TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.5, May 2014, pp
. 3936 ~ 39
4
2
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i5.4436
3936
Re
cei
v
ed O
c
t
ober 1
7
, 201
3; Revi
se
d Decem
b
e
r
15, 2013; Accept
ed Ja
nua
ry 7,
2014
Application of Distributed Fiber Temperature Detection
Technology in the Shaft Freezing Restoration Project
ZhengXiao
-
liang
1
, HU Ye-lin
1
, Shen Hua-jun
2
, Xie hong-zhi
3
, Do
u An-
f
eng
2
, Yu
Jin-chan
g
3
1
School of Elec
tric and Inform
ation En
gi
neer
i
ng,
Anhu
i Un
iv
ersit
y
of Sci
enc
e and T
e
chno
l
o
g
y
,
Anhu
i-hu
ai
nan 232
00
1,
Chin
a;
2
Huai
nan En
gi
neer
ing A
part
m
ent, Chin
a C
oal Mi
ne Co
nstruction Grou
p Co Ltd,
Huai
na
n 23
20
0
1
, Chin
a;
3
T
he Eighth Re
search Institute
of China
El
ectronics T
e
chnol
og
y Group C
o
r
porati
on,
Anhu
i-hu
ai
nan 232
00
1,
Chin
a;
A
b
st
r
a
ct
Accordi
ng to
t
he
particu
larity
of the
restor
ation
pro
j
ect
of u
s
ing
free
z
i
n
g
meth
od
to c
o
n
duct sh
aft-
formi
ng w
e
ll w
a
ll, the
mo
nitor
i
ng of th
e conv
entio
nal
hydro
l
ogic
a
l h
o
le
an
d ther
mo
met
e
r
hole, n
e
w
me
ans
of detectio
n
a
r
e add
ed, a
n
d
distribute
d
fib
e
r tem
perat
ure detecti
on te
chno
logy
is u
s
ed to check
the
temp
eratur
e of
each
lo
ng
itudi
nal fre
e
z
e
r. T
h
e pri
n
cip
l
e, c
o
mp
ositi
on,
d
e
tection
metho
d
and
te
mp
erat
ure
m
e
asuring optical cable struc
t
ure of
the distributed fiber tem
p
eratur
e
detection system
are introduced in
detai
l.
F
i
el
d measur
ed data i
s
give
n,
w
h
ich
has
larg
e
dat
a si
z
e
an
d c
a
n reflect th
e
a
c
tual d
e
ve
lop
m
e
n
t
status of free
zing w
a
l
l
co
mpr
ehe
nsive
l
y a
n
d
intu
itiv
e
l
y co
mp
are
d
w
i
th the trad
itio
nal
ther
mo
meter h
o
l
e
data. Data
an
alysis pr
ovid
es
the basis for
gui
din
g
the fre
e
z
e
co
nstructi
on b
e
in
g carri
ed o
u
t safely
an
d
smo
o
thly. The
structure of system
is si
mple a
nd fl
exib
l
e
, and th
e de
tection
meth
o
d
has a c
e
rta
i
n
pro
m
oti
ona
l val
ue.
