TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 66
7
3
~ 668
1
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.639
8
6673
Re
cei
v
ed Ap
ril 28, 2014; Revi
sed
Jun
e
18, 2014; Accepted July 1
0
,
2014
Resear
ch on the Regenerative Braking Control
Strategy Considering Battery/Motor/CVT Joint High
Efficiency for CVT Hybrid Electric Vehicle
Tao De
n
g
1
, Chun
s
ong
Li
n
1
, Bin
Chen
2
1
School
of Mec
h
atron
i
cs & Automotive En
gin
eeri
ng,
Ch
o
n
gq
in
g Jiaoto
ng
U
n
ive
r
s
i
t
y
,
Cho
n
g
q
i
n
g, P.R.Chin
a
2
T
he
State Ke
y Lab of Mech
anical T
r
a
n
s
mis
s
io
n, C
h
on
gq
i
n
g Universit
y
,
Chongqin
g
, P.R.China
Corresp
on
din
g
author, e-mai
l
: d8
2t722@
16
3
.
com
A
b
str
a
ct
T
he traditi
o
n
a
l
rege
n
e
r
a
ti
v
e
br
aki
n
g contro
l strategies
f
o
r hy
brid e
l
ectric v
ehicle ju
st o
n
ly
c
o
n
s
i
d
ers
to
ensure
motor to w
o
rk alo
n
g w
i
th the
b
a
ttery/m
otor
jo
in
t optimal
effici
en
cy curv
e, bu
t
not
con
s
id
e
r
the
influ
ence of c
o
ntinu
o
u
s
ly var
i
abl
e trans
m
i
ss
ion (
C
VT
) e
fficiency to
the sy
ste
m
synth
etic
efficien
cy, yet i
n
fact that t
h
e
CVT
efficie
n
cy
varies
w
i
th the
o
p
e
r
ati
ng
c
onditio
n
betw
e
en
7
0
%
and
95
% var
i
a
t
ion,
w
h
i
c
h can not
b
e
ne
gle
c
te
d
for the synth
etic effi
cien
cy of
regene
rativ
e
br
a
k
in
g
system
. Bas
ed
on
th
e
ana
l
ysi
s
of the rel
a
ti
o
n
shi
p
a
m
o
n
g th
e s
y
nthe
sis
effici
en
cy of reg
enerati
v
e
b
r
ak
i
n
g
system
an
d
the
efficien
cy
of
the NiM
H
batt
e
ry,
ISG
m
o
tor
and
CVT
,
the b
a
tt
ery/motor/
CVT
joi
n
t h
i
g
h
ef
ficie
n
cy are
calcu
l
ate
d
, then the b
a
tte
ry/motor/CVT
jo
int
hig
h
effi
ciency opti
m
u
m
w
o
rki
n
g
c
u
rve i
s
draw
n, finally
the
regene
r
a
tive b
r
aki
n
g contro
l
st
rate
gy
a
d
o
p
te
d w
i
th
the b
a
ttery/
m
otor/C
VT
joint hi
gh
e
fficiency o
p
ti
mu
m
w
o
rking
c
u
rve
is pro
p
o
s
ed. C
o
m
par
ed to
th
e offlin
e si
mul
a
tion
an
d h
a
rd
w
a
re-in
-
the-
lo
op(HIL) test res
u
lts
ado
pte
d
w
i
th the battery/
m
ot
or j
o
int
hig
h
efficie
n
cy
o
p
ti
m
u
m w
o
rki
n
g c
u
rve, the
motor
ave
r
a
g
e
gen
e
r
at
in
g
efficien
cy i
n
cre
a
ses b
y
2.23%
, brakin
g e
ner
g
y
re
covery rate
incre
a
s
e
s by 4
.
0
9
%
thro
ug
h offline
si
mul
a
ti
on,
and
t
he average
g
e
n
e
rati
n
g
efficiency
incr
e
a
se
s by
1.1
3
%
throu
g
h HILS test. Both
resu
lts
sh
ow
th
at
th
e
prop
osed r
ege
n
e
rativ
e
br
a
k
i
n
g control strate
g
y
can re
al
i
z
e
the NiMH
batte
ry, ISG m
o
tor and CVT
to w
o
rk
w
i
th joint
hig
h
efficien
cy
w
h
i
c
h father
l
y
enh
a
n
ce
s
bra
k
in
g e
nergy
re
c
o
very
rate u
n
d
e
r g
u
a
rant
e
e
i
n
g
enti
r
e
vehi
c
l
e br
a
k
in
g
se
curit
y
co
nd
itio
n.
Ke
y
w
ords
:
h
y
br
i
d
el
e
c
tri
c
vehi
c
l
e,
re
gene
rati
v
e
b
r
a
k
ing,
efficiency
opti
m
i
z
a
t
io
n,
co
ntrol strate
g
y
, har
dw
a
r
e
-
in-th
e
-
l
oop (HI
L
)
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
ti
on
The rege
n
e
rative bra
k
ing
is on
e of t
he impo
rtant
workin
g m
o
des
of hyb
r
i
d
ele
c
tri
c
vehicle.
Un
d
e
r the
pre
m
i
s
e to
gua
ran
t
ee the e
n
ti
r
e
vehicl
e
saf
e
bra
k
i
ng, th
e optimi
z
atio
n of
rege
ne
rative bra
k
ing
control strate
gy a
nd the
re
ali
z
ation of the
greate
s
t deg
ree of b
r
a
k
in
g
energy re
cy
cl
ing are the i
m
porta
nt
re
search
conte
n
t
s
of reg
e
n
e
r
a
t
iv
e braki
n
g for hybri
d
el
e
c
tric
vehicle.
For
reg
e
n
e
r
at
ive bra
k
i
ng
control
strate
g
y
, internation
a
l re
se
a
r
ch
h
a
s a
n
ea
rly
st
art, and
many control
strategi
es
ha
ve been
prop
ose
d
. Y.
M.
