TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 82
5
7
~ 826
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.67
11
8257
Re
cei
v
ed
Jul
y
23, 201
4; Revi
sed O
c
tob
e
r 18, 201
4; Acce
pted No
vem
ber 1
0
, 2014
New LNA Architecture Topology Using Inductive Drain
Feedback Tech
nique for Wireless Applications
Pongot
K
1,2
, Othman
A.R
2
, Zakaria Z
2
, Suaidi M.K
2
, Hamidon
A.
H
2
1
Bahag
ian S
u
mber Man
u
sia,
Majlis Ama
n
a
h
Rak
y
at (MAR
A
),
T
i
ngkat 17 & 18 Ibu Peja
bat
MARA, Jalan
Raja
Laut, 50
6
09 Kua
l
a L
u
mp
ur, Mala
ysi
a
2
Centre of T
e
lecommunic
a
tio
n
and Inn
o
vatio
n
(CET
RI),
F
a
cult
y
of Electron
ics and C
o
mpu
t
er Engin
eeri
n
g
,
Univers
i
ti T
e
knikal Mal
a
ysi
a
Melak
a
(UT
e
M), Hang T
uah Ja
ya 76
10
0, Du
rian T
ungg
al, Melak
a
, Mala
ysia
Corresp
on
din
g
author, e-mai
l
: kamilp
ong
ot
@
y
a
h
o
o
.com.sg, rani@
u
tem.ed
u.m
y
,
zahril
ad
ha@
utem.edu.m
y
, ka
dim@
utem.
edu
.m
y
,
hamid
@ut
e
m.edu.m
y
A
b
st
r
a
ct
T
h
is p
aper
pr
esents
a
desi
gn
of a s
i
n
g
le
LNA
casca
de
d w
i
th d
o
u
b
le
stage
casc
od
ed
L
N
A
amplifi
e
rs usi
n
g an i
n
d
u
ctive
drain fe
ed
bac
k techni
que. T
he a
m
p
lifi
e
r is
imple
m
ente
d
usin
g sup
e
rHE
M
T
F
H
X76LP
tran
sistor dev
ices.
T
he d
e
si
gne
d
circuit
is si
mulate
d w
i
th An
soft Desi
gner
SV. T
he L
N
A
is
desi
gne
d by us
ing an i
n
d
u
ctive drai
n feed
ba
ck, inductive g
ener
ation to
th
e source, an
d the T
-
netw
o
rk as
a
match
i
n
g
tech
niq
ue w
h
ich is
w
h
ich is used at the
inp
u
t and o
u
tput ter
m
i
nals. T
he l
o
w
noise a
m
pl
ifie
r
(LNA) pr
ovi
des
a
gai
n (S
21
) of
68.9
4
dB
a
nd
the n
o
ise
fig
u
r
e
(NF
)
of
0.64
dB. T
he r
e
turn
loss (S
12
) out
p
u
t
reflection (S
22
) and i
n
p
u
t refle
c
tion (S
11
) are -88.39,-1
7.37
and
–15.7
7
dB
respective
ly. T
he meas
ure
m
en
t
show
s a 3-
dB
ban
dw
idth of
1
.
72 GH
z
a
nd s
t
ability
ar
e
4.5
4
more
than
1
has
bee
n
ach
i
eve
d
. The i
n
p
u
t
sensitivity is -9
2 dB
m excee
d
ed t
he stan
dar
ds requ
ired
by IEEE 802.16.
Ke
y
w
ords
:
RF front-end, IEEE 802.16, casc
ade
d an
d casc
ode
d LNA, in
d
u
ctive dra
i
n fee
dback, top
o
lo
g
y
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
3G technol
og
ies that a
r
e a
v
ailable rece
ntly
have a si
gnifica
ntly higher
bit rate t
han 2
G
techn
o
logy, but the bit rate is not ade
quate to
su
stain the high deman
d from
consume
r
s f
o
r
wirel
e
ss broa
dban
d, multi-megabit thro
ughp
ut
and lowe
r laten
c
y (delay between re
que
sti
n
g
data and g
e
tting a re
sp
onse). To acco
m
m
odate the
hi
gh con
s
u
m
er demand, the
introdu
ction
of
WiMAX tech
nology for
conne
ctivity to
the new
g
e
neratio
n co
n
s
ume
r
devi
c
es to the lat
e
st
appli
c
ation
s
available in t
he market
su
ch a
s
(GSM, WiFi, Blueto
o
th, ZigBee, UWB
Hipe
rL
AN
etc...) for 3G
and 4G net
works [1]. WiM
AX is a tr
ademark for a family of wirel
e
ss
com
m
uni
cation
proto
c
ol that provide
s
both
fixed and mobile intern
et access. WiMA
X is the
internet Protocol (IP)
based, broad
band
wirele
ss a
c
cess te
ch
nology that
p
r
ovides
perfo
rmance si
mila
r to 802.1
1
/WiFi
netwo
rk
with coverage a
n
d
quality of service (QoS
) of cellula
r networks [1]. Figu
re 1 sh
ows th
e
latest stan
dards for mo
bile
and data
com
m
unication
s.
