TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 80
0
8
~ 801
4
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.68
22
8008
Re
cei
v
ed
Jun
e
23, 2014; Revi
sed O
c
tob
e
r 10, 201
4; Acce
pted O
c
t
ober 2
6
, 201
4
HVDC Application for Different Solar PV Technology
Combinations in India
Suprav
a Chakrabor
t
y
*,
Pradip Kumar
Sadhu, Nitai
Pal
Dep
a
rtment of Electrical E
ngi
neer
ing, Ind
i
an
School of Min
e
s,
Dha
nba
d, Jhar
khan
d, India-
8
260
04, T
e
l.:+
9
1
-32
6
-22
3
-5
47
8; fax: +
91-32
6
-
229-
656
3.
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: suprava
1
0
0
8
@
gmai
l
A
b
st
r
a
ct
Conv
entio
na
lly
Grid Co
nnect
ed So
lar PV
pl
ants in
itial
l
y g
e
nerates
DC p
o
w
er and th
en c
onverte
d
to AC via i
n
ver
t
ers and c
onn
e
c
ted into A
C
gr
id for pow
er tra
n
smissio
n
. De
pen
din
g
o
n
the
si
z
e
of the p
l
a
n
t,
requ
ired
env
iro
n
menta
l
con
d
iti
on a
nd
l
a
n
d
av
aila
bi
lity lar
ge
PV pla
n
ts are
gen
eral
ly loc
a
t
ed far aw
ay fro
m
the lo
ad ce
ntre. Henc
e red
u
c
tion of trans
miss
ion
loss
a
nd i
n
cise
d tran
smiss
i
on c
a
p
a
c
ity expa
nsio
n
is
a
greater
cha
l
l
e
nge
for
mo
der
n n
e
w
l
y esta
bl
ish s
o
lar
pow
er pl
ant. T
r
an
smittin
g
hig
h
voltag
e D
C
p
o
w
er
directly fro
m
S
o
lar PV
pa
nel t
o
Hi
gh vo
ltag
e
DC gri
d
is
bec
ome a
n
accr
eti
v
e opti
on for
moder
n PV p
o
w
e
r
pla
n
t. In this p
aper
DC-DC
b
y
pass d
i
od
e co
nverter
mo
del
i
s
ado
pted to
g
ener
ate hi
gh v
o
ltag
e DC v
o
lt
age
in PV
pow
er
p
l
ant. R
e
sult s
h
ow
s that p
o
w
e
r in t
he r
a
n
g
e
of HV
DC
lev
e
l c
an
be
ge
n
e
rated
w
hen
th
e
voltage of different PV technology
blocks are used as
input. P-SIM soft
ware is us
ed f
o
r sim
u
lating t
h
e
circuit her
e.
Ke
y
w
ords
: HV
DC, PV pane
l, DC-DC co
nvert
e
r, P-SIM
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Traditio
nally
due to
eco
n
o
m
ic g
r
o
w
th th
e dem
and fo
r elect
r
icity ha
s be
en in
cre
a
sin
g
in
India [1, 2]. There are m
any insta
n
ta
neou
s b
ad e
ffects on th
e
environ
ment
su
ch a
s
la
rge
amount
of g
r
eenh
ou
se
ga
se
s
(G
HG) a
nd p
o
llutant
s emi
ssi
ons from the
bu
rni
ng of fo
ssil f
uels
[3]. The efficiency of the electri
c
ity prod
uction
secto
r
may be impro
v
ed, and there is potential
for
a shift from
coal to
other fuels,
su
ch
a
s
ren
e
wable
e
nergy [4
-8]. I
m
pact
of ren
e
wa
ble e
n
e
r
g
y
on
the elect
r
icity
market in India was
discu
s
sed
by Chattopad
hyay [9]. Due to stron
g
clim
ate
con
c
e
r
n
s
large photovolt
a
ic (PV)
ge
neratio
n
pla
n
ts are ra
pi
dly spreadin
g
all over t
he
indu
striali
z
ed
co
untri
es [1
0-12]. Sol
a
r
energy h
a
s
a key role
for th
e a
c
hi
e
v
ement of In
dian
energy targe
t
s to b
e
a
ccomplished
in
the n
e
a
r
fu
ture. In
stallat
i
on of S
o
lar po
wer pla
n
ts
rep
r
e
s
ent
s o
ne of th
e
sol
u
tions to e
n
sure
an i
n
cre
a
sin
g
p
a
rtici
p
ation of
sol
a
r po
we
r i
n
t
h
e
energy
mix o
f
the cou
n
try. Many large scale
sol
a
r p
o
we
r plant
s have been b
u
ilt in locations
whi
c
h are far
away from th
e load centre
depe
nding
o
n
the size of th
e plant and la
nd availability.
