I
n
d
o
n
es
i
a
n
J
o
u
rn
a
l
o
f
E
l
ect
ri
ca
l
E
n
g
i
n
eer
i
n
g
a
n
d
C
o
mp
u
t
er
S
ci
en
ce
V
o
l
.
10
,
N
o.
2
,
Ma
y
20
1
8
,
p
p
.
5
69~
5
77
IS
S
N
:
250
2
-
47
52
,
D
O
I
:
10.
115
91
/
i
j
eecs
.
v10
.
i2
.
pp
5
69
-
577
5
69
Jo
u
r
n
al
h
om
e
pa
ge
:
h
t
t
p
:
/
/
i
a
e
s
c
o
r
e
.
c
o
m
/
j
o
u
r
n
a
l
s
/
i
n
d
e
x
.
p
h
p
/
i
j
e
e
c
s
A
n I
mpro
ve
d I
m
a
ge
St
ega
nog
ra
p
hy
A
l
g
ori
t
hm
ba
s
e
d
o
n P
V
D
Sha
r
i
f
Sh
a
h
N
e
w
a
j
B
h
ui
y
a
n
*
,
N
o
r
u
n
A
bd
ul
M
a
l
e
k,
O
t
h
m
a
n
O
m
ra
n
K
h
a
l
i
f
a
,
F
ar
ah
D
i
y
an
a
A
b
dul
R
a
hm
a
n
D
e
pa
rt
m
e
nt
o
f E
l
e
c
t
ri
c
a
l
a
nd Co
m
put
e
r E
ngi
n
e
e
r
i
ng,
F
a
c
ul
t
y
of
E
ngi
ne
e
r
i
ng,
Int
e
r
na
t
i
o
n
a
l
Is
l
a
m
i
c
U
ni
ve
rs
i
t
y
,
M
a
l
ay
s
i
a,
53100 K
ua
l
a
L
u
m
pur,
M
a
l
ay
s
i
a
.
A
rt
i
cl
e
I
n
f
o
A
B
S
T
RA
C
T
Ar
t
i
c
l
e
h
i
s
t
o
r
y
:
R
ecei
v
ed
N
o
v
12
,
2
01
7
Re
v
i
s
e
d
J
an
2
0
,
201
8
A
ccep
t
e
d
F
eb
1
1
,
2
01
8
In t
hi
s
pa
pe
r,
a
m
odi
fi
c
a
t
i
on of P
V
D
(
P
i
xe
l
V
a
l
ue
D
i
ffe
re
n
c
i
ng
)
a
l
gori
t
hm
i
s
us
e
d for Im
a
ge
S
t
e
ga
nogra
ph
y
i
n s
pa
t
i
a
l
dom
a
i
n
.
It
i
s
norm
a
l
i
z
i
n
g s
e
c
re
t
da
t
a
va
l
ue
b
y
e
nc
od
i
ng m
e
t
hod t
o m
a
ke
t
he
ne
w
pi
x
e
l
e
dge
d
i
ffe
r
e
nc
e
l
e
s
s
a
m
ong
t
hre
e
ne
i
ghbors
(hori
z
ont
a
l
,
v
e
rt
i
c
a
l
a
nd di
a
gona
l
) a
nd e
m
be
ddi
ng da
t
a
o
n
l
y
to
le
s
s
in
t
e
n
s
i
t
y pi
xe
l
d
i
ffe
r
e
nc
e
a
re
a
s
or re
g
i
o
ns
.
T
he
propos
e
d a
l
gori
t
hm
s
how
s
a
good
i
m
prove
m
e
nt
for bot
h c
ol
or a
nd gra
y
-
s
cal
e i
m
ag
es
co
m
p
ar
ed
t
o ot
he
r a
l
gori
t
h
m
s
.
Col
or i
m
a
ge
s
pe
rform
a
nc
e
s
a
re
be
t
t
e
r t
ha
n g
ra
y
i
m
a
g
e
s
.
H
ow
e
ve
r,
i
n t
h
i
s
w
ork t
he
foc
u
s
i
s
m
a
i
nl
y
on g
ra
y
i
m
a
ge
s
.
T
h
e
s
t
re
nght
of
t
hi
s
s
c
he
m
e
i
s
t
ha
t
a
n
y
r
a
ndom
hi
dde
n/
s
e
c
r
e
t
d
a
t
a
do not
m
a
ke
a
n
y
s
hut
t
l
e
di
ffe
re
n
c
e
s
t
o S
t
e
g
-
i
m
a
ge
c
om
pa
re
d t
o ori
gi
na
l
i
m
a
ge
.
T
he
bi
t
pl
a
ne
s
l
i
c
i
ng
i
s
us
e
d t
o a
na
l
yz
e
t
h
e
m
a
xi
m
um
pa
y
l
oa
d
t
ha
t
ha
s
be
e
n e
m
be
d
e
d i
nt
o t
h
e
c
ove
r i
m
a
ge
s
e
c
ure
l
y
.
T
he
s
i
m
ul
a
t
i
on re
s
ul
t
s
s
how
t
ha
t
t
h
e
propos
e
d
a
l
gori
t
hm
i
s
pe
rform
i
ng be
t
t
e
r
a
nd s
how
i
ng
gre
a
t
c
ons
i
s
t
e
nt
re
s
ul
t
s
for
P
S
N
R
, M
S
E
v
al
u
es
o
f
an
y
i
m
ag
e
s
, al
s
o
ag
a
i
n
s
t
S
t
eg
an
a
l
y
s
i
s
at
t
a
ck
.
