by:
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Dail
y Co
nsta
nt PV Output
Powe
r Suppl
ying AC Pum
p
s u
s
ing Batterie
s
(M. Mah
m
oud
Ism
a
il)
279
DC
Rs
Rr
Is
Ir
MMF
Le
ak
ag
e (
L
)
S
t
at
or
Ro
t
o
r
fs
fr
Im
s
Im
r
Figure 4. Induction Moto
r
π
- Model
r
e
r
r
r
s
s
s
s
s
J
I
R
J
I
R
V
dt
d
dt
d
2
0
2
0
0
(3)
Whe
r
e;
Vs is the stat
or pha
se volt
age vecto
r
,
Is
is
the s
t
ator phas
e
current vec
t
or,
Ir is
the rotor phas
e
current vec
t
or,
p is t he num
ber of pole p
a
i
r s,
ω
is the rotor
spe
ed,
Rs i
s
the stat
or pha
se
re
si
stan
ce,
Rr is th
e roto
r phase re
sist
ance,
Ψ
s a
nd
Ψ
r a
r
e the stator a
nd roto
r
fl
ux li
nka
ge vecto
r
s re
spe
c
tively.
Equation
(1)
hold
s
whethe
r the in
du
ctio
n motor
mag
netic
circuit i
s
con
s
ide
r
ed
linear or
saturated an
d
J2 is the 2 ×
2 rotating mat
r
ix de
fi
n
ed by
;
J
2
= [
0
−
1; 1 0
]
(4)
The me
cha
n
i
c
al eq
uation
can b
e
expre
s
sed a
s
:
T
L
T
b
d
t
d
J
(5)
Whe
r
e
J is t
he moto
r ine
r
tia, b is the
visco
us
da
mping, TL i
s
the load to
rque a
nd T i
s
the
gene
rated to
rque.
The rel
a
tion
ship between
the cu
rre
nts
and the fluxes for the
π
model at d-q frame
rotating with
s
p
eed (
ω
0
)
a
r
e given by:
r
s
l
l
l
l
r
r
s
s
r
s
I
g
I
g
I
g
I
g
G
G
I
I
2
2
2
2
)
(
)
(
(6)
Whe
r
e gl is d
e
fined a
s
:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 275 –
284
280
L
l
g
l
1
(7)
Whe
r
e G
s
an
d G
r
are the
stator and roto
r vector-value
d nonlin
ear fu
nction
s an
d d
e
fined a
s
:
I
mx
mxq
I
I
mxd
ψ
xq
ψ
xd
G
x
)
ψ
x
(
G
x
(8)
Whe
r
e; Im
an
d
Ψ
m
are
the
mutual
curre
n
t and
flux ve
ctor,
re
spe
c
ti
vely, and
su
b
s
cript
(x)
ca
n
be
(s) for stato
r
and (r) for
rot
o
r. The relati
onshi
p bet
we
en the cu
rren
ts and the flu
x
es for the
π
model can be
compa
c
tly written as:
ψ
r
ψ
s
I
2
)
g
)
ψ
s
(
g
r
l
(
I
2
g
l
I
2
g
l
I
2
)
g
)
ψ
s
(
g
s
l
(
I
r
I
s
(9)
Whe
r
e; I
2
is the 2 ×
2 identity matrix, g
l
is de
fi
n
ed a
s
the re
ciprocal of the lea
k
age ind
u
cta
n
c
e
(L
l
), g
s
and g
r
are the stat
or and
rotor
vector-value
d
nonline
a
r sa
turation fun
c
tions. Th
e sca
l
ar
s
a
turation func
tions
g
s
an
d g
r
o
n
ly affect the
mag
n
itude,
while
ke
eping
the
dire
ction
s
of th
e
fl
uxe
s
a
nd
cu
rre
nts th
e
sa
me. The
s
e
fu
nction
s
ar
e
m
onoton
e in
cre
a
sin
g
a
nd
are
non
-zero at t
he
origin.
The saturation func
tions
g
s
(x) and g
r
(x) ha
ve to be
ide
n
tified expe
ri
mentally for
each
motor a
s
sh
o
w
n in the nex
t section.
Finally, the generated torq
ue (T
) and p i
s
the pole
s
n
u
mbe
r
is give
n by;
)
r
(
ψ
2
J
s
T
)
(
T
l
g
P
(10
)
5. Simulation
Results
The sim
u
latio
n
is perfo
rme
d
usin
g MATLAB Simulink by supplying
a pumping
station
con
s
i
s
t of four pu
mp
s 4
0
KW rating
usin
g 200
KW thre
e p
hase sta
ndal
one p
hotovol
taic
system
s. Th
e
pum
ps are
driven
by a
n
indu
ction
m
o
tor ta
kin
g
th
e saturation i
n
con
s
ide
r
ati
on.