In many deve
l
oping
cou
n
tri
e
s, ele
c
tri
c
ity t
heft and line
losse
s
are a
co
stly burd
e
n
on the
power
se
ctor [13]. In Indi
a, avera
ge T
& D
(Tran
s
missi
on &
Di
stributio
n) l
o
sse
s
; have
be
en
officially indicated as 2
3
p
e
rcent of the
elec
tri
c
ity generate
d
. Ho
wever, as p
e
r
sampl
e
studi
es
carrie
d o
u
t by
inde
pen
dent
agen
cie
s
i
n
cl
uding
TERI, t
hese lo
sse
s
h
a
ve be
en
esti
mated to
be
a
s
high a
s
50 pe
rce
n
t in som
e
states [14]. Carolien et
al
. concl
ude
d that redu
cin
g
electri
c
ity losse
s
durin
g tra
n
smissi
on a
nd
distrib
u
tion
would redu
ce
emission
s by
6% and el
ectrical effici
en
cy of
power
plant
s improves by
9% in
India
[15].
Tran
smissi
on and
distrib
u
tion (T&D)
lo
sses are
estimated
to
co
st India
'
s economy
1
.
5% of GDP
ea
ch yea
r
,
agg
ravating
ch
roni
c
po
wer
sho
r
tage
s an
d straini
ng th
e pre
c
a
r
iou
s
finan
ce
s of its publi
c
ele
c
tricity providers [16].
High volta
ge
dire
ct current
(HV
D
C) i
s
u
s
ed fo
r lo
ng t
r
an
smi
ssi
on t
o
re
du
ce tra
n
s
missio
n
losse
s
. HV
DC i
s
techni
cal
l
y and e
c
o
n
o
m
ically attr
a
c
tive to deliver the po
we
r p
r
odu
ced
by th
ese
sola
r po
we
r p
l
ants to the
g
r
id when
dist
ances
are
pa
rticula
r
ly larg
e. Hump
ert a
nalyze
d
the
state
of the art of l
ong di
stan
ce
UHV
DC t
r
an
smissio
n
sy
stems a
nd the
possibl
e future develop
me
nt
[17]. HVDC
become
s
e
s
peci
a
lly interesting fo
r lin
king
geo
gra
p
h
ically di
stan
ced
re
ne
wab
l
e
energy powe
r
plants th
ro
ugh a multi-t
e
rmin
al grid
[18]. To transmit bulk
po
wer ove
r
larger
distan
ce
s
of seve
ral th
o
u
sa
nd
km v
i
a over
h
e
ad lin
es
, U
l
tra-
H
i
gh
-
V
o
l
tag
e
DC
(UH
V
DC
)
transmissio
n with DC-volta
ges
of
80
0 kV
is
the
preferred
solutio
n
. Vindhya
c
h
a
l Back-To
-Back
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
HVDC Appli
c
ation for Diffe
rent Solar PV
Techn
o
log
y
Com
b
ination
s
in… (Suprava Cha
k
rabo
rt
y)
8009
HVDC lin
k
conne
cts
No
rt
hern
and
Western r
egio
n
s
with 2 li
nes. Vin
dhya
c
hal
HV
DC l
i
ne
operates at
a DC voltage
of 70
kV an
d ha
s
a t
r
an
smissio
n
p
o
w
er of 25
0M
W.182
5 km l
ong
Biswa
nath
Chariyali
– Ag
ra
HVDC t
r
a
n
smi
ssi
on
lin
e conn
ect
s
Assa
m to
Ut
tar Prade
sh.
Its
maximum po
wer tran
smission
capa
city is 600
0 MW
a
nd the tran
sm
issi
on Voltag
e is 800 kV [1
9].