Figure 1. The
latest stand
a
r
ds fo
r mobile
and data co
mmuni
cation
s [1]
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8257 – 82
67
8258
WiMAX i
s
a
n
e
w t
r
ade
mark and
sta
nda
rd for group
te
chn
o
logie
s
of
telecommu
ni
cation
s
proto
c
ol
s that
provide fixed
and mo
bile I
n
ternet
a
c
ce
ss. As
WiMAX has
high t
r
a
n
sfer data
rat
e
s
(70 Mb
ps) and long
er rea
c
h (5
0km), it can p
r
ovide h
i
gh ban
dwidt
h
voice an
d d
a
ta for re
side
ntial
and
enterpri
s
e [2].
WiMAX is
a repla
c
e
m
ent te
chnol
ogy for cellul
a
r p
hon
e te
chnolo
g
ies
su
ch a
s
UMTS and G
S
M and, or can b
e
used to incre
a
se
capa
city of th
e cu
stome
r
[3]. To suppo
rt a
new trade
ma
rk at T
e
le
com
m
unication p
r
otocol
and all
o
w it to ope
ra
te multiple ap
plicatio
ns o
n
a
singl
e device,
RF front end
receiver i
s
essential a
nd in
evitable in de
mand.
The
de
sign
o
f
the
RF f
r
ont
-end
receiver t
hat compli
e
s
with
th
e
n
e
w
stand
ards WiMAX
meet seve
ral chall
enge
s a
nd com
p
licated. Thus
, the
best desi
gn
on the front-e
nd re
ceiversh
ave
been
develo
ped to o
b
tai
n
a hig
h
ove
r
all gai
n, low noise figure
,
and sufficie
n
t band
width
to
accomm
odat
e the need
s
of new tra
d
e
m
ark and
wi
reless sta
nda
rd (WiMAX
)
. A propo
se
d new
architectu
re
for the
re
ceiv
er front-e
nd
should
be
i
n
trodu
ced to
en
sure hi
gh
performan
ce
sig
nal
reception according to the IEEE 802.16 standard.
The overall
gain for the f
r
ont-end
recei
v
er
sho
u
ld intro
d
u
ce m
o
re th
an 65 dB compa
r
ed to
32 until 50
dB repo
rted
from previo
us
resea
r
cher b
y
taking co
n
s
ide
r
ation to
cover t
he ext
ensi
on of co
mmuni
cation
distan
ce for t
h
e
system up to 50km [4]. In
the WiMAX standard,
the system is d
e
s
ign
ed to accommod
a
te up to
200 cha
nnel sub
s
crib
ers while
th
e
ba
n
d
width of
the
system
de
sig
ned i
s
bet
we
en 16
00 to
1
700
MHz,
which
i
s
tri
p
le
than
the
stand
ard
20 M
H
z for 2
00
sub
-
carrie
rs. In
ad
dition
, the noi
se
fig
u
re
proposed
by
the IEEE 802.16 (WiMAX)
for the RF rec
e
iver front-e
nd architec
ture mus
t
be les
s
than 3 dB. The input sen
s
itivity
of the system sh
ould
cover the
mi
nimum sen
s
itivity of -80 dBm
[4].
In this paper,
a new topolo
g
y for WiMAX front
end architecture usi
ng an indu
cti
v
e drain
feedba
ck is u
s
ed to achiev
e a gain more than 65 dB, noise figure
less than 3
d
B
and mainta
in
band
width
m
o
re th
an
1
GHz i
s
p
r
op
ose
d
for Wi
MAX appli
c
at
ion. Figu
re
2
sh
ows th
e
new
architectu
re
for dire
ct co
nversi
on
RF front-end
re
ce
iver WiMAX a
t
5.8 GHz i
s
introdu
ce
d. The
developm
ent of combin
atio
n LNA at the front
-end of th
e receiver
will
be focu
sed.
Figure 2. The
new archite
c
ture for di
rect
conv
ersio
n
RF front-e
nd re
ceiver
WiMA
X at 5.8 GHz
This
config
uration co
nsi
s
t
s
of dou
ble
stage
s cascod
ed L
N
A usin
g indu
cti
v
e drain
feedba
ck co
mbined
with
sou
r
ce in
du
ctive dege
ne
ra
t
i
on, indu
ctive
RF
ch
oke
pl
ace
d
bet
wee
n
the
two LNA am
plifier and th
e T matchin
g
network at
the input and
output port
s
. Adding ind
u
ctive
drain
feed
ba
ck at th
e
ca
scoded
topolo
g
y
has imp
r
oved the
gain
o
f
the L
N
A an
d will
suita
b
le
at
matchin
g
out
put that it also help
s
in increa
sing
the b
and
width. Wh
ile the additio
n
of an induct
i
ve
sou
r
ce
gene
ration at
cascoded
L
N
A to
pology
enh
an
ced
ba
nd
widt
h, stability
an
d imp
r
ove i
n
p
u
t-
output m
a
tchi
ng
cap
abilitie
s. Th
e u
s
e
of
T-m
a
tchi
ng
on a
do
uble
stage
ca
scode
d L
N
A al
so
h
a
s
helpe
d red
u
ce the reverse
isolatio
n and
noise figure.