Gao et
al. [1] have p
r
op
o
s
ed three
kind
s of
bra
k
ing fo
rce
distrib
u
tio
n
control st
rate
gies to
a
p
p
r
a
i
se rege
ne
rative bra
k
ing
e
nergy
re
co
ve
ry
efficien
cy, an
d given ove
r
a
ll con
s
ide
r
ati
on to t
he fri
c
tion braki
n
g, regen
e
r
ative b
r
aki
ng a
n
d
A
B
S
control, but h
a
ve not con
s
i
der th
e moto
r efficien
c
y
an
d the CVT
efficien
cy. S. R. Cika
ne
k an
d
K.
E. Bailey [2]
have take
n t
he improvem
ent of the
en
tire vehicl
e e
nergy recove
ry efficien
cy
and
the optimi
z
ati
on o
n
the
dri
v
er pe
rceptio
n a
s
t
he
de
si
gn g
oals of t
he b
r
a
k
ing
fo
rce
di
stributio
n
strategy, b
u
t
also
h
a
ve n
o
t
con
s
id
e
r
e
d
t
he synt
h
e
si
s
efficien
cy of regen
e
r
ative b
r
aki
ng
sy
ste
m
.
Dome
stic
re
search o
n
re
g
enerative
bra
k
ing
co
ntrol
strategy is in
t
he infan
c
y. J. M. Zhang et
al.
[3] have ta
ken the
ave
r
a
ge
reg
e
n
e
r
ati
v
e bra
k
i
n
g f
o
rce a
s
the
goal, a
nd
se
l
e
cted
key
p
o
i
nt
coo
r
din
a
te
s o
n
the bra
k
in
g
control
strat
egy cu
rve a
s
the control v
a
riabl
es, then
optimized a
nd
desi
g
ne
d th
e reg
e
n
e
r
ati
v
e bra
k
ing
control st
rat
egy. T. Den
g
et al. [4] have p
r
op
ose
d
battery/motor joint high effi
cien
cy wo
rkin
g method,
an
d
formulate
d
the
CVT ratio
control
st
rate
gy
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
73 – 668
1
6674
and
re
ge
n
e
ra
tive bra
k
in
g
control
strate
gy, but
have
not
con
s
ide
r
ed the
influe
nce
of the
CVT
efficien
cy to the synthe
si
s
efficien
cy of regen
e
r
ative b
r
aki
ng sy
ste
m
.
By adjustin
g
ratio
contin
uo
usly, CVT
hy
brid
el
e
c
t
r
ic v
ehicl
e
not o
n
l
y
can
g
u
a
r
a
n
tee the
engin
e
o
r
mo
tor to obtain the optimum
energy co
n
s
u
m
ption und
e
r
each d
r
iving
mod
e
, but al
so
force
s
th
e m
o
tor to
wo
rk i
n
the hi
gh
efficien
cy
re
gio
n
to en
han
ce
reg
e
n
e
rative
bra
k
i
n
g
ene
rgy
recovery rate
unde
r vehicl
e
decel
e
r
atio
n
and braki
ng
mode.
For
CVT hyb
r
id ele
c
tri
c
vehicl
e, the
CV
T efficiency
is assum
e
d
to be co
nst
a
nt (
η
cv
t
=
0.85
) i
n
th
e g
e
neral
re
gen
e
r
ative
bra
k
i
n
g
c
ont
rol
stra
te
gie
s
. Ho
we
ver,
the CVT
a
c
t
ual
effici
e
n
cy va
ries
with its wo
rki
n
g co
n
d
iti
on betwe
en 70% and
95
%, which
obv
iously in
fluen
ce
s
sy
st
em
synth
e
s
is
efficien
cy. The
r
efore, it’s n
o
t
eno
u
g
h
to only e
n
s
u
r
e
the m
o
tor to
wo
rk
with
h
i
gh
efficien
cy or
the bat
tery/m
otor to
wo
rk
with t
he j
o
int
high
efficien
cy, but the e
n
tire
p
o
we
rtrai
n
efficien
cy incl
ud
ing t
he b
a
ttery, the motor,
and the CV
T.
In this p
ape
r, the mild
hybrid ele
c
tri
c
Ch
anga
n
Antelo
pe vehi
cle
wit
h
the ISG
(int
egrate
d
s
t
a
r
te
r
/
g
e
nera
t
o
r
) mo
tor ta
k
en
a
s
the re
se
arc
h
o
b
ject,
an
d
b
a
se
d
on
the
a
nalysi
s
of
the
influen
ce of
each d
r
ivelin
e co
m
p
o
n
e
n
t
to system
synthesi
s
efficiency, the
CVT ratio
cont
ro
l
strategy
with
battery/motor/CVT
joi
n
t
high
e
fficie
n
cy
wo
rki
ng
method
du
ri
ng
reg
ene
ra
tive
bra
k
ing
i
s
p
r
opo
sed, th
e
rege
ne
rative
bra
k
in
g
syst
em
sim
u
latio
n
mo
del i
s
establi
s
h
e
d
and
analyzed
to lay the founda
tion for HEV regen
e
r
ativ
e b
r
aki
ng sy
ste
m
research a
nd develo
p
m
ent.
Nom
e
n
c
lat
u
r
e
η
η
m
η
b
η
cv
t
η
e
η
k
E
U
NiMH
battery/
I
S
G
moto
r/CVT joi
n
t
ef
f
i
cien
cy
ISG moto
r effic
i
enc
y
NiMH battery
effi
c
i
enc
y
CVT effic
i
ency
the batter
y
electric
efficien
cy the
coul
omb
efficien
cy ele
c
trom
otive
forc
e
batter
y
terminal v
o
lta
g
e
t
dis
t
c
hg
P
b
T
n
ω
m
i
f
v
batter
y
disch
a
rgin
g
time batter
y
chargi
ng
time motor
power
motor torque
mo
to
r
s
p
ee
d
motor ta
r
get
spe
ed
final drive ratio
vehicle spe
e
d
I
batte
r
y
cu
rr
e
n
t
r
wh
ee
l r
ad
i
us
R
batte
r
y
inhe
re
nt
r
es
is
ta
nc
e
z
bra
k
ing
sev
e
r
i
t
y
I
dis
I
c
hg
batter
y
disch
a
rgin
g
cu
rre
nt
batter
y
ch
argi
ng
cu
rrent
i
ma
x
the max
i
mum
CV
T
ratio
2. Batter
y
/
Motor/CVT J
o
i
n
t Efficien
c
y
Model
2.1. NiMH Ba
tte
r
y
/ISG Mo
tor/CVT Join
t W
o
r
k
ing E
f
fi
cienc
y
By
the
ben
c
h
te
s
t,
the
NiM
H
batt
e
ry,
the
ISG
motor,
and
the
CVT
ef
fic
i
enc
y
cha
r
a
c
teri
stic map are
sho
w
n a
s
Fi
gu
re
1-3 [4].