In India, the
r
e have
bee
n many inte
r-regio
nal tra
n
smi
ssi
on p
r
oject
s
, again
involving lo
ng
distan
ce
HV
DC line
s
. Am
ong th
e m
a
n
y
proj
ect
s
, on
e of th
e
wo
rld
’
s lo
nge
st
HV
DC tra
n
smi
ssion
line is in
ope
ration in In
dia,
brin
ging
abo
ut 200
0 M
W
f
r
om th
e Ea
stern
grid
to th
e South th
rou
gh
the 14
00
km
HV
DC line
from
Tal
c
he
r i
n
O
r
issa
to
Kolar i
n
Ka
rn
ataka
via t
w
o
state
s
, And
h
r
a
Prade
sh a
nd
Tamil Na
du. High effici
en
cy Step-Up
HVDC
conve
r
ter for ph
otovoltaic ge
nerator i
s
prop
osed in some literatu
r
e
s
[20-2
3
].
In a tra
d
ition
a
l PV plant
a
larg
e n
u
mbe
r
of PV m
o
d
u
les are
se
ries
co
nne
cted
in lo
ng
string
s and
a
si
ngle
ce
ntralized
i
n
verter provide
s
the
voltag
e inversio
n. Such
a
string
architectu
re i
s
burden
ed
by a low efficien
cy.
Mor
e
sop
h
ist
i
cat
ed ar
chit
e
c
t
u
res h
a
v
e
be
en
develop
ed
where
PV mod
u
les
are a
rra
nged i
n
string
s,
or even su
bstrin
gs, ea
ch
one
conne
cted
to the grid th
roug
h a d
edi
cated i
n
verte
r
, or a d
edi
cated DC/DC
conve
r
ter
an
d a ce
ntrali
zed
inverter [24,
25]. In [26]
a metho
d
i
s
introdu
ce
d to
red
u
ce the
output
curre
n
t
ripple
of th
e
conve
r
ter an
d presented
a detaile
d a
n
a
lysis
of
the
output
curren
t ripple
of th
e DC-DC bo
ost
conve
r
ter to
provide
a
gui
deline
for the
de
sign
of th
e batte
ry cha
r
ge
r. In [27]
i
n
vestigate
d
a
nd
comp
ared co
nventional d
c
-dc
conve
r
ter
and dio
de as
siste
d
dc-d
c converte
r in wi
de ran
ge po
wer
conve
r
si
on f
r
om the
a
s
pe
cts
of sili
co
n
devices
.
Gri
d
-conn
ecte
d
PV system
can elimi
nate
the
need for batt
e
rie
s
and a
s
sociate
d
acce
ssorie
s [28
]. An important
numbe
r of step-u
p
stru
ctu
r
es
usin
g active swit
chin
g co
mpone
nts were p
r
opo
s
e
d
for photovol
taic system
s with conve
r
ters
asso
ciated to
individual or
to a set of parallel,
seri
es o
r
mixed asso
ciated p
hotov
oltaic pa
nel
s.
In this pape
r a new co
ncept of conne
cting pan
els
of different techn
o
logie
s
wi
th same
curre
n
t rating
is introd
uce
d
. In this ne
w co
nc
ept p
anel voltage
is direct
ly co
nverted to HVDC
level to transmit a long distance.
2. HVDC a
n
d
Solar PV
HVDC first
became
a feasi
b
le tran
smissi
on te
ch
nology in
th
e 195
0s. T
o
day, the
highe
st-cap
a
c
ity proj
ect
s
have capa
citi
es b
e
tw
e
en
3
000 a
nd
640
0 MW at the
voltage level
s
o
f
±500,
±6
00, and ±8
00 kV
[29].
The
r
e
are
many na
tion-wi
de an
d
inte
r-regio
n
a
l
tra
n
smi
s
si
on
proje
c
ts con
c
eived in
India
and
China
u
s
ing
HV
DC/ UHV
DC
in co
njun
ction with
FACTS dev
i
c
e
s
[30]. Future HVDC app
ea
rs likely at ±6
00 and ±
800
kV [31], and some
con
s
id
eration h
a
s b
een
given to the use of ±1
000
kV. HVDC i
s
well
-k
no
wn
to be an attractive optio
n
for bulk po
wer
transmissio
n in
belo
w
men
t
ioned appli
c
ations: (1
)
Int
e
rconn
ectin
g
two
a
s
yn
chro
nou
s
n
e
two
r
ks.