Ke
y
w
ords
:
distrib
u
ted fi
be
r temperatur
e
detectio
n
, free
z
i
n
g
metho
d
, l
ong
itudi
na
l te
mp
eratur
e d
e
tection,
restoratio
n proj
ect
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Artific
i
al freezing method is
a
c
o
mmonly us
ed
method in the cons
truc
tion
of the shaft,
now th
e fro
z
en de
pth is
about 7
00m,
the de
sign
of
free
zing schem
e;
the pro
c
e
s
s
cont
rol
techn
o
logy h
a
s be
en mat
u
red. In the g
eneral free
zin
g
engine
eri
n
g
,
in the freezer coil di
amet
er
insid
e
, it is d
e
co
rated
with
a few therm
o
meter hole
s
and
hydrol
o
g
ical
hole
s
, a
c
cordi
ng to
e
a
ch
point in the thermom
e
ter h
o
le, the situation of
the frozen wall temperatu
r
e can
be obtaine
d, and
according to t
he situatio
n o
f
hydrologi
cal
hole,
the wa
ter-b
eari
ng st
rata fro
z
en
wall whol
e circl
e
can
be jud
g
e
d
[1, 2]. But the free
zin
g
method i
s
ad
opted to repa
ir well
bore a
nd the d
e
tect
ion
method
ca
n n
o
t meet the
n
eed
s of
free
zi
ng, thermom
e
ter h
o
le
can
only refle
c
t th
e local
situati
o
n
of shaft free
zing, hydrol
ogi
cal h
o
le ove
r
flow
water
ca
n not be th
e
judgme
n
t co
ndition
s of th
e
froz
en wall/
c
i
rc
le. In this
particular c
a
s
e
, in
ord
e
r
to grasp the
developme
n
t
situation of the
froze
n
wall fu
lly, and control the thi
c
kne
s
s of fro
z
en
wall effe
ctively, the distrib
u
ted optical fib
e
r
temperature measurement
techn
o
logy
can be
adopt
e
d
to dete
c
t the longitu
dinal
temperature
of
freezer, an
d more intuitive
obse
r
vation
developm
ent of froze
n
wall
can be
reali
z
ed [3, 4].
2. Project Summar
y
Banji mine b
e
long
s to in
vestment xinj
i ener
gy co.,
LTD. It is the ne
w la
rg
e mine,
wellb
ore
dia
m
eter de
sig
n
of the Lord,
vice, and
the
wind i
s
6.2m
, 7.3m and 6.
5m re
spe
c
tively,
the depth of the sh
aft are
795.5m, 79
5.4m and 7
76.5
m
. In Its thick overbu
rde
n
section, it ado
pts
the drilling co
nstru
c
tion, d
r
i
lling depth are 660m, 640
m and 656m
respe
c
tively.
Grou
nd p
r
ecast
reinfo
rced co
ncrete
a
nd
d
ouble steel re
inforced con
c
rete comp
osit
e
wall structu
r
e
a
r
e
a
dopte
d
,
spe
c
ial
slu
rry
-su
ppo
rted;
susp
end
ed d
o
cki
ng
sin
k
, water
wall of m
ud an
d rubbl
e after
ceme
nting
filling con
s
tru
c
tion technol
ogy are al
so
adopte
d
, etc.
The
shaft d
r
ill
ing of Ba
nji well is
sin
c
e
Decem
b
e
r
29,
2004, i
n
ea
rly
Octo
ber of 2
007 th
e
shaft sin
k
ing
and wall fillin
g are co
mple
ted, at t
he e
nd of 2007, the bottom of the pot into
the
bedrock
se
ct
ion of the
comm
on la
w con
s
tructio
n
is
carried
out, Jun
e
8
th
the wellb
o
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Distrib
u
ted F
i
ber Tem
p
e
r
a
t
ure
Dete
ctio
n Tech
nolo
g
y in the… (Zhe
ngXiao
-
liang
)
3937
con
s
tru
c
tion i
s
finish
ed. Due to bottom hole cave
rn grou
p of differen
c
e of litho
logy, the ingate
flanks pressu
re ap
pea
red
obviou
s
ly
, it is re
pai
red fo
r 6 time
s. O
n
April 18, 2
009, the wate
r
inru
sh a
c
cide
nt is app
eare
d
, till April 22, the c
oal mi
n
e
duri
ng wate
r depth i
s
ab
out 20.7 met
e
rs,
the main well
water de
pth is 13.85 mete
rs, and the wi
nd well water depth is 121.
