TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5877 ~ 5885
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.604
4
5877
Re
cei
v
ed Ap
ril 2, 2014; Re
vised J
une 8,
2014; Accept
ed Ju
ne 20, 2
014
Resear
ch of Reliabilit
y, Availability and Maintainability
on the All-electronic Computer Interlocking System
He Tao
*
1
, Re
n Jianxin
2
T
he Ke
y
La
b of Opto-T
echnol
og
y an
d Intell
ig
ent
Contro
l, La
nzho
u Jia
o
ton
g
Univ
ersit
y
An Nin
g district
w
e
st ro
ad No.
88, Lanz
ho
u,
Gansu, Chi
na.
T
e
lephon
e No.
:
86+
093
1-4
956
369
Corresp
ond
in
g author, em
ail
:
hetao@ma
il.l
z
jtu.cn
1
, 8243
5
951
9@q
q
.com
2
A
b
st
r
a
ct
High
leve
ls of relia
bi
lity an
d hi
gh secur
i
ty are
the
basic ch
ar
acteristics an
d
requ
ire
m
e
n
ts o
f
railw
ay
signal system
s
.
So, reliability, availability and m
a
in
tainability (RAM) are necessa
r
ily analy
z
ed befor
e the
computer i
n
terl
ocking system
w
ill be adopted. The All-
el
ectronic C
o
m
p
uter
Interlocki
ng S
ystem
, w
h
ich i
s
a
new
kind of i
n
terlocki
ng system
, still needs to analy
z
e
it
s R
A
M before bei
ng put to us
e. In this paper, the
relia
bi
lity
meth
ods
an
d Mark
ov
mo
del
ar
e
ad
opte
d
to
a
naly
z
e
th
e RA
M in
dexes
of
the Al
l-el
ectro
n
i
c
Co
mp
uter Interlockin
g
Syste
m
w
hen its execution l
a
ye
r eq
u
i
pp
ed w
i
th the singl
e confi
gur
ation or the d
u
a
l-
redu
nda
nt conf
igur
ation, t
he
p
aper
also c
o
mpares th
e in
de
xes w
i
th
that o
f
the traditio
nal
computer-
bas
ed
interl
ockin
g
sy
stem. F
i
n
a
lly, t
he
pap
er w
ill
b
r
iefly i
n
clu
d
e
s
ugg
estio
n
s o
n
how
the A
ll-e
l
e
c
tronic C
o
mp
uter
Interlocki
ng Sy
stem’
s
RAM i
n
dexes
may b
e
i
n
creas
ed a
nd
also, how
the s
ystem
may b
e
used pr
actical
l
y
.
Ke
y
w
ords
: Ra
ilw
ay sign
ali
ng;
Computer i
n
te
rlockin
g
; All-e
l
e
c
tronic; Rel
i
ab
il
ity: Availab
ility;
Maintai
nab
ility
1. Introduc
tion
The int
e
rlo
c
ki
ng
system
is mainly
use
d
to en
su
re
th
e safe o
p
e
r
at
ion of
ru
nnin
g
trai
ns.
Therefore it
own
s
the qu
alities of hig
h
-a
cc
urate p
e
rform
a
n
c
e
and vital respon
sibility. High-
reliability an
d
high-safety l
e
vels a
r
e the
two mo
st co
mmon
cha
r
a
c
teri
stics an
d
requi
rem
ent
s of
the system.
Con
s
e
quently
, it is of great impor
tan
c
e t
hat the syste
m
’s RAM b
e
analyzed bef
ore
putting to use. Scientists
and re
se
arch
ers a
r
o
und the wo
rld hav
e spe
n
t a significa
ntly large
amount
of time re
se
arch
ing the
rail
way si
gnal
i
n
g syste
m
’ RAM [1]. The All- ele
c
tro
n
ic
Interlocking System has
obviously increased
signaling system
's efficiency and intelligence,
lowe
red
the
entire
cost,
simplified the
maintena
nce
and
p
r
olo
n
g
ed the
life
cy
cle
of
sign
aling
system. Whil
e, the syste
m
's safety has bee
n prev
i
ously di
scussed in other
p
apers [2], so
this
pape
r is
gea
red toward
s a
nalyze th
e rel
i
ability,
availability and mai
n
tainability (RAM) of the All-
electroni
c Interlo
cki
ng System.
2. Analy
s
is
of RAM of th
e tradit
ion
a
l computer interlocking s
y
stem.