2. LNA
T
h
eory
Low
noi
se
a
m
plifiers (LNA) play a
si
g
n
ificant
role i
n
incre
a
si
ng t
he pe
rforman
c
e
of the
RF front-end
receiver. LNA at the WiMAX receiver
appli
c
ation re
quire
s suffici
ent sen
s
itivity to
enabl
e the re
ceiver
distin
g
u
ish
sig
nal from the su
rro
undin
g
noi
se
and inte
rfere
n
ce to
en
sure
tha
t
it can take a
n
information
signal sent by the tran
smitter. There are f
i
ve essential
cha
r
a
c
teri
stics
in the d
e
si
gn
of LNA i
s
un
der th
e
control of a
sp
eci
a
list L
N
A de
signer for
use
in RF
front
-e
nd
receiver that affect dire
ctly to
the receiver se
nsitivity
is noise
figure, gain, band
width, linea
rity,
Antena
Ca
sco
d
ed
LNA
BPF
Mixer
VCO
Ca
sco
d
ed
LNA
Sin
g
le
LNA
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ne
w LNA Architecture Top
o
log
y
Using I
ndu
ctive
Drai
n Feedb
ack T
e
ch
niqu
e for… (Pong
ot
K)
8259
and
dynami
c
ran
ge. Even
so
to contro
l su
ch fe
atures
req
u
ire
s
a de
ep u
nde
rstan
d
ing
of
the
device am
plifiers, a
c
tive and pa
ssive
compon
ent
s,
and fabri
c
ati
on detail
s
to ensu
r
e the
LNA
amplifiers b
u
ilt to achi
eve optimal
p
e
rfor
m
a
n
c
e
and o
n
ly a
slight t
r
ade
off betwee
n
the
c
h
arac
teris
t
ic [5].
Figure 3
sho
w
s the
usual
variabl
es th
at affect the
perfo
rman
ce
of LNA
eithe
r
on th
e
device
an
d
ci
rcuit
de
sign.
Ho
wever, i
n
t
h
is
re
sea
r
ch
we
only fo
cu
s o
n
va
riable
s
su
ch
as ga
in,
noise figure,
stability, ban
dwidth, topol
ogy, and
inpu
t and output
matchin
g
for
best pe
rform
ance
of LNA amplif
iers.
Figure 3. LNA Performan
c
e Variabl
e
The
ta
rgete
d
S-paramete
r
spe
c
ification
f
o
r
the
si
ngle LNA ca
scade
d
with dou
ble
stag
es
ca
scode
d LNA amplifier is
sho
w
n in Ta
b
l
e 1.
Table 1. Ta
rg
eted S-Para
meters for a
a singl
e LNA
ca
scade
d wit
h
doubl
e stag
es casco
ded
LNA
amplifier
S-
paramet
er
Single LNA cascaded
w
i
th double
stages cascoded LNA
Input reflection S
11 (dB)
< -10 dB
Return L
o
ss S12 (dB)
< -10 dB
For
w
a
r
d T
r
ansfer
S21 (dB)
>+ 65 dB
Output
Reflection loss S22 (dB )
<-10 dB
Noise Figure ( d
B
)
< 3 dB
Stability
(
K
)
K > 1
Band
w
i
dth (MHz)
>1000
2.1.
Stabilit
y
,
Noise Figure and Po
w
e
r Gai
n
Stability is one of the important c
haracteri
stics i
n
desi
gnin
g
LNA
amplifiers.
Determination of stab
ility is
essential to
avoid osc
ill
ation occurs at the operati
ng
freque
ncy. T
he o
scill
ation
is po
ssible if
either
of in
p
u
t or outp
u
t p
o
rt impe
dan
ce ha
s produ
ce a
negative
real
pa
rt. Thi
s
woul
d imply
that
Γ
in
(i
npu
t refle
c
tion
coefficient)
>1
or
Γ
out
(out
put
reflectio
n
coe
fficient) >1. This be
ca
use
Γ
in
and
Γ
out
depen
d on the
sou
r
ce and t
he load m
a
tching
network. However,
the st
abilit
y of the amplifier
depends on
Γ
s
(the
refle
c
tion coeffici
ent
of the
s
o
ur
ce
)
an
d
Γ
L
(the refle
c
tion coeffici
en
t of the load) as p
r
e
s
ented
as mat
c
hin
g
netwo
rk. If low
noise amplifi
e
rs i
s
not stable, it wou
l
d bec
ome
usel
ess si
nce major p
r
o
pertie
s
incl
u
d
ing
band
width, g
a
in, noise, linearity, DC
power
con
s
u
m
ption an
d impeda
nce m
a
tchin
g
ca
n
be
signifi
cantly degra
ded. Fo
r this desi
gn, a
good st
abilit
y can be achi
eved (un
c
o
n
d
i
tionally stabl
e)
by employing
the signal fl
ow theo
ry an
d S-pa
rame
t
e
r [6]. Alternatively, the amplifier will b
e
in
good
stability , when the
stability factor (K) a
nd
delta factor
(
∆
) follo
wing
nece
s
sary
and
s
u
ffic
i
ent c
o
nditions
are met:
LNA
Per
f
orm
a
nce
Gain
Noise Fi
g
u
re
B
a
ndwidth
Sta
b
ilit
y
I
nput and
Output
Matching
Cir
c
uit
Topolog
y
Transistor
Technolo
g
y
Bi
asi
n
g
and
Pow
e
r
Dissipation
Pow
e
r
Suppl
y
EM shie
lding
Process
Technolo
g
y
L
a
y
out and
Grounding
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8257 – 82
67
8260
)
1
(
1
2
1
21
12
2
2
22
2
11
S
S
S
S
K
And,
)
2
(
1
21
12
22
11
S
S
S
S
(K > 1) a
nd (|
∆
| < 1) is
con
d
ition req
u
ire
m
ent for un
co
nditional
stabi
lity (good sta
b
ility).