The test is
by varying the ra
diation
while
the e
n
v
ironme
n
tal tempe
r
ature is co
nsta
nt. The
behavio
rs of the pump
s
are comp
are
d
whe
n
sup
p
lie
d from the PV modules
wi
th and withou
t the
battery control syste
m
a
s
sho
w
n i
n
fig
u
re
s 5 to
9.
Figure
5 sho
w
the sun ra
diation
vari
ation
durin
g
simula
tion. Figure 6
indicate the l
oad p
o
wer
co
nsum
ption a
n
d
figure 7
sh
ow the
voltag
e
applie
d o
n
th
e moto
rs of t
he p
u
mp
s. Fi
gure
s
8
and
9 sho
w
the
motor l
oad
to
rque
a
nd m
o
tor
spe
ed re
sp
e
c
tively. The simulatio
n
sh
ow the
successful improvement of the
pumping
sta
t
ion
behavio
r wh
e
n
the battery
control syste
m
is app
lie
d online
with the PV system. By using the
battery co
ntrol system
with PV array, the mo
tor
sp
eed will b
e
co
me almo
st consta
nt and
not
depe
nding
on
the sun
radi
ation. The
po
wer con
s
ump
t
ion and
the
voltage ap
pli
ed on
the m
o
tor
are al
so alm
o
st con
s
tant when the batte
ry sy
stem is a
pplied o
n
line
with the PV array.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Dail
y Co
nsta
nt PV Output
Powe
r Suppl
ying AC Pum
p
s u
s
ing Batterie
s
(M. Mah
m
oud
Ism
a
il)
281
Figure 5. The
variation in sun radi
ation
Figure 6. The
load po
wer
consumption
0
2
4
6
8
10
12
14
16
0
50
00
10
00
0
15
00
0
ti
m
e
(
s
e
c
)
pow
er
(
K
W
)/
1
0
PV
w
i
th
b
a
tte
r
y
s
y
s
t
e
m
P
V
sy
st
e
m
o
n
l
y
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 275 –
284
282
Figure 7. The
voltage appli
ed on the mot
o
rs
Figure 8. The
motor load to
rque
0
2
4
6
8
10
12
14
16
-50
0
-40
0
-30
0
-20
0
-10
0
0
10
0
20
0
30
0
40
0
50
0
ti
m
e
(
s
e
c
)
M
o
t
o
r V
o
l
t
a
ge (V
)
PV
w
i
th
b
a
tte
r
y
s
y
s
t
e
m
P
V
sy
st
e
m
o
n
l
y
0
2
4
6
8
10
12
14
16
-5
0
5
10
15
20
25
Lo
ad
T
o
r
q
ue
(
N
.
m
)
PV
w
i
th
b
a
tte
r
y
s
y
s
t
e
m
P
V
sy
st
e
m
o
n
l
y
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Dail
y Co
nsta
nt PV Output
Powe
r Suppl
ying AC Pum
p
s u
s
ing Batterie
s
(M. Mah
m
oud
Ism
a
il)
283
Figure 9. The
motor sp
eed
6. Conclu
sion
This pap
er p
r
esents 20
0
KW three
ph
ase
st
a
ndal
o
ne
p
hotovolt
a
ic syste
m
s sup
p
lying
pumpin
g
stati
on. A Nickel-Cadmi
u
m bat
tery will
be conne
cted o
n
li
ne with the P
V
array. A ne
w
techni
que i
s
use
d
in this a
r
ticle to maint
a
in
the PV output powe
r
an
d voltages to
be co
nsta
nt all
the day and
unde
r differe
nt operating
con
d
ition
s
. The ne
w tech
nique i
s
teste
d
usin
g MAT
L
AB
Simulink Th
e simulatio
n
re
sult sh
ow that
the new tech
nique i
s
su
cceede
d to achi
eve the target
.
Referen
ces
[1]
Hui Z
h
a
ng, H
ong
w
e
i Z
h
ou,
Jing R
en,
W
e
i
z
eng
Liu, Sh
a
ohu
a Ru
an, Y
ong
jun Ga
o. “
T
h
ree-Ph
as
e
Grid-Connected Photovol
taic
System with
SVPW
M Current Contr
o
ller
”. Proceedings of IEEE 6t
h
Internatio
na
l C
onfere
n
ce o
n
Po
w
e
r El
ectroni
cs and Motio
n
Contro
l (IPEMC). 2009: 21
61
-216
4.
[2]
Sat
y
aran
ja
n Je
na, B C
h
itti Ba
bu, SR S
a
ma
n
t
ara
y
a
nd M
o
h
a
ma
ye
e Mo
ha
patra. “
Co
mpar
ative Stu
d
y
betw
een A
dap
tive Hysteres
is
and S
VPW
M Curre
nt
Contr
o
l for Grid-c
on
nected I
n
verte
r
System
”.