There are a
con
s
ide
r
a
b
l
e
numb
e
r of
pape
rs a
n
d
techni
cal d
o
cum
ents th
at have
analyzed an
d
calculated t
he RAM in
de
x of traditi
onal com
puter i
n
terlo
cki
ng
system in det
ails,
while
the
s
e
a
nalyse
s
are
o
n
ly abo
ut the
interlo
cki
ng system’s
logi
c part;
they are
not relevant
t
o
the relay im
plementatio
n
pa
rt [3-5]. Take
for exa
m
ple, a
n
int
e
rlo
cki
ng
system existin
g
in a
railway statio
n that ha
s
1
20 railw
ay switch
es,
so t
he tra
d
itional
com
pute
r
int
e
rlo
cki
ng
ch
a
r
t in
Figure 1
displays the
syst
em’s
reliability after the
rel
a
y execut
ion
part of the sy
stem has been
c
o
ns
ide
r
ed
.
2.1 Calculating the reliabilit
y
of trad
itional computer interlocking s
y
stem.
Let’s a
s
sume
that the sin
g
l
e safety rel
a
y’s relia
bility index is
10
7
h,
so the
wh
ol
e relay
combi
nation’
s reliability ind
e
x of the tra
d
it
ional
comp
uter inte
rlo
cki
ng sy
stem wi
ll be 10
6
h [6]
.
Con
s
e
quently
, the Mea
n
Ti
me to F
a
ilure
s of th
e
syste
m
S
MTTF
shoul
d b
e
cal
c
ulate
d
u
s
i
ng the
followin
g
Formula:
)
(
1
year
0.33
h
10
898
.
2
1
1
3
1
n
i
i
S
S
MTTF
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 587
7 –
5885
5878
Figu
re 1. Th
e reliability bl
ock diag
ram
of
traditional
comp
uter inte
rlockin
g
syste
m
2.2 Calculati
ng the maintainabilit
y
and av
ailab
ilit
y of the
tradi
t
ional computer interlocki
ng
s
y
stem.
Acco
rdi
ng to the previ
ous exp
e
rie
n
ce
a
nd te
chni
cal p
a
ra
meters provi
ded by
manufa
c
turers, the maintainability ind
e
x of t
he traditional sy
ste
m
is about
30 minute
s
that
includes the
system’
s
relay execution part, so t
he
availability of the syst
em i
s
determined by
the
followin
g
Formula:
Here, the
S
MTTR
is set as 0.5 h
o
u
r,
S
MTBF
≈
S
MTTR
.
3 An
aly
s
is
of RAM
of the
All-ele
c
troni
c In
te
rlocking Sy
stem b
ased
on th
e si
ngle
configur
atio
n.
As for
co
mp
uter inte
rlo
c
king sy
stem, t
he inte
rlo
ckin
g
co
nsole i
s
re
spo
n
si
ble
for the
interlo
cki
ng o
peratio
n of the whol
e rail
way stati
on si
g
naling
syste
m
, if one tiny probl
em ari
s
es
from the
inte
rlocking
con
s
o
l
e, the
whol
e
system
will
b
e
pa
ralyzed.
Therefore,
we have
to a
d
opt
a redu
nda
nt approa
ch to improve the
system’s av
ail
ability, howev
er, the su
dde
n failure on t
he
execution layer will impact
some parts
of the sy
stem
such as a
si
ngle rail
way
swit
ch. With the
inspi
r
ation of the traditional
compute
r
interlo
cki
ng sy
stem, the syste
m
’s
executio
n layer can b
e
desi
gne
d as t
he sin
g
le con
f
iguration.
Acco
rdi
ng to the reliability enginee
rin
g
theorie
s, the system'
s
reliability is decid
ed by
each si
ngle
u
n
it and it
s o
w
n structu
r
e. A
s
for thi
s
syst
em, the reliab
ility block dia
g
ram i
s
sh
own
as Figu
re 2
with rega
rd to the sin
g
le con
f
iguration
system.
Figure 2 The
reliability block diagram of
All-elec
troni
c
interlocki
ng system on single configuration
The reli
ability indexes in
Figure 2 are
the pr
edi
ctio
ns u
s
ing it
s compl
e
xity, shown as
followin
g
Tabl
e 1.