1 meters. Main
shaft top bou
ndary de
pth is 612 mete
rs, during sedi
ment depth o
f
590 meters, the wind we
ll
sedim
ent de
pth is 670 m
e
ters; Acco
rd
ing to t
he main shaft se
d
i
ment depth
estimation, water
inru
sh
cu
rren
t sedim
ent concentratio
n
i
s
17.3%
; th
ro
ugh a
nalysi
s
and
cal
c
ulati
on, wate
r filli
ng
cap
a
city i
s
7
6744m
3
, under
three separate shaft
wa
ter filling capacity is 22926m
3
, it is 5
h
ours
20 minute
s
si
nce the a
c
cid
ent happ
en
s, the averag
e yield is 18
700
m
3
/h.
After the accident, acco
rdi
ng to the sa
nd and
ro
ck
comp
ositio
n of inru
sh water, and
judge th
e wal
l
outlet point
above the
be
dro
ck
we
at
he
ring
zon
e
a
r
e
a
; Thro
ugh th
e analy
s
is
of the
grou
nd
wate
r level observa
tion hole, if the thre
e ab
o
v
e aquifer
wa
ter level did
not ch
ange, f
our
inclu
d
ing
wat
e
r level
ch
an
ges
obviou
s
ly
; wellbo
r
e
wa
ter inrush water
can
be ju
d
ged from fou
r
or
four a
quife
rs
belo
w
. Th
rou
gh u
s
in
g bo
rehole
color televisio
n
met
e
r, an
d the
ul
traso
n
ic tool,
but
they are
pro
v
ed not the
effective met
hod in
j
udgi
ng water
poi
nt locatio
n
a
nd the
wellb
ore
fractu
re
situat
ion; whe
n
the
averag
e yield is ab
out 18
700m
3
/h, we
can ju
dge th
e
damag
e sco
pe
is big. Finally
we de
cide
d
to adopt the
grou
nd
p
r
eg
routing an
d freezi
ng metho
d
to repai
r wall,
after the gro
u
ting method
is use
d
in i
m
provin
g the
soil and
sha
ft wall fillings performan
ce
, the
method of froze
n
water
sealing
rep
a
ir wall i
s
al
so
adopte
d
, fro
z
en
wall
sh
o
u
ld have
ce
rtain
stren
g
th and t
h
ickne
s
s.
Duri
ng the co
nstru
c
tion of total nine inje
ction hole
s
a
nd one valida
t
ion hole, sin
c
e April
23, 2009, till May 31, 2010, the wo
rk is lasted for
403 days, 76708m
3
cement
are filled into
the
grou
nd, and t
he total con
s
umption is 7
4
604.45 ton
s
.
Duri
ng
auxili
ary shaft con
s
tru
c
tion, its
freeze d
epth
is
673m, i
n
orde
r to
ma
ke qui
ck
freezi
n
g
wall
ring,
qui
ckly t
o
me
et the
d
e
sig
n
thi
c
k
n
e
ss,
enh
an
ce
resi
st
an
ce
st
r
a
t
a
di
st
ur
ban
ce
after the
abili
ty of other ri
sks
bro
ught
by
the
wea
k
ening
pe
rformance, the
doubl
e row h
o
le
s
arrang
ement
are ad
opted.
In order to
redu
ce t
he frost heavin
g force affect wall, hole layo
ut
sho
u
ld
be
as sm
all a
s
po
ssi
ble i
n
the
circle
diam
eter. O
u
tsid
e d
e
co
rating
the
is
42
free
zi
ng
hole
s
, decorate circle dia
m
eter is 1
9
.6
m, hole
spa
c
ing is 1.465
m. Row layo
ut is 32 free
zing
hole, the
de
corated
ci
rcl
e
dia
m
eter i
s
1
3
.9m, h
o
l
e spa
c
ing
i
s
1.3
64m, t
he n
u
mbe
r
of
thermom
e
ter
hole is
7, the
numbe
r of hy
drolo
g
ical
hol
e is 4. Arran
g
e
ment of fre
e
zing
hole i
s
a
s
s
h
ow
n
in
F
i
gu
r
e
1
.