Figure 1. NiM
H
Battery Ch
a
r
gin
g
a
nd
D
i
sc
har
g
i
ng
Effic
i
e
n
c
y C
h
a
r
ac
t
e
r
i
s
t
ic
Ma
p
Figure
2. ISG Motor Effic
i
enc
y C
h
arac
te
ris
t
i
c
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the Reg
ene
ra
tive Bra
k
ing
Control Strategy
Con
s
id
eri
ng… (
T
ao De
ng
)
6675
Figure 3. CVT Efficien
cy Cha
r
a
c
te
ri
sti
c
Map
The NiM
H
b
a
ttery/ISG motor/CVT joi
n
t efficiency
is equ
al to
the pro
d
u
c
t
of the
three efficie
n
cie
s
, namely:
η
=
η
m·
η
b·
η
c
v
t
(1)
The NiM
H
b
a
tte
r
y
e
f
f
i
c
i
e
n
c
y
η
b
includ
es
the
b
a
tter
y
elec
tr
ic
effic
i
enc
y
η
e
and
the
coulomb
e
f
f
i
ci
en
c
y
η
k.
η
e
is
d
e
scribed
to
be
th
e
los
s
elec
tric
ene
rg
y
q
uan
tity
due
to
ba
tter
y
inh
e
ren
t
resis
t
an
ce
and
η
k
is
de
sc
ri
be
d
to
be
th
e
quo
tien
t
o
f
di
sch
argi
ng
capacity
and
c
hargin
g
cap
a
city
un
de
r
so
me
d
i
sch
arging
con
d
i
tion
,
as
follo
w
in
g
:
η
b
=
η
e
·
η
k
(2)
η
e
=
E
/
U
=
E
/(
E
+
I
·
R
)
(
3
)
η
k
= (
I
dis
·
t
di
s
)/
(
I
chg
·
t
chg
)×100%
(4)
B
e
ca
use the
formula
of ISG motor p
o
w
e
r
i
s
a
s
f
o
l
l
o
w
:
P
b
=
U
·
I
=
T
·
n
/9549·
η
m
.
Then
th
e
joint
work
ing
effic
i
enc
y
ma
p
of
NiMH
ba
tter
y
/ISG
mo
to
r/CVT
c
a
n
be
ob
ta
ined
un
d
e
r
di
fferen
t
S
O
C
and
d
i
fferen
t
C
V
T
ratio
b
y
se
ttin
g
series
of
ISG
mo
tor
sp
ee
d
and
tor
que
va
lu
es
,
wh
ich
means
eac
h
CVT
ra
tio
can
be
c
o
rrespon
ded
to
a
ba
tte
r
y/mo
tor
/
C
V
T
jo
in
t
workin
g
effic
i
ency
ma
p.
Figure 4. The
NiMH Battery/ISG Motor J
o
int
Efficiency
Ma
p wh
en S
O
C=0.3
Figure 5. The
NiMH Battery/ISG Motor /
C
VT
J
o
int Effic
i
enc
y
Map
when SOC=0.3
As
kn
own
from
th
e
com
pari
s
o
n
the
Figu
re
4
with
Fi
g
u
r
e
5,
the
bi
gge
st
differe
n
c
e
be
twe
en the
ba
ttery/motor jo
int wo
rk
i
ng
e
fficien
cy
m
a
p
an
d the b
a
ttery/motor/
C
V
T
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
73 – 668
1
6676
joint
wo
rkin
g
efficien
cy ma
p is that the effici
en
cy of the high
sp
e
e
d
and hig
h
torq
u
e
re
gi
on
is
much
l
o
we
r
t
han the
efficien
cy
of
the
hi
gh
sp
ee
d
and lo
w
torq
ue
region
in
the
battery/motor
joint
wo
rki
n
g
efficien
cy
ma
p, b
u
t n
o
t
ob
viou
sly in
the
b
a
ttery
/motor/CVT
jo
int
work
i
ng effic
i
enc
y map,
whic
h
sho
w
s that the ba
ttery/motor joint
high effici
en
cy regio
n
is
not
eq
uivalent to
the
battery/motor/CVT j
o
int hi
gh
effici
e
n
cy
re
gio
n
.
The
r
efo
r
e, t
he re
gen
erati
v
e
bra
k
ing
co
ntrol strategy sh
o
u
ld be
fo
rmu
l
ated
con
s
ide
r
ing
the
battery/motor/
C
VT joint
hi
gh
efficien
cy, which
en
sure
s
the high
est wo
rkin
g
effici
en
cy for the CVT-HEV sy
stem. As
kn
o
w
n
from the
batt
e
ry/motor/
C
VT joint wo
rki
n
g efficien
cy surfa
c
e
s
u
n
der the
different CVT ratio
in
Figure
5,
the
NiMH battery/ISG motor/CVT joint effi
cien
cy
su
rf
a
c
e
s
f
i
rst
l
y
i
n
c
r
e
a
se
al
o
ng
wit
h
CVT
ratio
t
o
the
hig
h
e
s
t
efficien
cy value u
n
til
i
cv
t
=
1
,
the
n
the joint effic
i
en
c
y
s
u
rfa
c
e
s
decrea
s
e
al
o
ng with the
i
n
crea
sing
CV
T
ratio.