)
(
2
%
99.983
S
S
S
S
MTTR
MTBF
MTBF
A
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of Reliability, Ava
ilability and Maintainability on t
he All-el
ectronics … (He Tao)
5879
T
abl
e 1. The reliability index of each assembly part
(
10
-6
/h
)
Assembly Part
Failure Rate
Fail Rate on
con
d
ition of Wa
rm
Stand-by
Powe
r 8
——
Interlockin
g
console
4
——
Comm
uni
cati
on boa
rd
3
——
Rail
way Switch module
9
7
Signal mod
u
le
8
7
Switch value
module
5
——
Tra
ck m
odule
7
6.5
3.1 Calculati
ng th
e reliab
ilit
y
of the
All-elect
r
onic
computer interlocking sy
stem b
ased
on
single confi
guration.
Let’s a
s
sume
that each uni
t in Fig.2 is mutua
lly indep
ende
nt, the failure rate of each u
n
it
is a con
s
tant
, namely, the unit module
obeys ex
po
nential dist
rib
u
tion, so the
Mean Time
to
Failur
e
s of
t
h
e sy
st
em (
S
MTTF
) is
:
3.2 Calculati
ng the maintainab
ilit
y
of the
All-electronic co
m
puter interlocking sy
ste
m
based on sin
g
le configur
ation.
The
entire
maintainin
g t
i
me of th
e
system
can
be divid
ed i
n
to fou
r
ste
p
s: the
"approa
ching
step", th
e "d
iagno
sing
ste
p
", the
"chan
ging
step"
an
d the "
a
ffirmi
ng
step". As
for
maintena
nce
predi
ction,
we usually an
a
l
yze it from
th
e syste
m
’s
b
o
ttom to its top, for exam
ple,
the railway switch u
n
it module, whi
c
h i
s
sh
ow
n in Table 2. Its "appro
a
ching
step" mean
s the
time that
serviceman
spe
nds in
getting
to the
rail
wa
y station
sp
ot; the "diag
n
o
s
ing
ste
p
" is
the
time that se
rvicem
an
sp
end
s in det
ermini
ng th
e
positio
n of
the failure
throug
h sy
stem’s
indication of lamps a
nd m
a
intaining m
a
chin
e; the "Changi
ng step
" is the amou
nt time taken
to
repla
c
e the fa
ilure unit; the
"affirming ste
p
" is t
he time used to reco
ver to norm
a
l
operatio
n after
failure unit m
odule h
a
s b
e
en su
cce
ssful
ly replaced.
T
abl
e 2.
The
Maintaina
b
ility Prediction o
f
T
r
ack Switch Module
Failure Mode
Failur
e
Ra
te
(10
-6
/h)
Maintaining time
(
h
)
MTTR
i
Failure
Rate×MTT
R
app
ro
ac
hin
g
diagnos
ing
changin
g
affirming
Measurable F
a
ilure
8.66
0.1
0.02
0.05
0.1
0.27
2.3382
Immeasura
b
l
e
Failure but Failure
loc
a
tion Clear
0.123
0.1
0.2
0.05
0.1
0.45
0.0553
5
Immeasura
b
l
e
Failure and F
a
ilure
locat
i
o
n
un
cle
a
r
0.013
0.1
1
0.3
0.3
1.7
0.0221
In all
8.796
——
2.4156
5
)
(
3
493h
1
1
1
n
i
i
S
S
MTTF
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 587
7 –
5885
5880
So, the Mea
n
Time to
Rep
a
ir of the
unit
module
(
M
TTR
) a
c
cordin
g to a
b
o
v
e Table
2
is:
Becau
s
e
the
stru
cture of
th
e railway
swit
ch
unit m
odul
e is mu
ch
mo
re
so
phi
sticat
ed tha
n
any other mo
dule
s
, it can be assum
ed that the
other unit module'
s maintain
abi
lity index is the
same
a
s
the
railway switch even
und
er the
wors
t
co
ndition,
so th
e Mea
n
Tim
e
to Repai
r of
the
sy
st
em (
s
MTTR
) is:
So,
r=1/
s
MTTR
=3.64
3.3 Calc
ulati
ng av
ailabilit
y
of the
All-elec
tr
onic c
o
mputer
interlocking s
y
stem
b
ased
on
single confi
guration.
The sy
stem's availability can be cal
c
ul
ated by the following Form
ul
a:
Here, the
s
MTTR
is 0.2746
3 hou
r,
s
MTBF
≈
s
MTTF
.
Obviou
sly, we are n
o
t satisfied with
the
RAM indexe
s
wh
e
n
syst
em a
dopts the
si
ngle
config
uratio
n. In order to a
c
hieve the hi
gh leve
l of re
liability and a
v
ailability of the syste
m
, we
will ado
pt a redun
dant ap
p
r
oa
ch.