Figure 1. Layout of Auxilia
ry Shaft Frozen Hole
Duri
ng
Jun
e
27, 201
1, bo
ot ope
ration,
as of Se
ptem
ber
11, du
rin
g
all fou
r
hol
e wate
r
levels
rea
c
h
the n
o
zzle, fro
m
the a
nalysi
s
of th
e water level chan
ge
of the e
a
ch
developm
ent
of
frost h
eave
water free
zin
g
wall,
part
of the
fro
s
t
heave p
r
e
ssure th
rou
gh
the analy
s
is of
hydrolo
g
ical hole wa
s
released.
Be
ca
use of
t
he freezi
ng meth
od is
appli
e
d
to sup
p
lying
wall
repai
r e
ngin
e
e
ring
was the
first time; the
r
e i
s
n
o
expe
rien
ce to
dra
w
u
pon. At th
is p
o
int, thro
u
gh
the analy
s
is
of hydrolo
g
ical hole
wate
r
and the
th
ermometer hol
e data
can
'
t accurate jud
g
ment
wheth
e
r the freezi
ng wall to circle and its
developm
ent.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3936 – 39
42
3938
On Novem
b
e
r
8, 2011, the frozen e
ngin
eerin
g wo
rks
for 131 day
s, brine tempe
r
ature is
betwe
en -3
2
~
-3
3
℃
, the tempe
r
ature d
i
fference is b
e
twee
n 2.5~3.8, con
s
tru
c
tion orga
niza
tion
desi
gn
req
u
irements is ab
out for
150
d
a
ys, the
19
d
a
ys i
s
remai
n
ed. In o
r
de
r t
o
grasp the
a
c
tual
situation,
con
s
tru
c
tion
plan
is formulate
d
;
the co
nstruction of sto
n
e
s
wellb
ore
sho
u
ld be
a
s
soo
n
as po
ssible, a
nd the longitu
dinal tempe
r
a
t
ure mea
s
u
r
e
m
ent sho
u
ld
be ca
rri
ed out
.
3. Test Sy
stem
3.1. Dete
ctio
n Principle
Distri
buted
o
p
tical fibe
r te
mperature
m
easur
e
m
ent
system in th
e wh
ole tem
peratu
r
e
measurement
on the length of the fi
ber optic cabl
e, with a ce
rtai
n
interval conti
nuou
s pe
rcei
ve
the ch
ang
e o
f
temperatu
r
e
field in the
fiber l
ength
direction. M
e
a
s
uring
pri
n
ci
pl
e is
optical time-
domain
refle
c
tomete
r (OT
D
R) the
o
ry a
nd ba
ckward
Ram
an
scat
tering
(Rama
n
) tem
peratu
r
e
effect, the ti
me do
main
reflectio
n
p
r
i
n
cipl
e i
s
a
d
opted
whi
c
h
ca
n reali
z
e
the tem
perature
measuri
ng of the point location, throug
h backw
ard Rama
n scattering p
r
in
cipl
e can realize
the
perceptio
n an
d measureme
n
t of tempera
t
ure.
From the pe
rsp
e
ctive of quantum the
o
ry
level, Raman scatte
ring is pro
d
u
c
ed by
photon
s
of in
elasti
c
colli
sions. In
the
e
x
perime
n
ts, it
is fo
und
that
Anti Stoke
s
scattering
lig
ht is
sen
s
itive to tempe
r
ature, the st
rength i
s
modul
ated
by the tempe
r
ature; Stoke
s
scatteri
ng li
gh
t
intensity
al
so has a certai
n relation
shi
p
with
the
tempe
r
ature, but th
e infl
uen
ce of
temperature is
small; The
Rayleigh scatte
ring light ha
s
nothing to do
with the temp
eratu
r
e.
In the area of
optical fiber
L, the numbe
r
of antisto
ke
s scatteri
ng p
hoton is a
s
(1
).
)
(
]
)
(
exp[
0
4
T
R
L
a
a
N
S
K
N
a
a
e
a
a
a
(1)
In area of opti
c
al fiber L, th
e numbe
r of stoke
s
scatteri
ng photo
n
is
as (2
).