Ke
y
wo
r
d
s
:
Bi
t
-
p
l
a
n
e
s
l
i
c
i
n
g
D
a
t
a
hi
di
n
g
P
V
D
S
t
a
g
a
n
a
l
y
s
i
s
S
t
eg
an
a
g
r
ap
h
y
Copy
r
i
ght
©
201
8
Ins
t
i
t
ut
e
o
f
A
d
v
anc
e
d
E
ngi
n
e
e
r
i
ng and S
c
i
e
nc
e
.
A
l
l
ri
g
h
t
s re
se
rv
e
d
.
C
or
r
e
s
po
n
di
n
g
A
u
t
h
or
:
N
or
un
A
b
du
l
Ma
le
k
,
D
e
p
a
rt
m
e
nt
of
E
l
e
c
t
r
i
c
a
l
a
nd
C
om
put
e
r
E
ngi
ne
e
r
i
ng
,
I
n
t
e
r
n
a
t
i
o
n
a
l
I
s
l
a
m
i
c
U
n
i
v
e
r
s
i
t
y
M
a
l
a
y
s
i
a
,
J
a
l
a
n
G
om
ba
k,
5
31
0
0
K
ua
l
a
L
um
pur
,
M
a
l
a
y
s
i
a
.
E
m
a
i
l
:
nor
un
@
i
i
um
.
e
du.
m
y
1.
I
N
T
R
O
D
U
C
T
I
O
N
I
n
t
e
r
n
e
t
c
om
m
uni
c
a
t
i
o
n
i
s
i
n
c
r
e
a
s
i
n
g
d
a
y by
d
a
y
a
nd t
he
m
es
s
ag
e t
r
an
s
m
i
s
s
i
o
n
t
h
r
o
u
g
h
i
t
i
s
a
l
s
o
i
n
cr
eas
i
n
g
.
C
o
m
m
uni
c
a
t
i
on c
a
n
ha
p
pe
n f
r
o
m
a
ny
pl
a
c
e
s
o
f
t
he
w
or
l
d t
h
r
ou
g
h i
nt
e
r
ne
t
.
T
he
r
e
f
or
e
t
he
s
e
c
ur
i
t
y
i
s
a
l
s
o
ne
c
e
s
s
a
r
y
a
n
d
i
m
por
t
a
nt
f
or
t
he
t
r
a
ns
m
i
tt
e
d
m
e
s
s
a
ge
s
.
Da
t
a
E
nc
r
y
pt
i
on
i
s
t
he
on
e
of
t
he
m
o
s
t
e
f
f
e
c
t
i
v
e
w
a
y
to
pr
ov
id
e
s
e
c
u
r
ity.
W
e
t
ra
n
s
f
o
rm
m
es
s
ag
e
t
o
a
not
he
r
e
nc
r
y
pt
e
d
f
o
r
m
a
t
or
pa
t
t
e
r
n
du
r
i
n
g
c
om
m
uni
c
a
t
i
on
a
nd
t
h
e ch
a
n
g
es
w
e m
ak
e
t
h
er
ef
o
r
e i
t
b
ec
o
m
e
s
us
pi
c
i
o
us
.
S
o w
he
n i
t
ge
t
s
s
us
pi
c
i
o
us
,
a
t
t
a
c
ke
r
m
a
y
s
u
s
p
ect
ab
o
u
t
t
h
e
p
r
es
en
ce
o
f
hi
dde
n
i
nf
or
m
a
t
i
on.
T
o s
ol
ve
t
hi
s
pr
o
bl
e
m
,
w
e
n
e
e
d t
o
hi
de
t
h
e
s
e
c
r
e
t
or
i
m
po
r
t
a
nt
m
e
s
s
a
ge
be
hi
n
d a
c
o
ve
r
i
m
a
ge
,
s
o t
ha
t
i
t
d
o
e
s
n’
t
d
r
a
w
a
ny
a
t
t
e
nt
i
on
t
o
H
V
S
(
hum
a
n
vi
s
i
oni
n
g
s
y
s
t
e
m
)
.
T
hi
s
m
e
t
hod i
s
c
a
l
l
e
d S
t
e
ga
n
o
gr
a
p
hy
[1
]
.
S
t
e
ga
n
og
r
a
phy
i
s
t
he
a
r
t
o
f
s
e
c
r
e
t
c
o
m
m
uni
c
a
t
i
on.
Ma
n
y
s
t
e
ga
no
gr
a
p
hy
t
ech
n
i
q
u
es
h
a
v
e b
ee
n
i
n
t
r
o
d
u
ced
.
T
h
e s
p
at
i
al
d
o
m
ai
n
s
t
eg
an
o
g
r
ap
h
y
,
t
h
e
s
ecr
et
d
at
a a
r
e d
i
r
ect
l
y
em
b
ed
d
e
d
i
n
t
o
t
h
e
pi
xe
l
s
of
c
ove
r
i
m
a
ge
s
.
T
he
r
e
a
r
e
s
e
ve
r
a
l
m
e
t
hods
of
s
pa
t
i
a
l
dom
a
i
n s
t
e
ga
n
o
gr
a
phy
a
va
i
l
a
bl
e
.
T
h
e
s
e
a
r
e
s
pa
t
i
a
l
d
o
m
a
i
n m
e
t
hods
,
s
uc
h a
s
l
e
a
s
t
s
i
g
n
i
f
i
c
a
n
t
b
i
t
(
L
S
B)
,
p
i
x
e
l
v
a
l
u
e
d
i
f
f
e
r
e
n
c
i
n
g
(
P
V
D
)
,
H
i
s
t
o
g
r
a
m
s
hi
f
t
i
n
g
a
nd
pi
xe
l
m
a
ppi
ng
[
2
]
,
[3
]
,
[
17]
.