(2) When th
e
uninterru
pted
tran
smi
ssi
on
dista
n
ce
exceed
s ab
out 6
00
km, eithe
r
to move e
nergy
from a specific generation facilit
y to a specific load
centre or
to i
n
terconnect t
w
o areas of
a
singl
e netwo
rk. (3) Fo
r un
derg
r
o
und tra
n
smi
ssi
on. It
may be parti
cula
rly effective, in terms of
eco
nomi
c
b
enefit and
i
n
term
s of
tran
smissio
n
sy
stem p
e
rform
a
n
c
e,
to intercon
nect
asyn
chrono
u
s
networks
wi
th long-di
stan
ce.
Different PV
techn
o
logi
e
s
are di
scussed i
n
many
literatures [
32, 33] an
d
it is well
establi
s
h
ed t
hat different
techn
o
logie
s
has di
fferent
cu
rrent a
n
d
voltage
ratin
g
de
pen
ding
on
their po
we
r ra
ting. Conn
ecti
ng different P
V
tec
hnolo
g
y blocks usi
ng
HVDC co
nce
p
t is a new o
n
e
whi
c
h can re
duce the tra
n
smi
ssi
on an
d distrib
u
ti
on
losses in case of long
distan
ce p
o
wer
transmissio
n [20-23].
DC-DC
Bo
ost co
nverter co
nc
ept is u
s
e
d
here fo
r in
creasi
ng the p
anel
voltage up to the HVDC level.
Schem
atic of
pro
p
o
s
ed
concept is sh
own i
n
Figure 1. In this
c
o
nc
ept different PV
techn
o
logy
bl
ocks with sa
me
current ra
ting
but
different voltage
can be
conne
cted togethe
r.
So
PV panel
s of
different te
ch
nologi
es
ca
n
be u
s
ed i
n
sa
me PV po
wer plant if cu
rre
n
t rating
of the
blocks re
mai
n
s
same
u
s
in
g pro
p
e
r
com
b
ination
of
pa
nels. Bypa
ss
diode i
s
u
s
e
d
to prote
c
t from
lowe
r cu
rrent
generation from a pa
rticu
l
ar blo
ck
d
u
e
to meteorolo
g
ical p
a
ra
me
ter variation
or
any fault. Th
e outp
u
t of t
he b
o
o
s
t
cho
pper
can
a
c
h
i
eve a
s
hi
gh
as
HV
DC lev
e
l a
s
hi
gh
in
put
voltage ca
n b
e
introdu
ce
d usin
g this con
c
ept.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8008 – 80
14
8010
Figure 1. Pro
posed sch
e
m
a
tic for differe
nt PV technol
ogie
s
co
nne
cted to HVDC
grid
3. Boos
t Co
nv
erter and Its Ope
r
ation
DC-DC
boo
st
conve
r
ter co
nce
p
t is
used
in th
is pap
er for
HVDC a
p
p
licatio
n of S
o
lar PV
plants.
Figure 2. Circuit diagram of a Bo
ost Co
nverte
r
3.1.
Mode-I Op
er
ation Of
Boo
s
t Co
nv
erter
In mode
-I switch S
1
is cl
osed the ind
u
ct
or get
s char
g
ed thro
ugh th
e battery an
d
store
s
the energy. In this mode i
ndu
ctor curr
e
n
t rise
s (exp
o
nentially). Th
e diode (S
2
)
blocks the cu
rre
nt
flowing
and
so the loa
d
current remain
s
con
s
tant
whi
c
h is b
e
ing
su
pplied
due to
the disch
a
rgi
ng
of the capa
cit
o
r C.
Figure 3. Mode-1 o
p
e
r
atio
n of a Boost Conve
r
ter
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
HVDC Appli
c
ation for Diffe
rent Solar PV
Techn
o
log
y
Com
b
ination
s
in… (Suprava Cha
k
rabo
rt
y)
8011
3.2.
Mode-II Oper
ation Of
Boo
s
t Co
nv
erter
In mode-II the switc
h
S
1
i
s
op
en a
nd
so the
diod
e
(S
2
) be
com
e
s sho
r
t circui
ted. The
energy store
d
in the indu
ctor
, L get
s d
i
scharged th
rough o
ppo
sit
e
polaritie
s
which
cha
r
ge t
h
e
cap
a
cito
r, C. The load
cu
rrent remai
n
s
consta
nt throu
ghout the op
e
r
ation.
Figure 4. Mode-2 o
p
e
r
atio
n of a Boost Conve
r
ter
1
(1)
1
(2)
1
(3)
1
(4)
1
(5)
Let,
and
(
6
)
(
7
)
The i
nput
and
output
po
we
r mu
st be
al
ways e
qual.