)
(
]
)
(
exp[
0
4
T
R
L
a
a
N
S
K
N
s
s
e
s
s
s
(2)
In the area of
optical fiber
L, the numbe
r of Rayleigh
scattering p
h
o
ton is a
s
(3
).
)
2
exp(
0
4
0
L
a
N
S
K
N
e
R
R
(3)
Whe
r
e,
N
e
rep
r
e
s
ent
s in
comin
g
light
pulse photo
n
numbe
r; K
R
, K
a
, K
s
are the fiber
Raylei
gh,
anti-sto
k
e
s
a
nd the relate
d co
efficient
of st
okes
scattering
cross sectio
n, S rep
r
e
s
ent
s the
backscatterin
g
factor of the fiber;
ν
0
、
ν
a
、
ν
s
rep
r
e
s
ent he a
r
gu
ment s Rayle
i
gh, anti stoke
s
respe
c
tively and sto
k
e
s
scatterin
g
light
freque
ncy;
a
0
、
a
a
、
a
s
are the Rayleigh, anti sto
k
e
s
rand
stokes
scattere
d light in the optical
fiber tran
smi
s
sion lo
ss esp
e
ctively;
L
is
the fiber und
er
test are
a
of the incid
ent to the dista
n
ce;
R
a
(T)
、
R
s
(T)
a
r
e the
related
coef
ficient for lo
w
energy an
d h
i
gh en
ergy le
vel and fib
e
r
molecule
s o
n
the layout, it
is
relate
d to
the tempe
r
at
ure
of the optical
fiber area.
1
]
1
)
/
[exp(
)
(
kT
h
T
R
a
(4)
1
)]
/
exp(
1
[
)
(
kT
h
T
R
s
(5)
Whe
r
e
repre
s
ent
s Ram
a
n
scatte
ring lig
ht frequen
cy;
h
is the
Plan
ck's con
s
tant;
k
is
the
boltzma
nn fa
ctor.
Tempe
r
atu
r
e
demod
ulation
method is to
use
Stokes Rama
n
scatt
e
ring OTDR curve
i
n
demod
ulation
anti
stokes Raman
scatteri
ng O
T
DR
cu
rve, throu
gh th
e type
(1) an
d (2) th
e(6)
ca
n
be obtain
ed.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Distrib
u
ted F
i
ber Tem
p
e
r
a
t
ure
Dete
ctio
n Tech
nolo
g
y in the… (Zhe
ngXiao
-
liang
)
3939
)
/
exp(
)
/
exp(
)
(
)
(
)
(
)
(
0
0
0
kT
h
kT
h
T
N
T
N
T
N
T
N
a
s
s
a
(6)
Thro
ugh the t
y
pe (6), we can obtain the
(7):
)
(
)
(
)
(
)
(
ln
1
1
0
0
0
T
N
T
N
T
N
T
N
h
k
T
T
a
s
s
a
(7)
Whe
r
e the Ty
pe
T
0
,
N
a
(T
0
)
,
N
s
(T
0
)
,
N
a
(T)
,
N
s
(T)
are kno
w
n
,
so the temp
eratu
r
e T of the
area
can b
e
o
b
tained [3].
3.2. Sy
stem
Structure
Distri
buted
o
p
tical fib
e
r te
mperature
m
easurin
g sy
st
em st
ru
ct
ur
e is
a
s
shown i
n
Fig
u
re
2, they are m
a
inly com
posed of
optical part an
d sig
n
a
l acq
u
isitio
n and p
r
o
c
e
ssi
ng pa
rts. Opti
cal
parts are
co
mposed
of semi
con
d
u
c
tor la
se
r, opt
ical fibe
r di
rection
a
l cou
p
ler, a
nd ot
her
comp
one
nts
of the sen
s
in
g optical fib
e
r
, optical
sp
e
c
tral com
pon
ents.