In addition, t
he value
s
of
NiMH/ISG m
o
tor/CVT j
o
in
t workin
g effi
cien
cy surfa
c
es va
r
y
dra
s
tically b
e
twee
n
40% a
nd
8
0
%. Th
erefo
r
e,
the
ene
rgy
re
covery
e
ffici
ency
fo
r
t
he
rege
ne
rative bra
k
ing
syste
m
can
b
e
fat
herly en
han
ced by co
ntrol
ling CVT
-
HE
V to work in
the
battery/motor/CVT joint
hig
h
efficien
cy region.
2.2. Defining
the Ba
tter
y
/
Motor/
CVT
H
i
gh Efficien
c
y
Optimum
W
o
rking Cur
v
e
Duri
ng the
re
gene
rative b
r
akin
g, th
e re
gene
rative b
r
akin
g
sy
ste
m
sho
u
l
d
wo
rks in
the
battery/motor/CVT joint hi
gh efficien
cy
regio
n
i
n
orde
r
to
reali
z
e
the
most
ene
rgy
re
c
o
v
e
ry
.
Therefore, it
is cru
c
ially
im
portant to
obtain the j
o
int optimum
worki
n
g line
whi
c
h
guarante
e
s
th
e synthe
si
s ef
fi
cien
cy of the
Ni
MH b
a
tte
ry, ISG motor and CVT to be
highe
st.
Figure 6. The
Three
Dime
n
s
ion Ma
p for
NiMH Ba
tte
ry/ISG Motor/CV
T Joint
Optimum
Wo
rk
in
g
Line whe
n
i
cv
t
=1
Figure 7. The
Conto
u
r
Ma
p
for NiM
H
Batt
ery/ISG Motor/CVT
Joint
Optimum
Wo
rkin
g Line
wh
en
i
cv
t
=1
Figure 8.
The NiMH Battery/ISG
Motor/CVT
Join
t Hi
gh Efficien
cy Optim
u
m Wo
rki
n
g
Line
unde
r Differe
nt CVT
R
a
tio whe
n
SO
C=0
.
3
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the Reg
ene
ra
tive Bra
k
ing
Control Strategy
Con
s
id
eri
ng… (
T
ao De
ng
)
6677
D
u
r
i
n
g
r
e
g
ener
a
t
ive
br
ak
ing
,
th
e
ISG mo
to
r to
rq
ue
is de
ter
m
ine
d
acc
o
r
d
ing
to
th
e
bra
k
ing p
o
wer by re
ge
n
e
rative b
r
a
k
i
ng sy
stem.
In orde
r to
conve
n
ie
n
t
to obtain th
e
battery/motor/CVT joint op
timum wo
rki
n
g cu
rve,
the joint
effic
i
ency-moto
r
s
p
eed
-
m
o
t
or
to
rqu
e
3D map in Fi
gure 5
can b
e
conve
r
ted to be the jo
int
efficien
cy-m
otor torq
u
e
-b
raki
n
g
po
wer 3
D
map in
a
s
sho
w
n
in Fi
gu
re
6
(ta
k
e
n
i
cv
t
=1
a
s
example
)
, in
furt
her, the joint
effic
i
enc
y
-
m
o
tor
sp
e
e
d
-
bra
k
in
g po
wer 3
D
map
can
be
co
nve
r
ted
t
o
be the j
o
i
n
t
efficien
cy-m
otor
to
rque
2
D
co
nto
u
r map
a
s
show
n in Figure 7 (t
ake
n
i
cv
t
=1 a
s
example
)
. As
kno
w
n from
t
he
Figure
6
an
d
Figure
7, ea
ch hi
gh
e
s
t ef
ficien
cy
p
o
int
co
rre
sp
on
d
s
to each con
s
tant p
o
we
r l
i
ne,
whi
c
h
a
r
e ca
scade
d as j
o
i
n
t high effici
en
cy optimu
m
worki
n
g cu
rve.
For diffe
rent
i
cv
t
,
d
i
fferent battery/motor/CVT joint hi
g
h
effici
en
cy o
p
timu
m wo
rki
ng
cu
rve
can b
e
o
b
tai
ned by the above metho
d
as sho
w
n
i
n
Figure 8. As kno
w
n from Figure 8, the
battery/motor/CVT joint hi
gh effic
i
en
c
y
wo
rki
n
g li
ne
s u
n
der the
diffe
rent
CVT
ratio
i
cv
t
value
va
r
y
s
ligh
t
ly, b
u
t
w
i
th s
i
milar
o
v
er
a
l
l te
nden
c
y
. At the
mea
n
wh
ile
, th
e
ba
tte
r
y
/mo
t
o
r
jo
in
t
high
efficien
cy wo
rkin
g cu
rve
doe
s n
o
t coi
n
cid
e
with th
e battery/mot
or/CVT joi
n
t
high effici
en
cy
workin
g curv
e, whi
c
h i
s
h
a
rd to
reali
z
e
the mo
st
brakin
g en
e
r
gy
re
cove
ry wit
h
high efficie
n
cy.
Only to
c
ont
rol ISG motor
to wo
rk al
ong
with the batt
e
ry/motor/
C
V
T
joint high efficien
cy optim
um
workin
g cu
rv
e,
the entire
synthe
si
s
effi
cien
cy
of
reg
enerative b
r
a
k
ing
sy
stem
can
b
e
high
e
s
t,
and then
can
recover the m
o
re rege
n
e
rative braki
ng e
nergy.