4. Analy
s
is
of RAM o
f
the
All-el
ectro
nic interlocking s
y
stem based on redun
dan
t
configur
atio
n.
Comm
on
red
unda
nt co
nfig
uration
s
su
ch
as th
e Stan
dby Switch o
r
Dual-ma
c
hi
ne Hot
Standby a
r
e
usu
a
lly u
s
ed
in th
e inte
rl
ocking
sy
ste
m
. In terms
of the
syste
m
which b
o
th ha
s
control o
u
tpu
t
s and
colle
cting se
ction,
its sta
ndby
mode tri
e
s to po
ssi
bly in
sulate th
e m
a
in
system to d
e
c
re
ase the
Common M
o
d
e
Fault; ho
we
ver, the interl
ocking
syste
m
is not e
qui
pped
with load
-bea
ring. So, precisely spe
a
ki
n
g
, t
he system
adopts the m
ode
of "Warm
Standby", both
the rail
way switch m
odul
e
and si
gnal m
odule
s
a
r
e su
itable for "Wa
r
m Standby". While the t
r
a
ck
module
ge
ne
rally ad
opts
a spe
c
ial
re
dund
ant mo
d
e
(a
n in
direct redu
nda
nt
way)
by getti
ng
throug
h a matchin
g
unit and dou
ble redun
dant pa
rallel com
pute
r
s, but switch value mod
u
le
employs di
re
ct doubl
e co
mputer
redu
n
dan
cy.
4.1 Calcula
t
ing the RAM i
ndex of u
n
it module on the
w
a
rm sta
ndb
y
mode.
(1) Reliability
The switch
module
shoul
d be
a
dded
t
o
the
sy
stem
whe
n
wa
rm
standby. Let’
s
take
an
example of the track switch mod
u
le, the relia
b
ility
block diag
ra
m of a single
unit module after
achi
eving sta
ndby appli
c
ati
on is sho
w
n a
s
Figu
re 3.
)
4
(
minutes
5
.
16
27463
.
0
796
.
8
41565
.
2
h
f
MTTR
f
MTTR
i
i
i
)
5
(
27463
.
0
1
h
MTTR
MTTR
MTTR
i
S
n
i
i
i
S
)
(
6
%
99.945
S
S
S
S
MTTR
MTBF
MTBF
A
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of Reliability, Ava
ilability and Maintainability on t
he All-el
ectronics … (He Tao)
5881
Acco
rdi
ng to reliability theorie
s, the module A an
d "the openi
ng circuit invalidity of
swit
ch m
odul
e" ca
n b
e
co
nsid
ere
d
a
s
an integ
r
at
io
n. So, the
system
will h
a
ve four types
of
states.
State 1: Module A and Mo
dule A' are b
o
t
h in normal o
peratio
n.
State 2: Module A is in normal ope
ration
, Module A' is not.
State 3: Module A operation is failing,
Module A' is i
n
norm
a
l ope
ration.
State 4 : Module A and Mo
dule A' both are not in no
rmal ope
ration
.
Assu
me that module
can b
e
repai
re
d or
repla
c
e
d
wh
e
n
fails to operate.
M
odu
le A
M
odu
le A’
I
O
Switch module
op
en circuit
fa
i
l
u
r
e
Switch module
sh
ort circuit
fa
i
l
u
r
e
Figure 3. The
reliability blo
ck di
agr
am of
unit module
on wa
rm sta
n
dby.
So, accordi
n
g to the above assumptio
n
,
the
state transition di
agra
m
of unit module on
the warm sta
ndby ca
n be
sho
w
n a
s
Fig
u
re 4.
A
A
A
’
A
’
Figure 4. The
state tran
sition diag
ram of
unit module
at standby m
ode
The sy
stem'
s
state tran
sitio
n
matrix is sh
own b
e
lo
w according to Fig
u
re 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 587
7 –
5885
5882
With the consideration of
the system's self-r
epairing ability, the Transition Matri
x
A can
be tran
sfo
r
m
ed a
s
Fo
rmul
a 1 [7], just b
y
repla
c
ing th
e red
und
ant
equatio
n with
the last lin
e
in
the Trans
i
tion Matrix.
At this
point,
and
both co
ntain
swit
ch
module
'
s fail
ure
s
,
and
ar
e
r
e
s
p
ec
tive
ly
predi
cted a
s
the followi
ng:
=8.
796
×1
0
-6
+0.
1
0
105
×1
0
-6
= 8.8970
5×1
0
-6
'
A
=7.