Th
ere
are n
o
pl
ace
s
fo
r
ene
rgy to be
lost in thi
s
converter. S
w
itch-1, S
1
car
r
i
e
s I
in
w
h
en
on
. W
h
e
n
S
1
is
off, switch-2, S
2
must
be on
and switch
-1
must block V
out
. Therefo
r
e S
1
must be a forward–
condu
cting, forwa
r
d –bl
ocki
ng
device. Switch-2 can be a
diode.
4.
Simulation and Res
u
lts
In this
pre
s
e
n
t
wo
rk, fu
ncti
onal
sol
a
r PV
pan
el
con
n
e
c
ted
with
DC-DC bo
ost
ch
oppe
r i
s
simulate
d u
s
i
ng P-SIM soft
ware. Mathe
m
atical
cal
c
ul
ation for
sele
cting the valu
e of indu
ctor
and
cap
a
cito
r is
done u
s
in
g
conve
n
tional
method. Fu
nction
al sol
a
r PV panel
s have four i
nput
para
m
eters,
open
ci
rcuit
voltage, short circ
uit
cu
rrent, maximu
m po
we
r p
o
i
n
t voltage
a
nd
maximum po
wer
point
cu
rre
nt. Functi
onal Sola
r P
V
panel of 2
1
V and 4
5
V
open
circuit
is
simulate
d to
see
the
outp
u
t voltage
at
the loa
d
e
nd.
The
ci
rcuit configuration a
nd wavefo
rm
s
in
P-SIM are sh
own b
e
lo
w.
21V sol
a
r PV
panel i
s
con
necte
d with t
he de
sign
ed
boo
st co
nvert
e
r a
s
sho
w
n i
n
Figu
re
6 and
simul
a
ted. Simulatio
n
re
sult with
output vo
ltag
e of 190V
sh
own i
n
Figu
re
5 and Fi
gu
re
7.
In Figure 6
si
mulation resu
lts up to 0.00
6 se
con
d
s i
s
sho
w
n to visualize the tra
n
sie
n
ts in out
put
voltage and from Figure 7 it is very
clear that the output voltage becom
e
s
sta
b
le
with in .01 Sec.
Another
sola
r PV panel of 45V is also si
mulated
an
d its output voltage is
sho
w
n
in Figure 8. 45V
panel voltag
e
is boo
sted u
p
to 240V.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8008 – 80
14
8012
Figure 5. P-SIM Simulation model with S
o
lar 21V PV panel for 0.0
0
6
se
c
Figure 6. P-SIM Simulation model with S
o
lar PV Panel
Figure 7. P-SIM Simulation model with S
o
lar 21V PV panel for 0.0
5
sec
In Figure 8 th
e simulatio
n
result is
sho
w
n up to
0.025
sec. In this fi
gure tran
sient
is very
clea
r an
d it is al
so
see
n
that with in
very few m
ili se
con
d
s t
he outp
u
t voltage be
com
e
s
stabili
zed.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
HVDC Appli
c
ation for Diffe
rent Solar PV
Techn
o
log
y
Com
b
ination
s
in… (Suprava Cha
k
rabo
rt
y)
8013
Figure 8. P-SIM Simulation model with S
o
lar 45V PV panel for 0.0
2
5
se
c
5. Conclusio
n
This pa
pe
r h
a
s an
alyze
d
the boo
sted o
u
t
put power from Sola
r PV panel
s usi
n
g
P-SIM
softwa
r
e. The
following p
o
ints su
mma
rize the work p
r
ese
n
ted in thi
s
pap
er.
1)
Usi
ng P-SI
M software
it is seen
that o
u
tput
voltage
as hi
gh
as
ni
ne time
s the
PV input voltage
can b
e
achie
v
ed.
2) Outp
ut voltage sta
b
ilizes within very small dur
ation
of time in the rang
e of mili se
con
d
s.
3) Solar PV p
anel
s of different techn
o
log
i
es with
same
current ratin
g
but different
voltage can
be
con
n
e
c
ted in
this HVDC scheme.
4) All the advantage
s of using HVDC will
be adde
d wit
h
advantag
es of using sola
r PV.
5) Bypa
ss di
ode
con
c
e
p
t is al
so i
n
trod
u
c
ed to
elimin
ate the redu
ction in po
we
r gene
ration
d
ue
to fault in cert
ain type of PV block.