Noi
s
e optimi
z
ation is the
most critical st
ep in the
L
N
A de
sign p
r
oce
dure. The
best way
to make the
b
a
lan
c
e optimi
z
ation of n
o
ise figure
a
nd
gain u
s
ing
co
nstant gai
n ci
rcle
s a
nd ci
rcl
e
s
of co
nsta
nt
noise figu
re.
2-port
tran
si
stor ha
s
a
minimum
value of
the
no
ise fig
u
re
at
the
spe
c
ified a
d
m
ittance give
n by the Equation (3
), [7] :
)
3
(
|
|
2
min
opt
s
S
N
Y
Y
G
R
F
F
For lo
w
noi
se t
r
an
sist
o
r
s,
ma
n
u
fact
ure
r
s usuall
y
provide F
min
, R
N
and
Y
opt
by
freque
nci
e
s. N define
d
by the formula fo
r desi
r
e
d
noi
se figure, sh
o
w
n in Equatio
n (4):
)
4
(
|
1
|
/
4
|
|
1
|
|
2
0
min
2
2
opt
N
S
opt
s
Z
R
F
F
N
The Powe
r
gain of 2-po
rt networks wi
th
circuit imp
edance
or lo
ad impedan
ce of the
power amplifier are represented with scattering coe
ffi
c
i
ent c
l
as
s
i
fied into A
v
ailab
l
e Power Gain,
Power Transducer Gain a
nd Operatin
g Power Gain [8].
Operating
po
wer g
a
in
(G
P
), is th
e
ratio
b
e
twee
n the
p
o
we
r
delivere
d
to th
e lo
ad
(P
L
) a
nd
the po
we
r i
n
put (P
in
) to t
he n
e
two
r
k.
The
Ope
r
atin
g Po
wer G
a
i
n
can
be
sp
ecified
as an
Equation (5), [7]:
)
5
(
1
1
1
2
22
2
2
2
21
L
in
L
in
L
P
S
S
P
P
G
Available po
wer g
a
in (G
A
) is the ratio b
e
twee
n the p
o
we
r availabl
e from the ne
twork
(P
av
n
)and the power availa
ble from the source (P
av
s
) as sh
own in Equation (6), [7]:
)
6
(
|
1
|
1
|
|
|
1
|
|
|
1
2
22
2
21
2
11
2
L
S
S
avs
avn
A
S
S
S
P
P
G
Tran
sd
ucer p
o
we
r
gain
(G
T
) is the
ratio
between
the
po
we
r d
e
livered
to the
lo
ad
(P
L
)
and the po
we
r available fro
m
the sou
r
ce (P
in
) as
sho
w
n in Equation
(7), [7] :
)
7
(
|
)
(
)
1
)(
1
(
|
)
|
|
1
)(
|
|
1
(
|
|
2
21
12
22
11
2
2
2
21
L
S
L
S
L
S
in
L
T
S
S
S
S
S
P
P
G
2.
Design O
f
Single LNA Ca
scade
d
With
Double Stag
es Ca
scod
e
d LNA
Figure 4 sh
ows the co
mplete sche
matic si
ngle
LNA ca
sca
ded with d
o
uble sta
g
e
ca
scode
d L
N
A usi
ng i
ndu
ctive feedba
ck. The
sele
cti
on
of th
e
transi
s
tor i
s
im
portant
in
th
e
desi
gn
of L
N
A. The d
e
si
g
n
of the
si
ngl
e L
N
A with
d
ouble
sta
g
e
s
ca
scode
d L
N
A is
based
on
the
spe
c
ification
in Table 1.
For rea
s
on
ab
le gai
n a
nd l
o
w noi
se fig
u
r
e at the req
u
ired frequ
en
c
y
requi
rem
ent,
the tran
si
stor use
d
for t
h
e
desi
gn
of
L
N
A is P
H
EM
T Tra
n
si
stor
FHX76
L
P. T
h
e
transi
s
to
r p
a
rameter at f
r
eque
ncy 5.