Procee
din
g
s of
IEEE Students'
T
e
chnolo
g
y
S
y
mp
osi
u
m (T
e
c
h S
y
m). 20
11:
310-3
15.
[3]
Yukai
Liu, Z
h
ij
ian
Hu, Z
i
yo
n
g
Z
han
g, Jia
n
g
le
i
Suo, K
a
ib
in L
i
an
g. “Res
earch
on th
e
T
h
ree-phas
e
Photovo
l
taic Grid-con
necte
d Contro
l Strateg
y
”.
Ener
gy and
Pow
e
r Engin
e
e
r
ing.
20
13; 5; 3
1
-35.
[4]
MG Villa
lva, J
R
Gazol
i
a
n
d
ER Filh
o. “Co
m
preh
ensiv
e a
ppro
a
ch to
m
ode
lin
g a
n
d
si
mulati
on
of
photov
olta
ic ar
ra
y
s
”.
IEEE Transactions on Power Electronics
. 2009; 2
4
(5
): 1198-1
2
0
8
.
[5]
Ahmed S K
hal
i
f
a and E
h
a
b
F
El-Saa
dan
y. “
C
ontrol
of three
phas
e gri
d
c
o
n
nected ph
otov
oltaic pow
er
system
s
”. Proc
eed
ings
of IEE
E
14th I
n
terna
t
iona
l C
onfere
n
ce o
n
H
a
rmo
nics a
nd Q
ual
i
t
y
of P
o
w
e
r
(ICHQP). 2010
: 1-7.
[6]
H Ha
eber
lin,
L
Borgn
a
, M K
aempfer
an
d
U Z
w
a
h
l
en. “
N
e
w
T
e
st at Grid-Co
nnecte
d
PV Inverters:
Overview
over
T
e
st Results
and M
eas
ured
Valu
es of T
o
t
a
l Efficie
n
cy
”. 21th Eur
o
p
e
a
n
Photovo
l
tai
c
Solar En
erg
y
C
onfere
n
ce, Dre
s
den, German
y
. 20
06.
[7]
Simeen S Muja
w
a
r, GM Karve. “Control of
grid
conn
ecte
d inverter s
y
stem for sinusoi
dal curre
n
t
injecti
on
w
i
t
h
i
m
prove
d
perfor
m
ance”.
Intern
ation
a
l j
ourn
a
l
of inn
o
vatio
n
s i
n
en
gin
eeri
ng r
e
searc
h
an
d
techno
lo
gy
. 20
14; 1(2).
[8]
Z
Yao, L Xia
o
, JM Guerrer
o
. "An impr
ov
ed co
ntrol str
a
teg
y
for the
three-p
has
e gr
id-co
nnecte
d
inverter".
IET
Renew
ab
le Pow
e
r Generati
o
n
. 201
5.
[9]
MA Elge
nd
y,
B Z
aha
w
i
, a
n
d
DJ Atkins
on.
“Com
par
iso
n
o
f
directl
y
c
o
n
n
e
cted
and
co
n
s
tant volta
g
e
control
l
ed p
hot
ovolta
ic pump
i
ng s
y
stems”.
IEEE Trans. Sustain. Energy
.
201
0; 1(3): 184
–19
2.
[10]
Ch Moun
ika, Ch Samp
ath Kumar, Shaik
K
hamur
udd
in. “Impleme
ntatio
n of Sustaina
ble DC Gr
i
d
Con
necte
d PV S
y
stem dur
ing
Da
y
& Ni
ght”.
Internatio
na
l jo
urna
l of inn
o
va
tive researc
h
i
n
electric
al
,
electro
n
ics, ins
t
rume
ntat
io
n a
nd contro
l en
gi
neer
ing
. 2
014;
2(8).
[11]
Jinso
o
Kim
a
n
d
Oh
Yan
g
. “D
esig
n of
a
Hi
g
h
-Efficient Gri
d
-Con
nected
T
h
ree-Ph
ase
T
h
ree-L
e
vel
T
-
T
y
pe PV Po
w
e
r S
y
stem”.
Internatio
nal Jo
urn
a
l of Contro
l an
d Auto
matio
n
. 201
4; 7(10): 65
-78.
[12]
Sathish K
u
mar
,
2 g Ravi Ku
mar. “A Seven
-
Leve
l
Grid Co
nnecte
d Invert
er for Photovo
l
taic s
y
stem”
.
Internatio
na
l jo
urna
l of compu
t
er engi
ne
erin
g
in researc
h
trends
. 201
4; 1(6)
.