T
h
e
d
if
f
er
en
ce o
f
t
w
o c
on
s
e
c
ut
i
ve
pi
xe
l
s
is
us
e
d
to
de
t
e
r
m
i
ne
ho
w
m
a
ny
s
ecr
et
b
i
t
s
ca
n
b
e em
b
ed
d
e
d
[
3
]
.
P
V
D c
a
n
b
e
c
l
a
s
s
i
f
i
e
d
i
n
t
o
b
a
s
i
c
P
V
D
,
P
V
D
w
i
t
h
L
S
B S
u
b
s
t
i
t
u
t
i
o
n
[
4
]
,
[
5
]
,
[
14
]
,
M
u
l
t
i
-
P
i
xe
l
D
if
f
e
r
e
n
c
ing
(
MP
D
)
,
Modulu
s
F
u
nc
tio
n
(
MF
)
[
7
]
an
d
s
i
d
e
m
at
ch
i
n
g
[
16
]
.
T
hi
s
pa
pe
r
p
r
e
s
e
nt
s
a
ne
w i
m
pr
o
ve
d
i
m
a
ge
s
t
e
ga
n
o
gr
a
phy
P
V
D
m
e
t
hod
b
a
s
e
d
o
n
va
r
i
ou
s
pa
r
a
m
e
t
e
r
l
i
k
e
n
o
r
m
a
l
i
z
e
d
t
h
e
h
i
d
d
e
n
d
a
t
a
,
h
i
d
i
n
g
ca
p
aci
t
y
,
P
S
N
R
(
p
eak
s
i
g
n
al
t
o
n
o
i
s
e
r
at
i
o
)
,
M
S
E
(
m
ean
s
q
u
a
r
e
er
r
o
r
)
va
l
ue
s
a
n
d R
S
S
t
e
g
a
n
a
l
y
s
i
s
at
t
ack
.
By
a
p
p
l
y
i
n
g
d
a
t
a
n
o
r
m
a
l
i
z
a
t
i
o
n
l
i
k
e
d
a
t
a
e
n
c
o
d
i
n
g
,
i
t
i
m
p
r
o
v
e
s
t
h
e
p
er
f
o
r
m
an
ce
an
d
s
h
o
w
s
g
r
e
at
co
n
s
i
s
t
en
cy
i
n
r
es
u
l
t
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-
47
52
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
c
i
,
V
o
l
.
10
,
N
o
.
2
,
Ma
y
2
018
:
56
9
–
57
7
5
70
W
e
a
r
e
onl
y
f
oc
u
s
i
n
g on
s
p
a
t
i
a
l
dom
a
i
n
S
t
e
ga
n
o
gr
a
p
hy
.
T
he
r
e
s
t
of
t
hi
s
pa
pe
r
i
s
or
ga
ni
z
e
d
a
s
f
o
l
l
o
w
s
.
S
e
c
t
i
o
n
I
I
p
r
e
s
e
n
t
s
t
h
e
b
a
s
i
c
i
d
e
a
o
f
P
V
D
,
S
e
c
t
i
o
n
I
I
I
p
r
e
s
e
n
t
s
t
h
e
P
V
D
r
e
l
a
t
e
d
w
o
r
k
s
,
S
e
c
t
i
o
n
I
V
t
h
e
d
et
ai
l
s
o
f
t
h
e
p
r
o
p
o
s
ed
s
c
h
em
e,
t
h
e
S
ect
i
o
n
V
t
h
e
t
h
e
o
r
et
i
c
al
an
al
y
s
i
s
an
d
ex
p
er
i
m
en
t
al
r
es
u
l
t
s
a
n
d
t
h
e
l
a
s
t
i
s
c
onc
l
us
i
o
n
.
2.
P
I
X
E
L
V
AL
U
E
D
I
F
F
E
R
E
N
C
E
A
L
AG
O
R
I
T
H
M
(P
VD
)
T
h
e P
V
D
m
et
h
o
d
u
s
es
g
r
ey
i
m
ag
e as
co
v
er
i
m
ag
e an
d
i
t
e
m
b
ed
s
d
y
n
am
i
c s
i
ze s
ecr
et
m
es
s
ag
e
i
n
t
o
t
h
e co
v
er
i
m
ag
e.
E
m
be
ddi
n
g
m
e
s
s
a
ge
bi
t
s
r
a
t
e
i
s
di
f
f
e
r
e
nt
i
n e
a
c
h
r
e
gi
o
ns
l
i
ke
f
e
w
e
r
bi
t
s
i
n
s
m
o
o
th r
e
g
i
on
c
om
pa
r
e
d wi
t
h
t
he
e
dge
d
r
e
gi
on
[3
]
,
[
4]
,
[
9
]
.
I
n
i
t
i
a
l
l
y
i
t
sc
a
n
s
t
h
e
w
ho
le
co
v
e
r
i
m
ag
e
i
n
r
as
t
er
s
ca
n
o
r
d
er
an
d
p
a
r
t
i
t
i
o
n
e
d i
nt
o t
he
no
n
-
o
ve
r
l
a
ppi
n
g
t
w
o c
o
ns
e
c
ut
i
ve
pi
xe
l
s
bl
oc
ks
.
T
w
o c
on
s
e
c
ut
i
ve
pi
xe
l
s
i
n
t
he
i
t
h
bl
oc
k
ar
e
d
en
o
t
ed
as
P
i
a
nd
P
(i+
1)
r
es
p
ect
i
v
el
y
[
3
]
.