The sig
nal
processin
g
part is
comp
o
s
ed of ph
otoe
lectri
c re
ceive
r
and
data a
c
quisitio
n
pro
c
essing
comp
uter [5-7].
3.3. Test Me
thod and th
e Sensing Op
tical Fiber Structur
e
Only when th
e fluid supplyi
ng to the freezer i
s
stop
pe
d, the longitudinal tempe
r
a
t
ure ca
n
measure the
actual fro
z
e
n
wall tempe
r
ature,
and it shoul
d be restored imm
ediately after the
compl
e
tion o
f
the testing,
so the free
zer lon
g
itudin
a
l tempe
r
ature mea
s
u
r
em
ent is a
way
of
mo
to
r
tes
t
in
g
.
In
th
e ve
r
t
ic
al te
mp
er
a
t
ur
e fr
e
e
z
e
r
,
th
e fib
e
r
o
p
t
ic
s
h
ou
ld
be
w
o
r
k
ed
ac
co
rd
in
g to
,
the three
step
s, the put do
wn, dete
c
tion
and re
cove
ry.
Figure 3. Structure of
Arm
o
red Cable
Depth
ra
nge
of temperature mea
s
u
r
ing i
s
from
0 to 6
73m (th
e
cou
n
terweight tu
b is
at
5
m point at th
e bottom), th
e optical fiber cabl
e
length
in the tempe
r
ature mea
s
u
r
eme
n
t is 80
0m.
Due
to the
op
tical
cable
ne
ed to
con
s
tan
t
ly down,
re
cycling,
so
ca
bl
e should
hav
e certain
ten
s
ile
ability, and
g
uara
n
tee it
h
a
ve en
oug
h t
ensi
on
and
the a
c
curacy
of mea
s
u
r
em
ent. The
de
si
gn
temperature
measuri
ng op
tical ca
bl
e st
ructure is a
s
shown in Figu
re 3. The pa
ra
meters of fiber
para
m
eters
a
r
e a
s
follo
ws: multimode fi
ber
co
re, 62.
5 +
2.5 micro
n
s in
diam
ete
r
, the maxim
u
m
attenuation is 3.5dB/km (8
50nm
), 1.5dB/km
(13
00nm
), workin
g temperature i
s
50
℃
~
+ 90
℃
,
allowed be
nd
ing ra
diu
s
is
10d (dynami
c
), 20d
(stati
c), allowe
d pull
are 2
0
0
N
, 3
00N
(lon
g-te
rm)
of (sh
o
rt-t
erm
)
, long
-term
stress is
300
0
N
/100m
m,
sh
ort-te
rm st
re
ss is
500
0N/1
00mm, weigh
t
is
25kg/km.
4. Longitudi
nal Tempera
t
ure Detectio
n
4.1. Dete
ctio
n Data Ther
m
ometer Hole
Duri
ng
a tota
l of seven
th
ermom
e
ter h
o
le d
e
si
gn, from
C1
and
C2
and
C4,
C5,
C7
thermom
e
ter
hole m
e
a
s
u
r
e
d
o
r
iginal
ge
o
t
hermal
ab
no
rmal i
n
5
30
m
e
ters to
580
meters, such
as
C1, 540 mete
rs laye
r temp
eratu
r
e of 42.6
℃
, comp
are
d
to the main shaft and wi
n
d
well provide
d
a 10
-1
3
℃
.