0
2
4
6
8
10
12
14
16
-20
0
20
40
60
80
10
0
12
0
14
0
16
0
ti
m
e
(
s
e
c
)
m
o
t
or
s
p
ee
d
(
r
.
p.
m
P
V
sy
st
e
m
o
n
l
y
PV
w
i
th
b
a
tte
r
y
s
y
s
t
e
m
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 275 –
284
284
[13]
V Sureshk
u
ma
r, S Arun. “T
hree Ph
ase
Curr
ent
So
urce Inv
e
rter Usi
ng S
p
ace Vect
or P
W
M F
o
r Grid
Con
necte
d Ap
plicati
ons”.
T
h
e
Internation
a
l J
ourn
a
l of Eng
i
n
eeri
ng an
d Sci
ence (IJES)
. 2014; 3(2).
[14]
Hadi
Na
bi
pour
Afrouzia, S
a
e
ed Va
ha
bi M
a
shak
a, Z
u
lk
urn
a
in A
b
d
u
l-Ma
le
ka, Kam
y
ar M
ehra
n
zamir
a
,
Behn
am Salim
ia. “Solar Arra
y an
d Batter
y
Sizin
g
for a Photovo
l
taic Bui
l
din
g
in Mal
a
ysia”.
Ju
rnal
T
e
knol
ogi (Sci
ences & En
gin
eeri
ng)
. 20
13; 64(4): 79
–8
0.
[15]
BK Prust
y
,
Dr SM Al
i, DK S
a
h
oo.
“Mo
d
e
li
ng
and
Co
ntrol
of Grid-
C
o
nnecte
d
H
y
br
i
d
Photovo
l
taic/B
atter
y
D
i
stribut
ed Gen
e
ratio
n
S
y
stem”.
Inter
natio
nal J
our
n
a
l of En
gin
eeri
ng Res
earc
h
& T
e
chnol
ogy
. 201
2;
1(9).
[16]
Ishaq M, Ibrahim UH, Abubakar H. “Design of
an Off Grid Photov
oltaic
S
y
stem: A Case Study
of
Governme
nt T
e
chn
i
cal
C
o
ll
e
ge, W
u
d
il, K
a
n
o
State”.
Inter
n
ation
a
l J
our
nal
of Sci
entific
&
T
e
chn
o
l
o
g
y
Research.
20
1
3
; 2(12): 17
5-1
81.
[17]
Shen
g-Yu T
s
eng
and
Ch
en
g-T
ao T
s
ai. “Photovo
l
taic P
o
w
e
r S
y
st
em
w
i
t
h
a
n
Inter
l
e
a
vin
g
Bo
o
s
t
Conv
erter for Batter
y
C
harg
e
r Appl
icatio
ns”.
Internati
o
n
a
l Jo
urna
l of Photoe
nergy
. 20
12
[18]
Yuanz
hu
o D
u
and
Jins
ong
Li
u. “Rese
a
rch
o
n
Co
nt
rol Str
a
teg
y
i
n
P
hotovo
l
taic-Batter
y
-Di
e
sel
H
y
br
i
d
Micro-Grid”.
Internati
ona
l Jour
nal of Grid Dist
r
ibuti
on Co
mpu
t
ing
. 201
5; 8(4)
: 199-21
0
[19]
Adeg
oke Ola
d
i
po Mel
odi, Sol
a
Rich
a
rd F
a
makin.
“A Review
of Solar PV-Grid Parit
y
in Akure, South-
W
e
st Nigeri
a
”.
Internatio
na
l Journ
a
l of el
ectrical
a
nd co
mp
u
t
er engi
ne
erin
g
(IJECE)
. 2015
; 5(5).
[20]
Boucetta A
bdo
u Abd
a
ll
ah, L
a
bed
Djam
e
l. “
C
ontro
l of po
wer an
d volta
g
e
of solar
grid
conn
ected”
.
Internatio
na
l Journ
a
l of el
ectrical
a
nd co
mp
u
t
er engi
ne
erin
g
(IJECE)
. 2016
; 6(1).
[21]
N Cha
ndras
ek
aran, B Gane
shpra
bu a
nd
K
T
h
y
a
gar
aja
h
.
“Matlab Bas
ed Com
par
ativ
e Stud
y of
Photovo
l
taic F
E
D DC Motor
and PMD
C
Mo
tor Pumpin
g S
y
stem”.
ARPN
Journ
a
l of Eng
i
neer
ing
and
Appl
ied Sci
enc
es
. 2012; 7(
5).
[22]
HA Abde
l F
a
ttah an
d KA Lo
paro. “
Inducti
o
n
motor co
ntrol system
p
e
rformanc
e und
e
r
mag
neti
c
saturation
”. In
Procee
din
g
s o
f
the Americ
a
n
Co
ntro
l Co
n
f
erence,
(S
an Dieg
o
,
CA).
1
999: 166
8 –
167
2.
Evaluation Warning : The document was created with Spire.PDF for Python.