T
h
e
d
i
f
f
er
e
n
ce
o
f
t
wo
c
o
n
s
e
c
u
t
i
v
e
p
i
x
e
l
s
i
s
c
a
l
c
u
l
a
t
e
d
b
y
d
i
=
(P
i+
1
-
P
i
)
(
1)
T
he
va
l
ue
o
f
d
i
de
not
e
s
t
he
d
i
f
f
e
r
e
nc
e
of
t
w
o
c
ons
e
c
ut
i
ve
pi
xe
l
s
i
n
e
a
c
h bl
oc
k.
I
f
d
i
i
s
s
m
a
l
l
v
a
l
u
e
t
h
e
n
i
t
m
e
a
n
s
t
he
bl
oc
k i
s
s
m
oot
h r
e
gi
o
n,
w
he
r
e
a
l
a
r
ge
r
va
l
ue
i
n
di
c
a
t
e
s
t
he
bl
oc
k i
s
e
dge
/
noi
s
e
r
e
g
i
on.
I
n
Bl
o
c
k
-
w
i
s
e P
V
D
m
et
h
o
d
,
c
o
r
e i
d
ea w
as
t
o
f
i
n
d
m
o
r
e ed
g
e
ar
eas
i
n
o
r
d
er
t
o
h
i
d
e m
o
r
e s
ecr
et
d
at
a b
eca
u
s
e o
f
H
um
a
n
vi
s
i
on
t
ol
e
r
a
nc
e
i
n
e
d
ge
a
r
e
a
s
t
ha
n
i
n
s
m
oot
h
a
r
e
a
s
[1
0
]
.
T
h
e d
i
f
f
e
r
en
ce
v
al
u
e (
d
i
)
w
i
l
l
b
e
i
n
t
h
e
r
a
n
g
e
f
r
o
m
(
0
t
o 25
5
)
be
c
a
us
e
g
r
ey
s
cal
e i
m
a
g
e
h
a
s
m
a
x
i
n
t
e
n
s
i
t
y
v
al
u
e
25
6.
T
he
d
i
f
f
er
e
n
ce v
a
l
u
e
(
d
i
)
c
an
b
e
gr
o
upe
d
i
nt
o t
he
s
e
ve
r
a
l
r
e
g
i
ons
ba
s
e
d on
t
he
low
e
r
a
nd
u
pp
e
r
b
oun
d
of
e
a
c
h
R
i
[
3
]
.
Th
e
num
be
r
of
e
m
be
dde
d
s
e
c
r
e
t
bi
t
s
(
t
)
i
n
t
wo
c
o
ns
e
c
ut
i
v
e
pi
xe
l
s
de
pe
n
ds
on
t
he
us
e
r
de
f
i
ne
d
r
an
g
e
t
ab
l
e
an
d
i
t
i
s
c
om
put
e
d
a
s
b
i
t
s
_
w
i
d
t
h
(
t
)
=
l
o
g
2
(
U
pp
e
r
i
–
L
o
we
r
i
+
1
)
(2
)
T
he
n,
o
bt
a
i
ne
d
t
he
d
eci
m
al
v
al
u
e
f
r
om
t
he
bi
na
r
y
s
e
q
ue
nc
e
s
(
1
011
)
2
=
(
8
+0
+
2
+1
)
10
=
1
1
N
o
w,
t
he
ne
w
di
f
f
e
r
e
nc
e
va
l
u
e
f
or
m
ul
a
c
a
n
be
obt
a
i
ne
d
by
f
ol
l
o
w
i
n
g f
o
r
m
ul
a
d
′
=
t
d
+
low
e
r
i
(
3)
I
n
o
ur
p
r
op
os
e
d
s
c
he
m
e
,
w
e
ha
ve
u
s
e
d
(
2
x
2)
bl
oc
k
t
o
f
i
n
d
t
h
r
e
e
(
3
)
pi
xe
l
di
f
f
e
r
e
nc
e
s
[
12
]
.
1
00
1
19
1
07
1
24
i
)
H
o
r
i
z
o
n
t
a
l
i
i
)
V
e
r
t
i
c
a
l
i
i
i
)
D
i
ag
o
n
al
3.
R
ELA
TED
W
O
R
K
P
V
D m
e
t
hod
i
s
o
ne
o
f
t
he
p
op
ul
a
r
a
l
g
or
i
t
h
m
i
n s
pe
c
i
a
l
d
om
a
i
n us
e
d
f
o
r
da
t
a
hi
di
n
g.
T
hi
s
m
e
t
ho
d
ha
s
be
e
n im
pr
ove
d a
l
ot
f
r
o
m
200
3 t
i
l
l no
w
by
r
e
s
e
a
r
c
he
r
s
.
T
hi
s
s
e
c
t
i
o
n r
e
p
r
e
s
e
nt
s
c
u
r
r
e
nt
l
i
t
e
r
a
t
ur
e
r
e
vi
e
w
of
P
V
D
m
e
t
ho
ds
b
a
s
e
d
o
n
v
a
r
i
o
u
s
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
.
I
n 200
3
[3
]
,
W
u a
n
d T
s
a
i
pr
opo
s
e
d a
s
t
e
ga
n
o
gr
a
phy
m
e
t
hod
w
hi
c
h c
o
ns
i
de
r
s
p
i
x
e
l
v
a
l
u
e
d
i
ffe
re
n
c
i
n
g
(P
V
D
).
T
h
i
s
a
l
g
o
r
i
t
h
m
c
a
l
c
u
l
a
t
e
s
t
he
di
f
f
e
r
e
n
c
e
of
t
w
o pi
xe
l
s
f
or
t
he
gr
a
y
va
l
ue
d c
o
ve
r
i
m
a
ge
.