2.3. The Ba
tte
r
y
/
Motor/CVT Joint Hig
h
Efficie
n
cy
Optim
u
m
Co
ntr
o
l Stra
tegy
Duri
ng re
g
e
n
e
rative bra
k
in
g of CVT hybrid ele
c
t
r
ic ve
hicle, the ide
a
l motor torq
ue ca
n
alway
s
be
f
ound
i
n
th
e
joint
high
efficien
cy
o
p
timum
wo
rki
ng
curve
un
der
th
e
ce
rt
ain
rege
ne
rative
bra
k
in
g
po
wer,
cu
rrent
battery
SO
C
value
an
d
CVT
ratio
value,
and
the
corre
s
p
o
ndin
g
motor
spe
e
d ca
n be
com
puted, t
hen t
he CVT
ratio
can
be dete
r
mi
ned. Mo
reo
v
e
r
,
the com
pute
d
motor to
rq
ue value a
n
d
motor
spe
ed value a
r
e
unique
co
rresp
o
ndi
ng to
the
certai
n
rege
n
e
rative b
r
a
k
in
g po
we
r, whi
c
h
ca
n b
e
a
s
targ
et value
s
to
co
ntrol
the ISG m
o
to
r to
work
al
ong
with the battery/motor/CVT
joint hi
gh
effi
cien
cy optim
um cu
rve a
n
d gua
rante
e
the
NiMH b
a
ttery, ISG motor and CVT ge
a
r
box to work
i
n
to the joint high efficien
cy optimum re
gi
on.
2.4. CVT Ra
tio
Co
ntrol
Bas
e
d
on th
e Ba
t
t
er
y
/
M
o
tor/CVT Joi
n
t High
Effi
cie
n
c
y
Optim
u
m
W
o
rk
in
g
C
u
rv
e
Duri
ng reg
e
n
erative
b
r
a
k
i
n
g,
the reg
e
n
e
r
ative bra
k
in
g force
F
reg
c
a
n
be
in
ter
p
o
l
ated
and
obtai
ne
d
a
ccordin
g to
b
r
a
k
ing
seve
rity z, whi
c
h
mult
iplied
wit
h
th
e vehicl
e
spe
e
d
to o
b
t
a
in
t
he
reg
e
n
e
r
a
t
ive
bra
k
in
g p
o
w
e
r
[3]. Th
en, the
mo
t
o
r spee
d can be inte
rp
olated
with
th
e
battery/motor/CVT joint high efficien
cy
optimum
wo
rkin
g cu
rve. Finally, the
CVT target ratio
value
i
cv
t
ca
n be
com
p
uted
a
c
cordi
n
g
to the ab
ove obt
ained
vehi
cle
sp
e
e
d
and th
e
driv
eline
rat
i
o as
sho
w
n in
Figu
re
9, whi
c
h is
fun
c
tion
of b
r
ake inten
s
ity
z
and the
v
ehicl
e sp
ee
d
v
,
namely:
i
cv
t
=
ω
m
·
r
/(
v
·
i
f
)
(
5
)
Acco
rdi
n
g to CVT targ
et ratio, the worki
ng ra
diu
s
RDR of the p
r
i
m
ary belt wh
eel a
n
d
requi
re
d
wo
rking pre
ssu
re
PDN of the seco
n
d
a
r
y belt
wheel
cylind
e
r ca
n be co
mputed [5].
Figure 9. CVT Targ
et Rati
o
Control M
a
p
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
73 – 668
1
6678
The
a
c
cepta
b
le ch
argi
ng
po
we
r of NiMH
battery
must
be con
s
ide
r
ed in
CVT ratio
control by ta
king the
minim
u
m bet
wee
n
t
he re
g
e
n
e
r
at
i
v
e bra
k
ing
p
o
w
e
r
p
r
ovide
d
by ISG mot
o
r
and the
batte
ry acce
pta
b
le
cha
r
gi
ng
p
o
wer of Ni
M
H
battery a
s
th
e actu
al re
qu
i
r
ed
reg
e
n
e
r
a
t
ive
bra
k
ing
po
we
r. In additio
nal, the b
r
a
k
i
n
g severity limit must be
con
s
id
e
r
e
d
d
u
ring
CVT
ra
tio
control, nam
ely when b
r
a
k
ing
severity
z
>0.7, re
g
enerative bra
k
ing
can n
o
t be used du
e to
s
e
curity fac
t
ors
,
the ratio
c
an b
e
adj
u
s
te
d to the
maxi
mum
i
ma
x
,
an
d in
o
r
de
r to
be
ea
sy to
start,
the
CVT
rati
o also sho
u
l
d
be
adju
s
te
d
t
o
maximum
value
i
max
when the vehicl
e
spee
d
is
lo
we
r than cri
t
i
c
al value
v
0
[4].
2.5. Rege
n
e
r
a
tiv
e
Brakin
g
Control S
t
r
a
tegy
Resea
r
c
h
B
a
se
d
o
n
t
h
e
a
n
a
ly
si
s
an
d
co
m
p
u
t
a
t
io
n
of
ent
i
r
e
v
ehi
cl
e
re
g
ene
rat
i
v
e
b
r
a
k
i
n
g
co
nt
ro
l
stra
teg
y
,
reg
enera
t
ive
br
a
k
ing
force
d
i
strib
u
t
ion
con
t
ro
l
mode
l
is
es
tab
l
ishe
d.
Accordin
g
to
th
e
constitu
tion
a
n
d
work
ing
c
haracter
i
s
t
ics
of
HEV
braking
s
y
stem,
th
e
brak
ing
for
c
es
comp
ute
d
by
braking
force
distribu
tion
strategy
are
distributed
as
f
o
llow
several
kind
s
of
situations
to
avoid
batter
y
to
o
v
e
r
charge
[5-
7
]:
(1)
The
S
O
C
valu
e
is
firs
tly
judg
e
d
.
If
S
O
C
>
0
.8,
the
trad
i
t
io
nal
fri
c
tion
br
ak
ing
an
d
th
e
engine
brak
in
g
work
toge
th
er,
bu
t
no
mo
tor
regen
era
t
ive
braking
;
If
SOC
≦
0.8,
the
ISG
mo
tor
c
a
n
provide
the
re
genera
t
ive
br
aking
force
;
(2)
The
braking
severity
z
is
comp
uted
accordin
g
to
the
actu
al
veh
i
cle
sp
eed
obta
i
ned
fro
m
the
whee
l
and
the
brak
ing
in
tention
,
which
is
used
to
jud
g
e
the
br
ak
in
g
con
t
ro
l
as
fo
llows
:
a)
W
h
e
n
t
h
e b
r
a
k
i
n
g s
e
v
e
r
i
t
y
0
≦
z
≤
0.1,
on
ly
th
e
mo
tor
re
ge
nera
t
ive
br
ak
ing
is
adop
ted
;
b)
W
h
e
n
t
h
e b
r
a
k
i
n
g s
e
v
e
ri
t
y
0
.