8
GHz
are
S
11
=0.
7
1
2
∟
-8
6.54, S
12
=
0.
0
6
5
∟
33.88, S
21
=
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ne
w LNA Architecture Top
o
log
y
Using I
ndu
ctive
Drai
n Feedb
ack T
e
ch
niqu
e for… (Pong
ot
K)
8261
8.994
∟
17
8.6
6
and S
22
= 0.237
∟
-1
0.46,
where the param
et
ers we
re obtain
ed a
t
V
DD
= 2V and
I
DS
= 10mA of bias set at PHEMT.
From the S-p
a
ram
e
ters, d
e
termini
ng th
e overall pe
rf
orma
nce of LNA ca
n be de
termine
d
by calcul
atin
g the input and output
standi
ng wa
ve ratios, VSWRI
N and
VSWRO
UT, the
transdu
ce
r g
a
in (GT)
and
the noi
se figu
re (NF
)
. The
optimum
,
Γ
opt
and
Γ
L w
e
r
e
ob
ta
in
e
d
as
Γ
opt = 21 + j
48.02 and
Γ
L
= 79.90-j7.2
99 for ca
scod
ed LNA. Whil
e,
Γ
opt = 18.41 + j50.12 a
n
d
Γ
L = 79.9
13-j
7
.304 for a si
ngle L
N
A.
Figure 4. The compl
e
te schem
atic si
ng
le LNA ca
sca
ded with d
o
u
b
le stag
e ca
scod
ed L
N
A
usin
g indu
ctive feedba
ck
In this
config
uration, it
co
mbine
s
singl
e L
N
A at the
first sta
ge, th
en u
s
e
ca
sco
ded
LNA
with indu
ctive
feedba
ck
at the
drai
n on
the se
con
d
a
nd third
stag
e. The propo
sed
singl
e L
N
A
desi
gn is ba
sed on a so
urce deg
ene
rat
ed topology (L
10
), inductive shunt pe
aking at the drain
(L
15
) and T
-
m
a
tchin
g
network
at the inp
u
t and output
impedan
ce
(i
nput imped
an
ce mat
c
hing
at
L
11
, L
12
, C
11
, and
outp
u
t impe
dan
ce
matchin
g
at
L
18
, L
19
, C
12
). While
the
doubl
e
stage
s
ca
scode
d L
N
A topology
u
s
ing
late
st te
chni
que
s
co
n
s
istin
g
of i
n
d
u
ctive fee
dba
ck (L
26
and
L
36
)
are at d
r
ain
M2 and M
4
, indu
ctive gen
eration
so
urce (L
20
and
L
30
) con
n
e
c
ted
to the sou
r
ce
of
the M
3
and
M
5
. In Addition, there L
25
and L
35
in
du
ctive RF
ch
o
k
e
we
re pl
a
c
ed
between
the
sou
r
ce drain
on the M
2
and M
3
, and
the sou
r
ce
drain
on the
M
4
and M
5
r
e
spec
tively. This
topology
also
used th
e T
-
matchin
g
n
e
twork
at
the i
n
put an
d outp
u
t
impeda
nce (input imp
eda
nce
matchin
g
co
mpone
nt
at L
21
,L22, L
31
, L
32
, C
21
a
nd
C
31
and
output im
p
edan
ce
matching
comp
one
nt at L
28
,L
29
,L
38
, L
39
, C
22
and C
32
). By using A
n
soft Desi
gn
er SV, Smith Cha
r
t matchi
ng
techni
que, th
e comp
one
nts for the ampl
ifier are sho
w
n in Tabl
e 2
.
Table 2. Singl
e LNA Ca
sca
ded with
Dou
b
le Stages
Cascod
ed L
N
A Amplifier parameters
Components
1
s
t
Stage
LNA
L
10
(n
H)
L
11
(n
H)
L
12
(n
H)
L
13
(n
H)
L
14
(n
H)
L
15
(n
H)
L
16
(n
H)
L
17
(n
H)
L
18
(n
H)
L
19
(n
H)
C
11
(p
F)
C
12
(p
F)
Value
0.078
1.346
1.371
0.449
0.439
1.271
0.445
1.366
1.195
1.368
0.264
0.010
2
n
d
Stage
Cascod
ed LNA
L
20
(n
H)
L
21
(n
H)
L
22
(n
H)
L
23
(n
H)
L
24
(n
H)
L
25
(n
H)
L
26
(n
H)
L
27
(n
H)
L
28
(n
H)
L
29
(n
H)
C
21
(p
F)
C
22
(p
F)
Value
0.064
1.346
1.016
0.698
0.367
1.159
9.000
1.367
0.658
1.369
0.100
0.600
3
r
d
Cascod
ed LNA
L
30
(n
H)
L
31
(n
H)
L
32
(n
H)
L
33
(n
H)
L
34
(n
H)
L
35
(n
H)
L
36
(n
H)
L
37
(n
H)
L
38
(n
H)
L
39
(n
H)
C
31
(p
F)
C
32
(p
F)
Value
0.084
1.318
1.278
0.658
0.283
1.139
9.560
1.368
0.658
0.228
0.500
0.750
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8257 – 82
67
8262
Observation
s
on proje
c
t
s
implemente
d
in these L
N
A are p
a
ssive elements at each
stage
com
p
o
nent that wa
s de
sign
ed to play an im
por
tant role
in influen
cing
the gain, no
ise
figure, stabilit
y and band
width. Here, we
show
evid
en
ce on pa
ssive comp
one
nt element
s whi
c
h
at every stage LNA that will affe
ct performance LNA variables
as di
scussed in the previous
se
ct
ion.