N
on
-
o
ve
r
l
a
ppi
ng
bl
oc
ks
o
f
t
w
o
p
ixe
l
s
cal
cu
l
at
i
o
n
i
t
er
at
es
o
v
er
a
l
l
t
he
r
o
ws
of
e
a
c
h
i
m
a
ge
i
n
a
z
i
gz
a
g
m
a
nne
r
.
T
he
num
be
r
of
bi
t
s
t
o
be
e
m
be
dde
d i
nt
o t
w
o
co
n
s
ecu
t
i
v
e
p
i
x
e
l
s
i
s
cal
cu
l
at
ed
by
t
he
i
r
a
bs
ol
ut
e
di
f
f
e
r
e
nc
e
a
n
d
a
u
s
er
de
f
i
ne
d
r
a
nge
t
a
bl
e
.
I
f a
b
l
o
c
k
d
i
ffe
re
n
c
e
(
d
i
) i
s
c
l
o
s
e
t
o
0
,
t
h
e
n
i
t
i
s
c
o
ns
i
de
r
e
d t
o
be
a
n e
xt
r
e
m
e
ly
s
m
oot
h bl
oc
k,
whe
r
e
a
s
a
bl
o
c
k
d
i
f
f
er
e
n
ce
(
d
i
)
i
s
c
l
o
s
e
t
o
-
2
55
or
255
,
t
h
e
n
i
t
i
s
co
n
s
i
d
er
ed
t
o
b
e
a
s
ha
r
pl
y
e
dge
d bl
oc
k.
P
V
D
m
e
t
hod e
m
be
ds
m
or
e
d
a
t
a
i
nt
o c
om
ple
x r
e
gi
ons
,
w
h
e
r
e
p
i
x
e
l
p
a
i
r
s
w
i
t
h
l
a
r
g
er
d
i
f
f
er
e
n
ce
ar
e o
f
t
e
n
l
o
cat
ed
.
L
et
’
s
a
s
su
me
t
h
a
t
P
i
a
n
d P
i+
1
ar
e t
w
o
co
n
s
ecu
t
i
v
e
p
ixe
l
s
bl
oc
k
i
n a
c
ove
r
i
m
a
ge
a
nd t
he
i
r
d
i
ffe
re
n
c
e
i
s
d
i
f
r
om
t
he
e
q
ua
t
i
on
(
1)
.
N
o
w,
i
f
d
i
’
s
r
a
nge
i
s
w
i
d
t
h
(w
)
t
he
n
t
he
e
m
be
ddi
ng
bi
t
s
(
t
)
can
b
e
cal
c
u
l
at
ed
b
y
t
=
l
o
g
(
w)
(4
)
F
r
o
m
eq
u
at
i
o
n
(
4
)
,
w
e g
et
t
h
e
d
eci
m
al
v
al
u
e
t
w
hi
c
h i
s
t
he
num
be
r
of
b
i
t
s
i
s
t
a
k
e
n
f
r
o
m
s
ecr
et
d
at
a a
n
d
u
s
ed
t
o
upd
a
te
d
t
o
ge
t
ne
w
va
l
ue
of
d
′
.
′
=
+
≥
0
;
−
(
+
)
<
0
;
(5
)
Th
i
s
d
′
gi
ve
s
us
ne
w
va
l
ue
s
(
P
i
′
)
an
d
(
P
i+
1
′
)
of
pi
xe
l
s
(
P
i
)
a
nd
(
P
i+
1
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
ci
IS
S
N
:
250
2
-
47
52
A
n
I
m
pr
ov
e
d
I
m
a
ge
St
e
g
a
no
g
r
ap
hy
A
l
g
or
i
t
h
m
B
as
e
d
on
P
V
D
(
Sh
ar
if
Sh
ah
N
e
w
a
j
B
h
u
iy
an
)
5
71
H
o
we
ve
r
,
t
he
P
V
D m
e
t
hod c
a
us
e
s
c
o
ns
i
de
r
a
bl
e
di
s
t
or
t
i
on
,
l
e
a
di
ng t
o
de
g
r
a
da
t
i
o
n i
n i
m
a
ge
q
ua
l
i
t
y
.
Be
l
o
w
w
e
w
i
l
l
e
x
p
l
a
i
n
t
h
e
d
e
t
a
i
l
s
o
f
e
n
h
a
n
c
e
d
P
VD
m
e
t
hod a
n
d
t
h
e
c
o
m
b
i
n
a
t
i
o
n
w
i
t
h
d
i
ffe
re
n
t
o
the
r
w
e
l
l
k
now
n
m
e
t
hod
s
.
I
n
[5
],
W
u
e
t
a
l
.
pr
op
os
e
d
a
s
l
i
g
h
t
l
y
m
o
d
i
f
i
e
d
P
V
D
m
e
t
h
o
d
.
I
n
t
hi
s
m
e
t
hod,
us
e
r
de
f
i
ne
d
r
a
n
ge
t
a
bl
e
an
d
p
i
x
el
v
al
u
e
d
i
f
f
e
r
e
n
c
e
c
a
l
c
u
l
a
t
i
o
n
s
t
e
p
s
w
e
re
us
e
d f
r
o
m
o
r
i
g
i
n
a
l
P
V
D m
e
t
hod
.
T
h
e
u
s
er
r
a
n
g
e t
ab
l
e w
a
s
di
vi
de
d
i
nt
o
t
w
o
gr
ou
ps
,
o
ne
i
s
l
owe
r
di
vi
s
i
o
n
a
nd
o
t
h
e
r
one
is
hi
g
he
r
di
vi
s
i
on
.
S
m
oot
h
a
nd
e
d
ge
d
a
r
e
a
s
w
e
r
e
co
n
s
i
d
er
e
d
as
s
m
a
l
l
an
d
l
ar
g
e p
i
x
el
v
al
u
e
d
i
f
f
er
e
n
ce
r
es
p
e
ct
i
v
el
y
.