In this pa
per
only simul
a
tio
n
re
sults
are
sho
w
n
whi
c
h
con
c
lu
de
s hi
gh po
we
r out
put ca
n
be a
c
hi
eved f
r
om th
e
sola
r PV pan
els u
s
ing
the
pro
p
o
se
d
scheme
whi
c
h
can
b
e
u
s
ed
for HVDC
whe
n
more n
u
mbe
r
of pa
nels i
s
co
nne
cted in se
rie
s
to gene
rate
the input voltage. This work
pre
s
ent
s a
p
r
elimin
ary
study of the
concept. Th
i
s
study i
s
pla
nned to
exte
nd for
re
al time
simulatio
n
wit
h
different PV panels of same cu
rr
ent rating but different voltage rating to see t
he
pra
c
tical viabi
lity of
the con
c
ept.
Referen
ces
[1]
S Kad
o
shi
n
, T
Nish
i
yama, T
Ito. T
he trend
in c
u
rrent
an
d n
ear futur
e
ener
g
y
co
nsu
m
ption from
a
statistical pers
pective.
App
l
. Energy.
20
00;
67: 401
–4
17.
[2]
RJ Bose, M Shukla. Elasticti
e
s of electricit
y
dema
nd in In
di
a.
Energy Pol
i
c
y
.
1999; 27: 13
7–1
46.
[3]
F
e
rnán
dez-Infa
n
tes, J C
ontr
e
ras, JL
Ber
nal-A
gustín. Desig
n
of
gri
d
co
nnecte
d PV
s
y
stem
s
consi
deri
ng ele
c
trical,
eco
nom
ical and env
iro
n
menta
l
asp
e
ct
s: a practica
l c
a
se.
Re
new
E
nergy
. 20
06
;
31(1
3
): 204
2–6
2.
[4] CERI,
T
E
RI
.
Plan
nin
g
for t
he Ind
i
a
n
pow
er sector, env
i
r
on
me
nt an
d
deve
l
op
ment c
onsi
derati
ons
.
Stud
y N
o
. 62,
Can
adi
an E
ner
g
y
Res
ear
c
h
In
stitute, T
a
ta Energ
y
R
e
se
ar
ch
Institute, Ne
w
Delh
i, Ind
i
a,
199
5.
[5]
T
E
RI, ERI, WAU, IIASA. Final
r
e
port on
Work Package 1: ‘
An
alysis
of the p
o
tenti
a
l de
man
d
for
renew
ab
le so
u
r
ces of energy
in Indi
a and C
h
ina
, as part of the pro
j
ect ‘‘Pot
entia
l for use o
f
rene
w
a
ble
sources of en
erg
y
in Asi
a
and the
i
r cost effect
iveness
in air pol
luti
o
n
abatem
ent’’.
T
a
ta Ener
g
y
Research Institute, Ne
w
De
lhi,
India. 19
99.
[6]
C Che
n
, S Duan, T
Cai, B Liu, G Hu. Smart energ
y
mana
geme
n
t s
y
stem for opt
imal micro
g
ri
d
econ
omic op
er
ation.
IET
Ren
e
w
able Pow
e
r
Generati
o
n
. 20
11; 5(3): 25
8–2
67.
[7]
L Suga
nthi, A W
illiams. Re
ne
w
a
bl
e en
erg
y
i
n
India, a mod
e
lli
ng stud
y for
2020
–2
021.
E
nergy Po
licy
.
200
0; 28: 109
5
–11
09.
[8]
A Singh. Po
w
e
r sector reform in I
ndia: curre
nt issues an
d prosp
e
cts.
Energy Policy
. 20
0
6
; 34: 2480
–
249
0.
[9]
D Ch
attopa
dh
ya
y
.
M
o
d
e
ll
ing
r
ene
w
a
b
l
e
en
er
g
y
imp
a
ct o
n
t
he
electric
it
y
market i
n
Ind
i
a
.
R
e
ne
wa
b
l
e
and Susta
i
n
abl
e Energy R
e
vi
ew
s
. 2014; 31: 9–2
2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8008 – 80
14
8014
[10]
Sharma C, Jain A. Simulink
Bas
ed Mu
lti Varia
b
le So
lar
Pane
l Mode
lin
g,
T
E
LKOMNIKA Indones
ia
n
Journ
a
l of Elec
trical Eng
i
ne
eri
ng.
2014; 12(8)
: 5784 ~ 5792, DOI: 10.