Overall
Noi
s
e
figure i
s
he
a
v
ily influence
d
in
the first stage
LNA, e
s
pe
cially in t
he input
matchin
g
. Th
erefo
r
e, the
sele
ction
of t
he a
ppropri
a
te value
re
qu
ired i
n
thi
s
p
a
rt, to get th
e
lowe
st noise
figure for the LNA. Whil
e at the
output matchin
g
of the first
stage, will not
influen
ce the
noise figure o
f
the LNA.
Figure 5 sho
w
s the effect
of inductive comp
one
nt elements in the
input T-matching on
the first stage
that affect th
e noise figure
.
Changi
ng th
e value of ind
u
ctive L
11
from 1mm to 6 mm
have
cau
s
e
d
the noi
se
in
creased from
0
.
63 dB to
0.
7
3
dB
while
th
e value
de
cre
a
se
s to
0.53
d
B
whe
n
ch
angi
ng L
11
to the 12mm. Whil
e
the inductiv
e
value L
12
changes from 1mm to 6mm
cau
s
e
noi
se f
i
gure
ch
angi
n
g
from 0.6
3
dB to 0.60 d
B
, will increa
se to 0.6
6
d
B
when
indu
ctive
L
12
to 12mm. Howeve
r, the noise figu
re
can be chan
ged sig
n
ifica
n
tly in Figure
6 if change
s are
made on the
cap
a
citive inp
u
t T-matchin
g
. Chang
e the cap
a
citive value C
11
from
0.1 pF to 1
pF
cau
s
e n
o
ise figure
risi
ng fro
m
0.59 dB to 1.22 dB.
However, after makin
g
optimization in pa
ssi
ve
comp
one
nt a
t
the input matchin
g
, sele
cting the n
o
ise figu
re of
0.64 dB is b
e
st for the
whole
sy
st
em.
Figure 5. Affect cha
nge
s value the L1
1 and
L12 to the overall noi
se fig
u
re
Figure 6. Affect cha
nge
s value the C11
to the
overall noi
se
figure
To co
ntrol th
e gain of the
whole
syste
m
,
there are a few pa
ssiv
e
comp
one
nts at each
stage that sh
ould be con
s
i
dere
d
. The p
a
ssive com
p
onent is ind
u
c
tive sou
r
ce dege
neration
a
t
every st
age
o
f
L
10
, L
20
and
L
30
. Gain
s for the
whol
e
system
ch
ange
d from
63
dB
to 69
dB if t
h
e
width (W) on the
L
10
, L
20
, L
30
chan
ged
from 2mm
to 3
0
mm. Additi
onally L
10
and
L
20
al
so
hel
p in
getting the
p
u
re i
m
pe
dan
ce in
put mat
c
hing, which e
nable val
ue o
f
the input
re
flection S
11
less
than 10 dB. While the out
put matchin
g
L
30
helped to enable the
value of the output refle
c
tion
loss S
22
less than 10 dB. T
h
is can be
sh
own in Fig
u
re
7. In addition, there are ot
her comp
one
nts
in the amplifier LNA that
significantly affect
the overall gain,
whi
c
h is the
inductive drain
feedba
ck (L
26
and L
36
)
whi
c
h pl
aced on
ca
scode
d L
N
A topolo
g
y on second
a
nd third
stag
es of
LNA. This i
s
sho
w
n in Fig
u
re 8, wh
ich cha
ngin
g
the value of indu
ctive L
26
from 1pF to 10 pF wil
l
increa
se th
e
gain from 6
0
.5 dB to 6
9
.2
dB. While
the
varying in
du
ctive L
36
from
1 pF to 10pF
will
be
rai
s
e
gain
from 5
3
.74
d
B
gain
to 6
8
.2 dB.