1
7
8
×
1
0
-6
+0.0672
×1
0
-6
= 7.24520
×1
0
-6
The
avera
ge
lifetime of the
syste
m
i
s
co
mposed
by th
e sum lifetim
e of e
a
ch
stat
e, that i
s
to s
a
y,
θ
=
θ
1+
θ
2+
θ
3. As m
entione
d in re
feren
c
e [8] Formul
a 4-2
6
,
θ
A= -Qw(0),
we set the initial
con
d
ition Q
w
(0)=(1,0,0
), when the two
module
s
a
r
e
norm
a
l wo
rki
ng at t=0.
So, the reliabi
lity index of tr
ack switch m
odule o
n
wa
rm standby is
:
MTTF
=
θ
=
θ
1
+
θ
2
+
θ
3
= 8.47
×10
10
h
(8)
And then
=1/
MTTF
=1.181
E-11
(2) Av
ailabilit
y
The ste
ady-st
a
te sol
u
tions
of modul
e
s
can be
cal
c
ula
t
ed by Form
u
l
a 1,
,
and r.
So the steady
-state availa
b
ility of unit mo
dule when it adopt
s stan
d
b
y mode is:
A=
P
1
+P
2
+P
3
=0.9999
999
99
9902
7.
4.2 Calculati
ng th
e
RAM index
of
unit modul
e
w
h
en
dual
s
y
stem are
indirectly
but
parallell
y
used.
The relia
bility block
di
agra
m
of the
track mod
u
l
e
whe
n
the
dual sy
stem
adopt
s indi
re
c
t
collate
ral mo
de is sho
w
n a
s
Figu
re 5.
)
(
)
(
)
(
7
0
0
0
0
0
)
(
'
'
'
'
r
r
r
r
r
r
A
A
A
A
A
A
A
A
A
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of Reliability, Ava
ilability and Maintainability on t
he All-el
ectronics … (He Tao)
5883
Module A
M
odu
le A’
I
O
Matching
u
n
it
side 1
'
s failure
Matching
u
n
it
side 2
'
s failure
Ma
tchin
g
unit
original side’s
failure
Figure 5. The
reliability blo
ck di
agram
s of the
dual sy
stem are of indire
ct collate
ral mode
The
relia
bility
index
of
track
unit
mo
dule
is 1.17E-6 cal
c
ul
ate
d
by the method
s
mentione
d in 4.2.
Its steady-state availability is:
A=
P
1
+P
2
+P
3
=0.9
999
9
9871
4208
7.
4.3 Calcula
t
i
ng the
RAM index of
unit modul
e
w
h
e
n
du
al s
y
stems are directly
and
parallell
y
used
.
The switch value mod
u
le,
powe
r
mod
u
l
e, interlockin
g
boa
rd an
d the comm
uni
cation
board all a
d
o
p
ts the d
ual
system direct
and p
a
rall
el
mode, its
reli
ability block d
i
agra
m
is
sh
o
w
n
as Figu
re 6.
Figure 6. The
reliability blo
ck di
agram o
n
dire
ct and p
a
rallel m
ode
Similarly, the reliability index of switch
value module is
4.579E-12
cal
c
ulat
ed by the
method
s me
n
t
ioned in 4.2,
its relia
bility is 0.
99
999
999
9996
22. The
power m
odul
e's
relia
bility is
1.172E-11, the main bo
ard reli
ability is 2.930E-1
2, and the com
m
unication b
oard
relia
bility is
1.648E-12.
4.4 The reliabilit
y
of All-electronic
Interlocking S
y
stem on standb
y
mode.
Acco
rdin
g to
pra
c
tical sit
uation, both
the rail
way
switch
unit m
odule
and
si
gnal u
n
it
module
ad
op
t the warm
st
andby m
ode,
the tra
c
k u
n
i
t
module
ad
o
p
ts
paralle
l re
dun
da
nt mode
b
y
ma
tch
i
ng
un
i
t
module, th
e
swit
ch valu
e
unit mod
u
le,
power m
odul
e, and i
n
terlo
cki
ng m
odule
all
adopt
dire
ct
parall
e
l mo
d
e
. So the
reli
ability blo
c
k
diagram
of th
e whole
sy
stem is sho
w
n
as
Figure 7.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 587
7 –
5885
5884
Figure 7. The reliability block
di
agram of
the whole
system
So, the Mean Time to Failure (
S
MTTF
) of the system is:
System's avai
lability is:
Her
e
,
S
MTTF
is 0.27
463 ho
ur ,MT
B
FS
≈
S
MTTF
.