I
t
u
s
ed
t
hr
e
e
(
3)
bi
t
s
L
S
B s
u
b
s
t
i
t
u
t
i
o
n
fo
r
s
m
o
o
t
h
ar
eas
an
d
o
r
i
g
i
n
al
P
V
D
f
o
r
ed
g
e
d
ar
eas
.
Th
i
s
m
odi
f
i
e
d P
VD
m
e
t
hod s
ho
w
s
b
e
t
t
e
r
i
m
a
g
e
q
u
a
l
i
t
y
(P
S
N
R
v
a
l
u
e
).
In
[6
]
,
W
e
i
q
i
L
u
o
e
t
a
l
.
p
r
o
p
o
s
ed
a s
ecu
r
e
s
te
g
a
nog
r
a
phy
b
a
s
e
d
on
ad
ap
t
i
v
e P
V
D
s
c
h
em
e.
I
n
t
h
i
s
ap
p
r
o
ach
,
t
h
e
c
ove
r
i
m
a
ge
w
as
s
eg
m
en
t
ed
i
n
t
o
s
m
a
l
l
s
qua
r
e
s
,
t
he
n
e
a
c
h
on
e
w
as
r
o
ta
te
d
by
a
r
a
ndo
m
an
g
l
e
o
f
0
°
,
9
0
°
,
1
80
°
or
270
°
.
T
he
n t
he
p
r
o
c
es
s
e
d
i
m
ag
e
w
a
s
p
a
r
t
i
t
i
o
n
e
d
i
nt
o no
n
-
ov
e
r
la
pp
ing
s
qua
r
e
s
wi
t
h 3
c
on
s
e
c
ut
i
ve
pi
xe
l
s
.
T
h
e
c
e
nt
e
r
pi
xe
l
w
as
u
s
ed
f
o
r
s
ec
r
et
d
at
a
hi
di
ng
.
By
c
a
l
c
u
l
a
t
i
n
g
t
h
e
d
i
f
f
e
r
e
n
c
e
s
,
i
t
f
o
u
n
d
t
he
t
oa
l
n
um
be
r
o
f
e
m
be
dde
d
bi
t
s
.
F
or
pr
e
s
e
r
vi
ng t
he
l
oc
a
l
f
e
a
t
ur
e
s
i
nf
o
r
m
a
t
i
on,
i
t
ke
pt
t
he
s
o
r
t
i
n
g
o
rd
e
r
o
f
t
h
e t
h
r
ee
p
i
x
el
v
al
u
es
s
am
e af
t
er
d
at
a
h
i
d
i
n
g
.
I
n
a
d
di
t
i
ons
,
t
hi
s
m
e
t
hod
us
e
d
s
ha
r
pe
r
r
e
gi
o
ns
f
o
r
a
da
pt
i
ve
da
t
a
h
i
d
i
n
g
,
w
hi
l
e
i
t
pr
e
s
e
r
ve
d
ot
h
e
r
s
m
oot
he
r
r
e
gi
o
ns
b
y
v
al
u
e
ad
j
u
s
t
m
en
t
.
T
h
e
f
i
n
a
l
r
e
s
u
l
t
s
an
al
y
zed
o
n
a l
a
r
g
e
i
m
ag
e
d
at
ab
as
e
a
nd
t
hi
s
m
e
t
hod
i
m
pr
o
ve
d
s
e
c
u
r
i
t
y
i
ssu
e
s
a
s
c
om
pa
r
e
d
t
o
t
h
e
p
r
e
vi
ous
P
V
D
-
ba
s
e
d
m
e
t
hods
.
A
l
s
o
,
M
od
ul
us
P
VD
m
e
t
hod
w
a
s
p
r
op
os
e
d
by
W
a
ng e
t
a
l
.
i
n w
hi
c
h m
odul
us
f
u
nc
t
i
on
i
s
us
e
d f
o
r
da
t
a
e
m
be
ddi
n
g.
Th
e
m
odul
us
m
e
t
hod
m
odi
f
i
e
s
t
he
va
l
u
e
o
f
t
he
di
f
f
e
r
e
nc
e
of
t
he
t
wo
pi
xe
l
bl
oc
k
.
Th
i
s
t
a
c
kl
e
d
t
he
bo
u
nda
r
y
f
a
l
l
i
n
g
o
f
f
p
r
o
bl
e
m
.
B
ut
t
hi
s
m
e
t
hod
s
h
o
w
s
s
am
e
r
es
u
l
t
a
s
or
i
gi
na
l
P
V
D.
In
p
r
e
vi
ous
P
V
D
m
e
t
hod
,
o
nl
y
t
w
o
c
on
s
e
c
ut
i
ve
pi
xe
l
w
e
r
e
us
e
d
a
s
a
pi
xe
l
bl
oc
k
f
o
r
da
t
a
e
m
be
ddi
n
g
.
T
h
e
m
u
l
t
i
-
pi
xe
l
di
f
f
e
r
e
nc
i
n
g (
M
P
D)
i
s
p
r
e
s
e
nt
e
d
by
ne
i
g
hb
or
i
ng
pi
xe
l
s
c
o
r
r
e
l
a
t
i
on
t
o
e
s
t
im
a
t
e
t
he
de
g
r
e
e
o
f
s
m
oot
hne
s
s
o
r
c
ont
r
a
s
t
o
f
pi
x
e
l
s
.
B
e
l
ow
a
r
e
s
om
e
of
t
he
va
r
i
o
us
M
P
D
m
e
t
ho
d
s.