Whe
n
o
p
timization
was
mad
e
o
n
i
ndu
ctive L
10
, L
20
,
L
30
, L
26
and L
36
, gain values obtain
ed was 68.9
6
dB.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ne
w LNA Architecture Top
o
log
y
Using I
ndu
ctive
Drai
n Feedb
ack T
e
ch
niqu
e for… (Pong
ot
K)
8263
Figure 7. Affect cha
nge
s value the L
10
, L
20
and L
30
to the overall gain
Figure 8. Affect cha
nge
s value the L
26
, L
36
to
the overall ga
in
From here we
ca
n see by
addin
g
ca
scoded
LNA i
n
the second
stage
ha
s re
sulted i
n
increa
sed b
a
ndwi
d
th of LNA that is sh
own in Fi
g
u
re 9. Usin
g the indu
ctive compon
ent at the
output matchi
ng L
27
and L
29
in the secon
d
stage, the desig
ner
can control the de
sired ba
ndwi
d
th
up to a maximum of 1.83 GHz.
Figure 9. Affect ch
ang
es
value the L
27
and L
29
to the overall ban
d
w
idth
3. Resul
t
s
The p
r
op
ose
d
LNA
LNA
a gain
of 68
.94
dB, 3-dB
band
width
of 1.72 G
H
z, and
a
minimum
NF
of 0.64 dB ov
er the
band i
s
a
c
hieve
d
i
m
pleme
n
ted.
The me
asure
d
input reflect
i
on
S
11
is – 15.7
7
dB while th
e output
refle
c
tion lo
ss S
22
is -17.37
dB, and th
e return loss S
12
i
s
-
88.39 dB. The stability factor obtaine
d after matc
hi
n
g
load is 4.5
4
at 5.8 GHz frequen
cy. The
value of
stabi
lity obtained
is g
r
e
a
ter th
an 1, a
nd
th
e
LNA amplifie
rs are current
ly
in
a state of
uncondition
all
y
stable.
Thu
s
, the
s
e val
u
es
achieved
the d
e
si
gn
sp
ecificati
on
as stated
in
Ta
ble
2. Table 3
sho
w
s the s-pa
ramete
rs output fo
r compa
r
ison o
f
topology LNA. From t
h
is
comp
ari
s
o
n
, we find
this t
opolo
g
y ha
s
resulted i
n
i
m
prove
d
pe
rf
orma
nce in g
a
in, noi
se fig
u
re,
and
band
widt
h. In a va
riabl
e gai
n pe
rformance im
pr
o
v
ements, the
r
e ha
s b
een
a
4-fold
in
cre
a
s
e
whe
n
usi
ng t
he propo
se
d topology an
d
just 2 ½
times
when
usi
n
g the se
co
nd
topology if both
topologi
es
a
r
e
comp
ared
with the
gai
n re
sult
at th
e first to
polo
g
y. Mean
whil
e, there
wa
s a
signifi
cant re
ductio
n
on n
o
ise figu
re of
0.87 dB
to
0.64 dB and
an increa
se
in on the 3-dB
band
width
of
1.08 G
H
z to
1.72 G
H
z
wh
en u
s
in
g th
e
prop
osed
top
o
logy com
pared
u
s
in
g sing
le
LNA topolo
g
y.
0.
00
0.
20
0.
40
0.
60
0.
80
1.
00
1.
20
1.
40
1.
60
1.
80
2.
00
0.
0
5
.
0
10.
0
15.
0
L27(GHz)
L29(GHz)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8257 – 82
67
8264
Table 3. The
S-paramete
r
s output for co
mpari
s
o
n
of topolo
g
y LNA
S- paramet
er
Topolog
y
(1)
Single
LNA
(2)
Single LNA Cascaded
w
i
th
Cascoded LNA
(3)
Single LNA w
i
th
Double Stages
Cascoded LNA
Input Reflection
S
11
dB
-14.77
-10.48
-15.77
Output Reflection
S
22
dB
-14.69
-19.06
-17.37
For
w
a
rd transfe
r
S
21
dB
17.01
43.76
68.94
Return L
o
ss S
12
dB
-20.53
-52.40
-88.39
NF dB
0.87
0.7
0.64
BW MHz
1.08
1.24
1.72
Stability
(
K
)
1
1.37
4.54
The output S
-
parameter, nois
e figure and stability for si
ngl
e LNA
are shown in Figure
10(a
)
. While,
the outp
u
t S-pa
ramete
r,
noise figu
re
and
stability for
singl
e L
N
A ca
scade
d
with
ca
scode
d LNA is sho
w
n F
i
gure 1
0
(b). The S-pa
ram
e
ter for si
ngl
e LNA ca
sca
ded with d
o
u
b
le
stage
s casco
ded LNA
sh
own by Figu
re 10(c). Whil
e noise figu
re and stabilit
y are sho
w
n
in
Figure 10(d)
and 10
(e
) re
spectively. Table 4 sh
ow
s the com
p
a
r
iso
n
of recently reporte
d LNA.
Figure 10(a).
S-paramete
r
, Noi
s
e Figu
re
and Stability for Single L
N
A
Figure 10(b).
S-paramete
r
, Noi
s
e Figu
re
and Stab
ility for Single L
N
A Cascad
ed
with Ca
scod
e
d
LNA
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ne
w LNA Architecture Top
o
log
y
Using I
ndu
ctive
Drai
n Feedb
ack T
e
ch
niqu
e for… (Pong
ot
K)
8265
Figure 10(c). S-paramete
r
for Single L
N
A
Cascad
ed
with Do
uble
Stages Cascoded L
N
A
Figure 10(d).