11591/telkomnika.v12i8.6071.
[11]
Rabi
h A
Ja
br. Minim
u
m
los
s
op
eratio
n
of
distri
butio
n n
e
t
w
o
r
ks
w
i
th photov
olta
ic
g
ener
ation.
IET
Ren
e
w
able P
o
w
e
r Generatio
n
. 2014; 8(
1): 33 – 44.
[12]
M T
homson, D
Infiel
d. L
abor
a
t
or
y
dem
onstra
t
ion
of a
p
hoto
v
oltaic-
p
o
w
e
r
e
d
se
a
w
at
er rev
e
rse-osm
o
si
s
s
y
stem w
i
th
out
batteries.
Des
a
lin
atio
n
. 200
5; 183(1-
3): 105-
111.
[13]
SSSR. Depuru, L Wang, V
Devab
haktuni. E
l
ectricit
y
theft: overvie
w
, issues, prevention
and
a smar
t
meter based approach
to control theft.
Energy Policy.
20
11
; 39(2): 100
7–1
015.
[14] http://data.
w
o
r
l
dba
nk.org/i
ndic
a
tor/EG.ELC.LOSS.Z
S
. 2014.
[15]
C Kroeze, J Vlasbl
om, J Gupta,
C Boudri, K Blok.
T
he pow
e
r
sector in Chin
a an
d
In
di
a:
gre
e
n
hous
e
gas emiss
i
ons
reducti
on p
o
te
ntial a
nd sce
na
rios for 199
0–
2
020.
Ener
gy P
o
licy.
20
04; 32:
55–7
6.
[16]
B Bhatia, M Gulati. Ref
o
rmin
g
the Po
w
e
r S
e
ctor
: Contro
lli
ng El
ectricit
y
T
heft and Impr
o
v
ing R
e
ve
nue
.
Publ
ic Polic
y fo
r the Private Sector Note
27
2
,
W
o
rld Bank, W
a
shin
gton, D
C
. 2004.
[17]
C Hump
ert. Lon
g dista
n
ce
transmissio
n
s
y
stems
for the future electric
it
y
s
u
pply
-Analy
sis
of
possi
bil
i
ties an
d restrictions.
Energy.
20
12;
48: 278-
28
3.
[18]
N Ahme
d, S N
o
rrga, HP
Ne
e, A Hai
der, D V
an H
e
rtem, L Z
han
g, L H
a
rn
efors. HVDC s
u
p
e
rgrids
w
i
t
h
modu
lar mu
ltile
vel co
nverters.
T
he pow
er tra
n
s
miss
ion
back
bon
e of the fut
u
re.
9th Inter
n
ation
a
l Mu
lti-
Confer
ence
on
S
y
stems, Sign
als an
d De
vic
e
s, Chemnitz, German
y
. 20
12;
1–7.
[19] http://onlin
e-el
ectrical-e
ng
ine
e
rin
g
.blo
gsp
o
t.in/
201
2/01/hv
d
c
-lines-
i
n-i
n
d
i
a.
html, Accessed on Ma
y
4
,
201
4.
[20]
JP Sa
w
i
cki, P
Petit, A Z
e
g
a
o
u
i, M A
ill
erie,
JP Ch
arles.
Hi
gh
efficie
n
c
y
S
t
ep-Up
HVD
C
converter
for
photov
olta
ic ge
nerator.
Ener
g
y
Procedi
a.
20
12; 18: 15
93–
1
600.
[21]
P Petit, M Ail
l
erie, JP
Sa
w
i
cki, JP Ch
arle
s.
Push-p
ull
c
onverter
for h
i
gh
efficienc
y
photov
olta
ic
convers
i
on.
En
ergy Proce
d
ia
.
201
2; 18: 158
3
–15
92.
[22]
P Petit, A Zgaoui, JP Sa
w
i
c
k
i, M Ailleri
e, JP C
harl
e
s. N
e
w
arch
itectur
e
for hig
h
effic
i
enc
y D
C
-D
C
converter d
edi
cated to ph
oto
v
oltaic C
onver
sion.
Ener
gy Proced
ia
. 20
11; 6: 688–
69
4.
[23]
P Petit, M Aillerie, JP Sa
w
i
cki
, JP Charles.
High
efficienc
y DC-DC conv
e
r
ters inclu
d
in
g a perform
e
d
recoveri
ng l
eak
age e
ner
g
y
s
w
i
t
ch.