In
[
8
]
,
We
n
g
e
t
a
l
.
p
ro
p
o
s
e
d
n
e
w
s
c
h
e
m
e
ba
s
e
d
o
n pr
e
di
c
t
i
ve
di
f
f
e
r
e
nc
i
ng (
P
D
)
t
o e
m
be
d i
n g
r
e
y
i
m
a
g
e
.
T
h
i
s
ap
p
r
o
a
ch
i
s
w
h
e
re
e
m
be
ddi
n
g b
y
r
as
t
er
s
c
a
n
o
r
de
r
e
xc
e
pt
f
o
r
t
he
f
i
r
s
t
c
ol
u
m
n a
nd t
he
f
i
r
s
t
r
o
w
fo
r
t
h
e
co
ve
r
im
a
ge
.
U
s
e
d
s
ev
er
al
p
r
ed
i
ct
o
r
s
t
o
cal
cu
l
at
e p
r
ed
i
ct
i
v
e
v
al
u
e (
P
V
)
l
i
k
e
h
o
r
i
z
o
n
t
a
l
,
v
e
r
t
i
c
a
l
.
P
r
e
d
i
c
t
i
v
e
e
r
r
o
r
(
P
E)
w
as
cal
cu
l
at
ed
as
a d
i
f
f
e
r
en
ce
o
f
i
n
p
u
t
p
i
x
e
l
a
nd
PV
.
F
i
r
s
t
ch
ec
k
ed
t
h
e
r
a
nge
t
a
b
l
e
f
o
r
P
E
t
he
n e
m
be
ddi
ng
wa
s
d
on
e
us
i
ng
k
-
bi
t
s
ubs
t
i
t
ut
i
o
n i
nt
o t
he
i
np
ut
pi
xe
l
.
I
f
P
E
a
nd
n
ew
p
r
ed
i
ct
i
o
n
er
r
o
r
(
N
PE
)
ar
e
l
a
y
i
ng
i
n di
f
f
e
r
e
nt
r
a
n
ge
s
,
t
he
n
o
ut
p
ut
va
l
ue
ha
s
t
o be
r
e
-
a
dj
us
t
e
d
.
C
om
pa
r
a
t
i
ve
l
y
t
hi
s
m
e
t
hod
ha
s
pr
o
vi
de
d
b
et
t
er
cap
aci
t
y
a
nd
i
m
pr
ove
d
out
pu
t
i
m
ag
e
q
u
al
i
t
y
t
h
an
ear
l
i
er
non
MP
D
w
o
rk
s
.
In
[
12
]
,
K
o
-
Ch
i
n
Ch
a
n
g
e
t
a
l
.
(
2
0
0
8
)
p
r
o
p
o
s
e
d
T
r
i
P
i
x
e
l
V
a
l
u
e
D
i
f
f
e
r
e
n
c
i
n
g
(
T
PVD
)
,
i
t
i
n
cr
eas
es
t
h
e
cap
aci
t
y
a
nd a
l
s
o p
r
ovi
de
s
be
t
t
e
r
i
m
p
er
cep
t
i
b
l
e s
t
eg
o
-
i
m
ag
e f
o
r
H
VS
(
h
um
a
n vi
s
i
o
n s
y
s
t
e
m
)
.
I
t
i
s
a
l
s
o
a
n
ew
ap
p
r
o
ach
t
h
at
u
s
es
t
r
i
-
pi
xe
l
v
a
l
ue
di
f
f
e
r
e
nc
i
ng
.
T
h
e
h
o
r
i
z
o
n
t
a
l
,
v
e
r
t
i
c
a
l
a
n
d
d
i
a
g
o
n
a
l
ed
g
e
s
ar
e
u
s
ed
t
o
em
b
ed
m
o
r
e
s
ecr
et
d
a
t
a
t
ha
n
t
he
W
u
a
n
d
T
s
a
i
(
P
V
D)
m
e
t
hod
[
3
]
.
F
ut
he
r
m
or
e
,
i
t
r
ed
u
ce
s
t
h
e
q
u
a
l
i
t
y
d
i
s
t
o
r
t
i
o
n
o
f
t
h
e
s
t
e
g
o
-
i
m
ag
e
thr
o
ug
h
a
n
o
pt
im
a
l
s
e
l
e
c
t
i
on a
nd a
da
pt
i
ve
r
ul
es
.
T
he
o
ut
p
ut
r
e
s
u
l
t
s
d
e
m
o
n
s
t
r
a
t
e
t
h
a
t
t
h
e
e
m
be
ddi
ng
i
n t
he
s
t
e
go i
m
a
ge
i
s
im
pe
r
c
e
pt
i
bl
e
f
o
r
h
um
a
n vi
s
i
on
whi
l
e
c
om
pa
r
e
d t
o t
he
c
o
ve
r
i
m
a
ge
.
Th
i
s
m
e
t
hod
c
an
pr
ovi
de
b
e
t
t
e
r
e
m
be
ddi
ng c
a
p
a
c
i
t
y
t
ha
n
t
he
or
i
gi
na
l
P
V
D
m
e
t
hod.
I
t a
ls
o s
h
ow
s
t
h
e
r
o
b
u
st
n
e
ss
a
n
d g
o
o
d
r
e
s
u
l
t
s
i
n
t
h
e
d
u
a
l
s
t
a
t
i
s
t
i
c
a
l
a
n
a
l
y
s
i
s
.
T
he
e
xt
r
a
c
t
i
on
m
e
t
hod
c
a
n
wo
r
k c
or
r
e
c
t
l
y
w
i
t
ho
ut
t
he
or
i
gi
na
l
c
ove
r
i
m
a
ge
s
.