Noi
s
e Figu
re
for Single L
N
A Cascad
ed
with Do
uble
Stages Cascoded L
N
A
Figure 10(e).
Stability for Si
ngle LNA Casc
aded with
Double
Stages Cascoded LNA
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8257 – 82
67
8266
Table 4. Co
m
pari
s
on of recently LNAs
S- paramet
er
This w
o
rk
[9] [10]
Topolog
y Single
LNA
Cascaded
w
i
th D
ouble
Stages
Cascoded
LNA
CGLNA w
i
th
multiple
feedback
Differ
ential
LNA
Input
Reflection S
11
dB
-15.77
<-10
-15.075
Output
Reflection S
22
dB
-17.37
<-10
-
Forw
a
rd
transf
er S
21
dB
68.94
23
25.07
Return L
o
ss
S
12
dB
-88.39
-
-
NF dB
0.64 2
1.07
BW G
H
z
1.72
1.76 -
Stability
(
K
)
4.54
>1
1.12
Table 4 d
epi
cts the
comp
arison of top
o
logy dou
ble
stage
s cascoded L
N
A u
s
ing a
n
indu
ctive drai
n feedba
ck combine
d
with
sou
r
ce
indu
ctive degene
ra
tion with a re
cently re
porte
d
LNA. Fro
m
th
is compa
r
i
s
o
n
, we find thi
s
topol
ogy ha
s re
sulte
d
in i
m
prove
d
pe
rforma
nce in g
a
in,
noise figu
re,
and b
and
widt
h. Mean
whil
e
,
there
wa
s a
signifi
cant
redu
ction
on
noise figu
re
of
0.64 dB and
an increa
se
in on the g
a
in to
68.24
dB when
u
s
ing the
pro
posed topol
o
g
y
comp
ared u
s
i
ng CG
LNA wi
th multiple f
eedba
cks or d
i
fferential LNA topology.
4. Conclu
sion
The n
e
w to
p
o
logy u
s
ing i
ndu
ctive drai
n
feedb
ack
wa
s succe
ssfully develop
ed an
d
impleme
n
ted
in Supe
rHEMT technolo
g
y com
p
liant
with the IE
EE 802.16
st
anda
rd
.
O
b
ta
ined
from the prop
ose
d
topolo
g
y
allows th
e desi
gne
r
to control L
N
A variabl
es
perfo
rman
ce
su
ch
as
gain, noise figure, ba
nd
wi
dth and stab
ility in
t
he LNA circuit. Reco
rde
d
re
su
lt for amplifier
obtaine
d the
gain
(S
21
) o
f
68.93 dB a
nd the n
o
ise
figure
(NF)
of 0.64 dB.
While th
e 3
-
dB
band
width
is
1.72 G
H
z a
n
d
sta
b
ility (K) to 4.54.
LNA
perfo
rma
n
ce
ca
n b
e
furth
e
r e
nha
nced
by
stren
g
theni
ng
input and o
u
tput impeda
nce m
a
tc
hi
ng
of the input reflectio
n
loss (S
11
), outp
u
t
reflec
tion loss
(S
22
) a
nd
re
turn lo
ss
(S
12
) of the resp
ective value
are
-15.7
7
dB
, -17.37
dB a
nd
-
88.39 dB.
In
con
c
lu
sio
n
, it
has be
en
sh
o
w
n th
at by
using thi
s
to
pol
ogy am
plifier
can
imp
r
ove
on
the noise figure, gain, bandwidth and stability.
Ackn
o
w
l
e
dg
ements
The work d
e
s
cribe
d
in thi
s
pa
per
wa
s fully supp
ort
ed by Centre
For
Re
sea
r
ch And
Innovation
Manag
eme
n
t (CRIM
)
, Universiti Te
knikal Mal
a
ysia Melaka (UTeM
)
. Mel
a
ka,
Malaysia, under research
gr
ant PJP/2013/FKEKK(11C)/S01182.
Referen
ces
[1]
S Lo
w
e
. Lte
vs
W
i
MAX”
in
Ho
t T
opics F
o
rum: LT
E vs W
i
MAX
an
d N
e
xt Ge
nerati
on Int
e
rn
et.
Institutio
n
of Engin
eer
ing
and T
e
ch
no
log
y
.
2007: 1 –3
8.
[2]
AR Othman, AB Ibrahim, MN
Husa
in, AH H
a
mid
on, Jsam
Hamid
on. L
o
w
Nois
e F
i
gur
e
of Casca
de
d
LNA at 5.
8 GHz Usin
g T
-
Matchin
g
Net
w
o
r
k for W
i
M
A
X A
ppl
icati
o
ns.
Internati
o
n
a
l Jo
urna
l of
Innovati
on, Ma
nag
e
m
ent a
nd
T
e
chno
logy
. 2
012; 3(6).
Evaluation Warning : The document was created with Spire.PDF for Python.