After analy
s
i
s
b
e
cau
s
e
of formatio
n
dam
age,
p
oure
d
cem
e
nt slu
rry,
ce
ment
solidifi
c
ation
of hydration h
eat, con
c
re
te
situation a
s
shown in Figu
re 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3936 – 39
42
3940
Figure 4. Curves of Auxiliary S
haft Origi
nal Gro
und T
e
mpe
r
ature
C1
~
C7 the
r
momete
r h
o
l
e
tempe
r
atu
r
e data i
n
No
vember
11,
2011 i
s
as
shown in
Figure 5, in each layer of
C1, the te
m
peratu
r
e di
stribution is b
e
twee
n 6
℃
an
d -17
℃
; in each
layer of C2 te
mperature
distribution i
s
be
tween
-17
℃
and
2
7
℃
; in
each layer
of C3 temp
eratu
r
e
distrib
u
tion
is between
-24
℃
an
d
-26
℃
; in
ea
ch l
a
yer of
C4 te
mpe
r
ature di
stri
b
u
tion i
s
between
12
℃
an
d -29
℃
; in each
layer of C5 tempe
r
ature
d
i
stributio
n is betwee
n
-12
and -26
℃
; A
temperature
distrib
u
tion o
f
each l
a
yers of C6 i
s
be
tween
-25
℃
and -28
℃
; A
temperat
ure
distrib
u
tion in
each laye
r
of C7 is be
tween
-3
℃
and -23
℃
. T
he tempe
r
atu
r
e ra
nge of t
h
e
seven me
asu
r
ing poi
nt hol
e, which is ab
out 0.1
℃
.
Figure 5. Curves of Therm
o
meter
Hole
Tempe
r
atu
r
e
Figure 6. Cu
rves of
Auxili
ary Shaft Outer Free
zer L
o
ngitudin
a
l Te
mperature
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Applicatio
n of Distrib
u
ted F
i
ber Tem
p
e
r
a
t
ure
Dete
ctio
n Tech
nolo
g
y in the… (Zhe
ngXiao
-
liang
)
3941
Figure 7. Curves of
Auxilia
ry Shaft Inner Free
ze
r Lon
gitudinal Te
m
peratu
r
e
The Figu
re 6
and Fig
u
re
7 are the lo
ngit
udinal
tem
perature
curve
o
f
42 inner
ro
ws of 32
inner h
o
le
s on Novemb
er
8 to 12, 2011, the ov
erall
temperatu
r
e
distributio
n is between -1
9
℃
and -30
℃
, from the
analy
s
is of figu
re ,
it can
be
f
oun
d that fre
e
ze
hole i
s
run
n
in
g no
rmally, a
n
d
it has n
o
plu
gging
hole
s
and
sho
r
t-circuit ph
enom
enon, the l
o
n
g
itudinal tem
peratu
r
e
de
cl
ines
w
i
th
th
e inc
r
ea
s
e
o
f
th
e dep
th
o
f
flat, a
n
d
the
exhau
st temperature
of fre
e
zer is
lowe
r tha
n
the
temperature
of the freezer unav
oida
bly, and it is conf
orme
d to the freezi
ng cy
cle
law.
5. Conclusio
n
With the d
e
e
pen of frozen
depth a
nd t
he ap
p
licatio
n of so
me
sp
ecial
occa
sio
n
s, Now
the fre
e
zin
g
method i
s
facing a
serie
s
o
f
pro
b
lem
s
to
be
solved, th
e tra
d
itional
d
e
tection
meth
od
can n
o
t meet
the need
s of
the develop
ment of te
chn
o
logy. Free
zi
ng metho
d
h
a
s be
en relati
vely
mature, b
u
t in the field
of monitori
ng
and aut
o
m
atic control,
there exi
s
ts
many defe
c
ts.
Distri
buted
o
p
tical fibe
r te
mperature
m
easure
m
ent
t
e
ch
nolo
g
y ha
s be
en a
pplie
d in some
other
fields, and
rel
a
ted produ
cts is increa
sin
g
l
y mature,
the cha
r
a
c
teri
st
ics
of distri
bu
ted detectio
n
is
esp
e
ci
ally suitable for f
r
ee
zing tem
peratu
r
e fiel
d monitori
ng
of the proj
ect, throu
g
h
the
longitudin
a
l tempe
r
ature d
e
tection
of fre
e
ze
r, we
can
be more in
tuitive grasp the
developm
ent of
froze
n
tube
wall, and
wit
h
the red
u
ce of the
eq
uipment
co
st, the distribu
ted optical fi
ber
temperature
measurement
tech
nolo
g
y i
n
the
appli
c
a
t
ion of free
zi
ng e
ngin
eeri
ng
will b
e
m
o
re
and mo
re wi
d
e
ly.