1
<
z
<0.7
,
th
e
mo
tor
r
egener
a
t
ive
braking
and
the
t
r
a
d
it
i
o
n
a
l
f
r
i
c
ti
o
n
b
r
a
k
i
n
g
wo
rk
t
o
g
e
t
h
e
r
,
a
n
d
t
h
e
engi
ne
b
r
a
k
i
n
g
t
a
kin
g
p
a
r
t
i
n
wh
e
n
re
quir
e
d
;
c)
Whe
n
the b
r
aki
n
g severi
ty 0.7
≦
z
≦
1
,
the traditio
nal frictio
n
bra
k
i
ng a
n
d
the
engi
ne
b
r
a
k
in
g wo
rk togeth
e
r,
but no
mo
tor reg
e
n
e
rative
bra
k
i
ng.
3. Rese
a
r
ch
on Reg
e
ner
a
tiv
e
Braking Sy
stem Modeling and Simulation An
aly
s
is
3.1. Reg
e
ne
r
a
tiv
e
Braking
Sy
stem Mode
ling
Combi
ned
wi
th the theory
modeli
ng m
e
thod an
d th
e nume
r
i
c
al
modelin
g me
t
hod, the
entire forwa
r
d simul
a
tion
model
s (a
s
d
r
iver intenti
o
n
,
vehicle co
nt
rol, co
ntrolle
r model
s) for
CVT
hybrid ele
c
tri
c
vehic
l
e ha
ve been es
t
a
blis
h
ed under Matlab/Simulink
s
i
mulation environment,
inc
l
uding the
vehic
l
e models
(the drive
r
intent
ion model, work
ing mode
tran
s
i
tion, and vehic
l
e
para
m
eters computing
)
, co
ntrol mod
u
l
e
s (clutch eng
a
g
ing/di
seng
a
g
ing co
ntrol,
CVT ratio co
n
t
rol,
rege
ne
rative bra
k
ing
cont
rol), an
d the
sub
s
y
s
tem
m
o
dels (engi
n
e
model,
NiM
H
batte
ry mo
d
e
l,
ISG motor model, final dri
v
e model and
wheel
mo
del
) [4].
3.2. Reg
e
ne
ra
tiv
e
Braking
Sy
stem
Simulati
on and An
aly
s
is
for
CV
T H
y
brid
Ele
c
tric
Vehi
cle
In orde
r to confirm the
su
perio
rity, the
pr
op
osed reg
enerative
bra
k
ing co
nt
rol strategy
are
re
sp
e
c
tiv
e
ly simulate
d and
co
mp
ared
u
n
d
e
r
t
he batte
ry/m
otor/CVT j
o
i
n
t high effici
ent
optimum
wo
rking
regi
o
n
a
nd the
b
a
ttery/motor join
t
high effi
ci
ent
workin
g regio
n
. As the
re
sult
sho
w
n in Fig
u
re 1
0
, all the cha
r
a
c
te
ri
stic i
ndexe
s
a
r
e imp
r
ove
d
unde
r the ba
ttery/motor/CVT
joint
high
efficien
cy
opti
m
um
workin
g
re
gi
on
co
mpari
n
g with
the
battery/
m
otor
joi
n
t
high
efficien
cy
op
timum
wo
rki
ng
regi
o
n
.
Und
e
r
the
b
a
ttery/motor joint
high efficien
cy
optim
um
workin
g regi
o
n
, the SO
C v
a
lue
red
u
c
e
s
from the
sta
r
t value
0.7 to the e
nd val
ue 0.66
93, th
e
averag
e moto
r gene
ration
efficien
cy i
s
7
2
.64%, and
the bra
k
in
g en
ergy re
cove
ry
rate i
s
47.52
%.
Und
e
r
th
e b
a
ttery/motor/
C
VT joint
hi
gh efficie
n
c
y
optimum
worki
ng
re
gi
on
, the SOC v
a
lue
redu
ce
s
from
the
start
value
0.7
to
the
end
value
0.674
6,
the
average
mo
tor
ge
ne
ratio
n
efficien
cy i
s
74.87%, an
d
the b
r
a
k
ing
ene
rgy recovery rate i
s
51.61%. Co
mpari
n
g to t
he
battery/motor joint
high
efficien
cy optim
um wo
rk
in
g
curve, the SO
C in
cre
a
s
e
s
with 0.79
2%, the
motor ave
r
ag
e gene
ration
efficien
cy
increases
by
2.2
3
%, and the bra
k
ing
e
n
e
rgy
recove
ry rate
increa
se
s by
4.09%, as sh
own in Ta
ble
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the Reg
ene
ra
tive Bra
k
ing
Control Strategy
Con
s
id
eri
ng… (
T
ao De
ng
)
6679
Figure 10. EUDC Cy
cl
e Si
mulation Resu
lts
Table 1. EUDC Cycl
e Simu
l
a
tion Re
sults
SO
C
a
v
era
g
e
gen
e
r
a
t
in
g
e
f
ficiency
e
ner
g
y
r
e
co
very
rate
ba
tt
e
r
y/
m
o
tor
j
o
i
n
t
h
i
gh
efficie
n
c
y
0.
66
9
3
72
.6
4
%
47
.5
2
%
batter
y
/m
o
t
or
/
C
V
T
jo
in
t
h
i
gh
e
f
fici
enc
y
0.
67
4
6
74
.8
7
%
51
.6
1
%
dif
f
e
r
e
nce
v
a
l
u
e
0.
00
5
3
2.
23
%
4.