Energy Proced
ia
. 20
13; 36; 642
– 649.
[24]
A Elass
e
r, M
Agam
y, J S
a
b
a
te, R Ste
i
g
e
rw
a
l
d,
R F
i
s
her
, MH T
odorovi
c
.
A co
mp
arati
v
e study
o
f
central a
nd d
i
stribute
d
MPPT architectur
e
s
for me
ga
w
a
tt utility and larg
e scal
e
commercia
l
photov
olta
ic pl
ants
. IECON
36th an
nu
al c
onfere
n
ce o
n
IEEE
industria
l
electron
ics societ
y
.
201
0;
275
3-8.
[25]
N Jay
a
sek
a
ra, P Wolfs.
Analysis of pow
er qu
ality i
m
pact of hig
h
pen
etratio
n
PV in resid
e
n
tial fee
ders
.
Univers
i
ties Po
w
e
r Eng
i
ne
eri
n
g Confer
enc
e (AUPEC
). 20th
Australas
i
an p
ub
lic
atio
n
year.
2010; 1-8.
[26]
Hassa
ne
B
en Sliman
e,
Be
n Moussa De
nn
ai,
He
lm
a
oui
Abderr
a
chi
d
. T
heor
etical
Stu
d
y
of Mu
ltip
l
e
Solar Ce
lls S
ystem as a
F
unction of T
e
mperatur
e,
T
E
LKOMNIKA Indones
ian Jo
urn
a
l of Electrical
Engi
neer
in
g
. 2014; 12(
7): 4928 ~ 4933, DOI:
10.11
591/telkomnika.v12i7.5363.
[27]
Ehsan
Hoss
ei
ni. Mo
del
ing
and
Simu
lati
o
n
of S
ilic
on
Sol
a
r C
e
ll
i
n
MAT
L
AB/SIMULINK fo
r
Optimization,
T
E
LKOMNIKA Indo
nesi
an Jo
u
r
nal
of Electric
al Eng
i
ne
eri
n
g
.
2014; 1
2
(8): 6
047 ~
605
4,
DOI: 10.11591/telkomnika.v12i8.5294.
[28]
M Bojic, M B
l
a
goj
evic. Ph
oto
v
oltaic
el
ectrici
t
y
pr
oducti
on
o
f
a gri
d
-con
nec
ted urb
a
n
ho
u
s
e in
Serb
ia.
Energ
y
Po
lic
y. 200
6; 34(1
7
): 2941
–8.
[29]
CIGRE report
417. T
e
chnol
o
g
ical
assessm
ent of
80
0 kV HVDC a
ppl
icat
ions. CIGRE
w
o
rkin
g gro
u
p
B4.45. 20
10.
[30]
M Lemes, W B
r
euer. UHV D
C
800 kV bulk tr
ansmissi
on. IEEE
T
&
D Latin America. 20
10.
[31]
HVDC
projects
listing. Prepar
ed for
the DC
and
flex
ible AC transmission
s
ubcommittee
of the IEEE T
and
D comm
ittee b
y
th
e
w
o
rkin
g gr
ou
p
on HV
DC
and F
A
CT
S bibl
io
grap
h
y
a
nd rec
o
rds.
http://nomoreto
w
e
r
s.org/D
o
cu
ment
s/HVDCP
rojectsL
istingP
l
ann
ed.ht
m, Accessed o
n
Ma
y 5, 2014.
[32]
G Notton, V L
a
zarov, L
Sto
y
a
nov. Optima
l si
zin
g
of
a g
r
id-con
necte
d
PV s
y
stem for
vario
u
s P
V
modu
le tech
no
logi
es a
nd i
n
cl
inati
ons, inv
e
rter efficienc
y c
haracter
i
stics and l
o
cati
ons.
Renew
a
b
l
e
Energy.
20
10;
35: 541
–5
54.
[33]
T
Pavlovic, D
Milosav
ljev
i
c, I Rad
o
n
jic, L
P
antic
, A R
a
d
i
v
o
jevic, M
Pavl
ovic. Possi
bi
lit
y
of el
ectricit
y
gen
eratio
n usi
ng PV solar
pl
ants in Serb
ia.
Renew
ab
le a
nd Sustai
na
ble
Energy Rev
i
e
w
s
. 2013; 20
:
201
–2
18.
Evaluation Warning : The document was created with Spire.PDF for Python.