Ackn
o
w
l
e
dg
ements
This work wa
s sup
p
o
r
ted in part by Natural
Scie
nce Found
ation for Unive
r
sity in Anhu
i
Province of
Chin
a u
nde
r
Grant
KJ2
0
1
3
A03, a
nd E
ducation P
r
oj
ect of
Creati
on a
nd In
nov
ation
for Colle
ge Student
s in Chi
na und
er G
r
a
n
t 20121
036
1
067.
Ref
e
ren
c
e
s
[1]
Z
hou
Xi
ao-mi
n
,
Z
hang
Xu-z
h
ong. R
e
searc
h
on the thick
n
e
ss estimation
o
f
freezing
w
a
ll
accord
ing to
temperatur
e m
easur
ement a
l
ong fre
e
ze tub
e
.
Journ
a
l of C
h
in
a Co
al Soc
i
ety
. 2003; 2
8
(3
): 162-1
66. (in
chin
ese)
[2]
W
ang Re
n-h
e
, Jin Ch
uan, Z
h
ang R
u
i. An
al
ysis of non
e ov
erflo
w
from h
y
drol
ogic
a
l h
o
le
in de
ep sh
aft
sinkin
g
w
i
t
h
fr
eezi
ng tec
h
n
o
l
o
g
y
.
Jo
urna
l o
f
Anhu
i U
n
iver
sity of Scie
nc
e a
nd T
e
c
hno
l
ogy (N
atura
l
Scienc
e)
. 200
8
;
28(3): 19-21.
[3]
Guo Z
hao-k
u
n
,
Z
heng
Xi
ao-l
i
an
g, Lu Z
h
a
o
-
hui, Ma
L
i
e. T
e
chnolog
y an
d
ap
plic
ation of
distrib
u
te
d
optica
l
fiber temper
ature s
ensor.
Jour
na
l of China A
c
ade
my of El
ectronics a
n
d
Informatio
n
T
e
chno
logy
. 2
008; 3(5): 5
43-
546.
[4]
Z
heng
Xi
ao-
lia
ng, Guo Z
hao
-kun, Xie Ho
n
g
-zhi, Ma
Li
e. Monitori
ng a
n
d
measur
eme
n
t s
y
stem o
f
freezin
g tempe
r
ature fiel
d ba
sed on distri
b
u
ted optic
al fi
ber sens
or techno
log
y
. Co
al
Scienc
e and
T
e
chno
logy
. 2
009; 37(
1): 18-
21.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3936 – 39
42
3942
[5]
Genji
an Y
u
, K
unp
en
g W
e
n
g
. Intrusio
n d
e
te
ction s
y
stem
a
nd tec
hno
lo
g
y
of la
yer
ed
w
i
re
less se
nsor
net
w
o
rk b
a
sed
on Agent.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al
E
ngi
ne
erin
g
. 201
3; 1
1
(8):
423
8-42
43.
[6]
Li Li
u, Peng
yu
an W
an, Yin
g
m
ei W
ang, So
ngtao
Liu.
Cl
u
s
tering a
nd H
y
brid Gen
e
tic Al
gorithm b
a
se
d
Intrusion D
e
tec
t
ion Strateg
y
.
T
E
LKOMNIKA Indo
nesi
an Jo
u
r
nal of Electric
al Eng
i
ne
erin
g
.
2014; 12(
1):
762-
770.
[7]
Hui
Di
ng. A
ppl
i
c
ation
of W
i
re
l
e
ss Se
nsor
Ne
t
w
ork
i
n
T
a
rget Detecti
o
n
an
d
Loca
lizati
o
n
. T
E
LKOMNIKA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2013; 1
1
(10):
573
4-57
40.
Evaluation Warning : The document was created with Spire.PDF for Python.