09
%
4. Hard
w
a
re
-in-the
-
loop (HIL) Te
s
t
Re
searc
h
To prove av
ailability of
the prop
osed
r
e
gene
rative
bra
k
in
g con
t
rol strategy
and the
effective of b
a
ttery/motor/
C
VT joi
n
t hig
h
effici
en
cy o
p
timum
wo
rki
ng
cu
rve to the bra
k
in
g
e
n
e
r
gy
recovery rate
, the hard
w
a
r
e-in
-th
e
-l
o
op
test syst
e
m
i
s
develo
ped f
o
r the batte
ry/motor joint hi
gh
efficien
cy o
p
t
imum wo
rki
n
g cu
rve an
d
the batte
ry/motor/CVT
j
o
int high
e
fficien
cy opti
m
um
w
o
rk
in
g
c
u
r
v
e
,
a
s
sh
ow
n
in
F
i
gu
re
11
[6
]. T
h
e ha
r
d
w
a
re
-
i
n-
th
e
-
lo
o
p
tes
t
sys
te
m inc
l
u
d
e
s
JL4
7
5
Q
1
e
n
g
i
ne, 10kw ISG motor, NCVT (0.498
-2.
502), cl
utch,
con
e
gea
r dri
v
eline
box,
brake,
driveline
b
o
x, elect
r
i
c
e
ddy
curre
n
t dyn
a
momete
r, in
e
r
tia flywhe
el,
NiMH
battery
and
so o
n
. T
h
e
hydrauli
c
b
r
a
k
ing
sy
ste
m
is
controlled
by the b
r
a
k
in
g pe
dal, the
pre
s
sure of t
he fro
n
t whe
e
l
bra
k
ing
syste
m
is
co
ntrolle
d by
the duty
cycle
of the
two hig
h
-
spe
ed switching
valves, and t
h
e
input p
r
e
s
su
re of
the m
a
in b
r
a
k
ing
pump i
s
adj
usted
by th
e loa
d
ing
sensi
n
g p
r
e
s
sure
prop
ortio
n
in
g
valve. The
co
ntrol
sy
stem in
clud
e
s
the ISG
motor
co
ntro
ller-IPU,
batt
e
ry
manag
eme
n
t
system
-BCM
, CVT
co
ntrol
l
e
r-T
CU, an
d the
HEV cont
rolle
r-HCU
re
placed with
t
h
e
dSPACE/AutoBox duri
n
g te
st. The
H
I
L electri
c
/el
e
ctronics
syst
em includes the
two
speed-
torque
sen
s
o
r
s, two cu
rre
n
t sen
s
ors, pre
s
sure
sen
s
o
r
of the hydrauli
c
syst
em, three pe
da
l
stro
ke
sen
s
o
r
s, etc.
The
speed
-t
orq
ue
sign
al
s i
s
rea
d
thro
ug
h
the
spe
e
d
-to
r
qu
e mete
r in
sta
l
led
in the IPC, and transmitted to dSPACE
/
AutoBox
through the
serial
comm
uni
cati
on, but the
other
sign
al
s a
r
e
conve
r
ted A/
D th
ro
ug
h t
h
e I/O inte
rf
ace
of th
e
DS110
3
card in
stalle
d
i
n
the
dSPACE/AutoBox. dSPACE/Aut
obox is high-spe
ed LAN connected
with a
notebook through
netwo
rk
cabl
e with 100M
band
width.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
73 – 668
1
6680
Figure 11. Th
e HIL Te
st
B
e
nch
Diag
r
a
m
U
n
der
th
e
in
itia
l c
o
nd
itio
n
th
a
t
th
e
SO
C is
0
.
7
,
th
e
br
a
k
ing
s
p
eed is
60
k
m
/h
an
d
th
e
bra
k
ing
seve
rity is 0.3, th
e pro
p
o
s
ed
regen
e
r
ativ
e
bra
k
ing
co
ntrol strat
egy is verified o
n
t
he
HILS test
be
nch, the
te
st
re
sult
s a
r
e
sho
w
n i
n
Fig
u
re
1
2
. Du
ri
n
g
re
g
e
n
e
r
ativ
e braki
n
g, when
adoptin
g
with
the battery/motor joi
n
t hi
gh effici
en
cy
optimum wo
rkin
g cu
rve, the SOC val
u
e
redu
ce
s to b
e
0.6916, an
d the motor a
v
erage g
ene
rating efficien
cy is 87.6
3
%.
Ho
weve
r, when
adoptin
g
with
the battery/
m
otor/CVT j
o
i
n
t high
e
ffi
cie
n
cy optim
um
workin
g cu
rv
e, the SOC v
a
lue
redu
ce
s to b
e
0.694
4, th
e avera
g
e
g
enerating e
ffi
cien
cy is 8
8
.
76%, as
sh
o
w
n in T
abl
e
2.
Obviou
sly, the ene
rgy
re
covery rate a
dopting
wi
th
the battery/m
otor/CVT j
o
in
t high effici
e
n
cy
optimum wo
rking
curve i
s
highe
r com
p
a
r
ed with th
e
battery/motor
joint high efficien
cy
optim
um
workin
g cu
rv
e.
Figure 12. Th
e HIL Te
st
R
e
sult
s
und
er 60km/h, z=0.3,
SOC=0.7
Table 2. The
HIL Te
st Re
sul
t
s whe
n
SOC=
0.7, Brakin
g Spe
ed is 6
0
k
m/h, and
z=0.
3
SO
C
a
v
era
g
e
gen
e
r
a
t
in
g
e
f
ficiency
b
a
t
t
er
y
/
mot
o
r
jo
in
t
hig
h
e
f
ficien
cy
0
.
6
9
16
8
7
.
6
3%
batter
y
/m
o
t
or
/
C
V
T
jo
in
t
high
e
fficie
nc
y
0.
69
4
4
88
.7
6
%
dif
f
e
r
e
nce
v
a
l
u
e
0.
00
2
8
1.