5. Conclusi
ons
With the anal
ysis above,
it is cl
ear that the reli
ability a
nd availability
of the All-electroni
c
Interlockin
g
S
y
stem is n
o
t as g
ood a
s
th
e traditi
on
al i
n
terlo
cki
ng
system, but its
maintaina
b
ility is
much
better
than the tra
d
i
tional one; t
he reli
ability, availability and maintai
n
a
b
ility have been
g
r
e
a
t
ly impr
ove
d
w
h
en
the
All-
e
l
ec
tr
onic
In
te
r
l
oc
kin
g
System ad
opts redu
nda
nt configu
r
ati
on.
So
, th
e
tr
ack
lin
e
w
h
ich
has
low
e
r
e
ffic
i
en
c
y
an
d
is
not ve
r
y
b
u
s
y
bu
t s
e
n
s
itive
to
loc
a
l ec
on
om
y
can be e
quip
ped with the
singl
e config
uration of
All-electroni
c Interlo
cki
ng System, but for the
busy tra
c
k lin
e, the red
und
ant All-ele
c
tronic Inte
rl
o
c
king System i
s
the be
st cho
i
ce. Of course,
the red
und
an
t configu
r
atio
n can
be b
o
th
adopted i
n
st
ation bottlene
ck
and the m
a
in tra
ck lin
e
so
as to improve
the system'
s
av
ailability and the local e
c
onomy.
)
(
9
years
1.77
h
10
55
.
1
1
1
4
1
n
i
i
S
S
MTTF
)
(
10
%
99.9982
S
S
S
S
MTTR
MTBF
MTBF
A
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Research of Reliability, Ava
ilability and Maintainability on t
he All-el
ectronics … (He Tao)
5885
Referen
ces
[1]
Yuan C
h
u
n
x
in.
Rail
w
a
y
Sig
n
a
l
F
ault T
o
lerant
T
e
chnol
og
y. B
e
iJin
g: Chi
na R
a
il
w
a
y
Pub
lish
i
ng Ho
use.
[2]
T
ao He. Safety anal
ys
is an
d desi
gn for the
s
w
itc
h
contro
l unit of all-
elect
r
onic com
puter
interlock
i
n
g
sy
s
t
e
m
.
T
E
LK
OMNIKA Indon
esia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g
. 201
2; 10(5): 105
7-1
061.
[3]
Qi Z
h
ihu
a
, W
ang H
a
ifen
g. D
e
sig
n
of An E
m
bed
ded Do
u
b
le 2-VOT
E
-2
F
ault
T
o
lerant
Comp
uter-
Based Interl
oc
king S
y
stem. BeiJin
g.
T
he Jou
r
nal of BeiJ
ing
JiaoT
o
ng Un
iv
ersity
.
[4]
Liu F
a
n
g
, W
ang Haife
ng. Co
mpariso
n
of s
y
stem
performa
nce on 2-VOT
E
-2 s
y
stem an
d Dual Mo
du
l
e
Hot Spare
[5]
Zhang
Pin
g
, Z
hao
Ya
ng. An
a
l
y
s
is o
n
th
e R
e
liab
ilit
y
an
d S
a
fet
y
of the I
n
te
rlockin
g
Contro
l S
y
stem
of
Rail
w
a
y C
o
mp
uter.
Chin
a Saf
e
ty Science Jo
urna
l
. 200
3; 13
(4) : 48 - 50.
[6]
Li Men
g
, W
u
Fangme
i
, Mu Jianc
hen
g. T
h
e Rel
i
ab
ilit
y A
nal
ysis
of Rai
l
w
a
y
Sig
nal. B
e
iJin
g:Ch
in
a
Rail
w
a
y Pu
blis
hin
g
Hous
e, 20
08:15
8.
[7]
(USA) Char
les
E.Ebeli
ng, tra
n
slate
d
b
y
Ka
ng Ru
i. An Introducti
on to R
e
liab
ilit
y a
nd M
a
inta
ina
b
il
it
y
Engi
neer
in
g. BeiJin
g: T
s
ing Hua Un
iversit
y
P
r
ess, 2010: 2
0
4
.
[8]
Guo Yuqi
n, W
ang Yan.S
ystem
Relia
bi
lit
y T
heories. B
e
iJin
g: Chi
n
a
Coal Ind
u
stry Pub
lis
hin
g
Hous
e,19
91:76
.
Evaluation Warning : The document was created with Spire.PDF for Python.