13
%
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the Reg
ene
ra
tive Bra
k
ing
Control Strategy
Con
s
id
eri
ng… (
T
ao De
ng
)
6681
5. Conclusi
on
(1) Th
e in
fl
uen
ce
of
Ni
M
H
b
a
t
t
ery, ISG
motor
a
n
d
CVT
efficiency i
n
re
g
e
n
e
rative
bra
k
ing
sy
ste
m
to
sy
stem
synthe
tic effi
cien
cy
ha
s b
e
e
n
analy
z
ed
,
the
battery/motor/CVT
jo
int high efficien
cy mod
e
l has b
e
en esta
bl
i
s
he
d, and
the
battery/m
otor/CVT
join
t
hi
gh
efficie
n
t optimum wo
rki
ng
curve h
a
s
bee
n d
r
a
w
n
.
(2) Ba
se
d o
n
the battery/motor/CVT jo
int high effici
ency o
p
timu
m
workin
g curve, the
rege
ne
rative
bra
k
i
ng con
t
rol strate
gy fo
r CVT
HEV has bee
n p
r
op
o
s
e
d
,
and
the forward
simulatio
n
m
odel of reg
e
n
e
rative braki
n
g system for
CVT HEV ha
s bee
n e
s
ta
bl
ishe
d.
(3)
Und
e
r
E
U
DC cy
cl
e, the re
gene
rat
i
ve
bra
k
i
n
g
control strate
gy adopt
ed
with
the battery/m
otor
joi
n
t hig
h
efficien
cy
o
p
timu
m work
i
n
g
curve and
the
batte
ry/motor/CVT
jo
int
high effici
en
cy optimum
worki
ng
cu
rve
ha
s
bee
n si
m
u
lated a
nd
comp
are
d
re
spe
c
tively. The
simulat
i
o
n
re
sult
s
sho
w
t
hat
t
he m
o
t
o
r av
e
r
ag
e
g
e
n
e
rating effi
ci
e
n
cy increa
se
s by 2.2
3
%
and the bra
k
i
ng
e
n
e
rgy re
cove
ry rate
in
cre
a
s
e
s
by
4.09% ad
opted
with the
batt
e
ry/motor/
C
VT
joint
high effi
cie
n
c
y optim
um wo
rkin
g
cu
rv
e com
pared
to the batt
e
ry/motor joi
n
t high effici
en
cy
optimum working
curve.
(4) T
he h
a
r
d
w
a
r
e
-
in
-th
e
-l
o
op (HIL
) te
st re
sults
sh
o
w
that the
a
v
erag
e
ge
ne
ratin
g
efficien
cy i
n
creases
by 1.1
3
% ado
pte
d
with the
batte
ry/motor/CVT
joint high
effi
cien
cy optim
u
m
workin
g cu
rv
e comp
are
d
to the battery/motor joint hi
gh efficien
cy optimum working
curve.
Ackn
o
w
l
e
dg
ements
This work wa
s su
p
p
o
r
te
d
by National
Natural Scien
c
e Fou
ndatio
n of China (Grant
No
.
5130
5
473
), China Po
std
o
c
t
o
ral S
c
ie
n
c
e
Found
ation F
unde
d
Proje
c
t (Grant
No.
2014M
552
31
7),
Found
ation a
nd Advan
c
e
d
Re
sea
r
ch Progra
m
Ge
ner
al Proje
c
t
of
Cho
n
gqin
g
Ci
ty, China
(G
rant
No. cst
c
20
13
jcyjA0794
), Board of Ed
ucatio
n
S
c
ie
nce a
nd Te
chnolo
g
y
Re
search Proje
c
t
o
f
Cho
n
gqin
g
City, China
(G
rant No. KJ1
2042
1
)
, and
Automobile
Enginee
ring
Key Labo
rat
o
ry
Open F
u
nd P
r
oje
c
t of Jian
gsu Province, China (Grant
No. QC2
0
1
2
06).
Referen
ces
[1]
YM Gao,
LP
Che
n
, Ehsa
nl
Mehrd
ad.
Inv
e
stig
ati
on
of the effective
of
rege
n
e
r
a
tive
bra
k
i
ng
fo
r
EV
and HEV.
SAE
Techni
cal Paper
. 19
99; 199
9-
01
-
2
91
0.
[2]
SR Cik
an
e
k
,
KE
Bail
e
y
.
R
e
gen
e
r
ativ
e
br
a
k
in
g
s
y
stem f
o
r a
h
y
bri
d
e
l
ectric veh
i
cl
e.
Procee
ding
s
of the America
n
Co
ntro
l Co
nfere
n
c
e
. 20
0
2
(4): 312
9-
3
1
34.
[3]
JM Z
hang,
S
H
M Cui,
BY
Song.
A
n
a
d
v
ance
d
re
ge
n
e
r
a
tive br
aking
cont
ro
l
strateg
y
optimiz
ation.
Jou
r
n
a
l of Jia
n
gsu Un
i
v
e
r
s
i
ty
. 2009; 3
0
(3
): 2
46-2
50.
[4]
T
Deng,
DY
Sun, DT
Qi
n. Re
g
ene
rati
ve brak
i
n
g
si
mulati
o
n
fo
r
h
y
brid el
e
c
t
r
ic
vehi
c
l
e
w
i
t
h
co
ntin
uousl
y
varia
b
l
e
transm
i
ssio
n
.
Jou
r
nal of
Mech
an
i
c
a
l
E
n
g
i
n
e
eri
n
g
. 2
009; 45 (9):
21
4-22
0.
[5]
H
Ye
o,
D
Kim
,
S
H
w
a
ng.
R
ege
nerativ
e
br
akin
g
a
l
g
o
rith
m
for a
HEV
w
i
t
h
CVT
ratio
contr
o
l
d
u
ri
ng
dece
l
erati
on.
04CVT
-4
1.
Jap
an, 200
4;
53-
6
0
.
[6]
T
Deng.
F
o
r
w
ard
mo
de
lin
g
a
nd
simu
latio
n
for
reg
ener
ativ
e braki
ng
s
y
st
em
of
CVT
hybrid
vehicle,
Cho
ngq
in
g Uni
v
ersity.
2010.
[7] B
Chen.
Rege
nerativ
e
braki
ng
res
earch of
pure
electric
v
ehicl
e.
Chong
qin
g
Univ
ersity.
2011.
Evaluation Warning : The document was created with Spire.PDF for Python.