In
[1
3
]
,
t
h
e
pr
op
os
e
d
m
e
th
od
w
hi
c
h u
s
e
d
TP
V
D
w
i
t
h
a
d
a
p
t
i
v
e
L
S
B m
a
t
c
h
i
n
g
r
e
v
i
s
i
t
e
d
a
l
g
o
r
i
t
h
m
t
o
m
ax
i
m
i
ze
t
h
e
d
at
a
em
b
ed
d
i
n
g
r
at
e.
T
hi
s
m
e
t
ho
d
i
n
i
t
i
al
i
zes
s
o
m
e p
ar
am
et
er
s
d
ur
i
ng
d
a
t
a
e
m
be
ddi
ng
pha
s
e
w
h
i
c
h
a
re
u
s
e
d
fo
r d
a
t
a
p
re
p
r
oc
e
s
s
i
ng a
nd
r
e
gi
o
n s
e
l
e
c
t
i
on
.
A
f
t
e
r
t
h
e
i
n
i
t
i
a
l
p
h
a
s
e,
t
h
e cap
aci
t
y
o
f
t
h
o
s
e
s
el
ect
ed
r
e
g
i
o
n
i
s
es
t
i
m
at
ed
.
I
f
t
h
e
r
e
gi
o
n i
s
l
a
r
ge
e
no
u
gh
t
he
n
i
t
p
e
r
fo
rm
s
o
n
l
y
a
t
t
h
e
s
e
l
e
c
t
e
d
r
e
g
i
o
n
s
t
h
e
da
t
a
hi
di
n
g.
T
he
n i
t
a
l
s
o pe
r
f
o
r
m
s
pos
t
-
pr
o
c
e
s
s
i
ng
t
o
obt
a
i
n t
he
s
t
e
go
-
i
m
ag
e.
A
t
t
he
e
n
d f
or
da
t
a
e
xt
r
a
c
t
i
on,
t
h
e
s
i
d
e
m
a
t
c
h
i
n
f
o
r
m
a
t
i
o
n
i
s
us
e
d
a
n
d
b
as
ed
o
n
t
hi
s
i
nf
or
m
a
t
i
on
s
om
e
pr
e
pr
oc
e
s
s
i
ng
c
a
n
be
pe
r
f
or
m
e
d.
Af
t
e
r
th
is
pr
o
c
e
s
s
ing
,
i
t
c
a
n
i
d
e
n
t
i
f
y
t
he
r
e
gi
o
n
w
he
r
e
da
t
a
i
s
h
i
dd
e
n.
4.
P
R
O
P
O
SE
D
SC
H
E
M
E
I
n t
hi
s
s
e
c
t
i
o
n
,
we
s
ha
l
l
pr
e
s
e
nt
t
he
p
r
o
p
o
s
e
d s
c
he
m
e
i
n t
w
o
p
ar
t
s
:
n
ew
e
m
be
ddi
ng
m
e
t
hod
an
d
e
x
t
r
a
c
t
i
o
n
m
e
t
h
o
d
,
t
he
c
o
nc
e
pt
o
f
t
hi
s
ne
w s
c
he
m
e
i
s
ba
s
e
d
on
M
ul
t
i
-
pi
xe
l
di
f
f
e
r
e
nc
i
n
g.
D
ur
i
ng
o
ur
i
n
v
es
t
i
g
at
i
o
n
,
w
e h
a
v
e o
b
s
er
v
ed
t
h
at
i
f
w
e
can
n
o
r
m
al
i
ze
/
en
co
d
e t
h
e v
a
l
u
e o
f
o
u
r
s
ecr
et
d
at
a t
h
en
w
e can
s
i
m
p
l
i
f
y
t
h
e
m
u
l
t
i
-
pi
xe
l
di
f
f
e
r
e
nc
i
ng a
l
g
o
r
i
t
hm
i
n a
f
e
w
s
t
e
ps
.
F
or
ou
r
ne
w p
r
o
p
os
e
d s
c
he
m
e
,
we
do
n’
t
ha
v
e
t
o va
r
y
t
he
q
u
a
nt
i
z
a
t
i
on
r
a
n
g
e
t
a
bl
e
.
I
n
t
hi
s
m
e
t
hod
,
we
a
r
e
us
i
n
g
f
i
xe
d
l
e
ngt
h t
a
bl
e
r
a
nge
.
T
hi
s
wa
y
ou
r
pr
o
pos
e
d s
c
he
m
e
i
s
ve
r
y
m
uc
h c
o
ns
i
s
t
e
nt
w
i
t
h a
ny
im
a
ge
s
c
om
pa
r
e
d
t
o ot
he
r
a
l
go
r
i
t
hm
s
whi
c
h
a
r
e
n
ot
c
on
s
i
s
t
e
nt
i
n
t
e
r
m
s
of
P
S
NR
(
pi
xe
l
va
l
ue
n
oi
s
e
r
a
t
i
o
)
or
M
S
E
(
m
e
a
n
s
q
ua
r
e
e
r
r
o
r
)
.
F
i
r
s
t
s
t
e
p
o
f
ou
r
e
m
be
ddi
ng
p
r
oc
e
d
ur
e
i
s
t
he
s
e
c
r
e
t
da
t
a
e
n
c
odi
ng
,
t
he
n
s
a
ve
i
nt
o
a
f
i
l
e
o
r
v
a
r
i
a
bl
e
t
o
pr
oc
e
s
s
w
i
t
h t
he
c
ove
r
i
m
a
ge
.
I
n
ou
r
s
c
he
m
e
,
w
e
ha
ve
us
e
d ba
s
e
6
4 e
nc
o
di
n
g
w
hi
c
h
ha
s
gi
ve
n
ve
r
y
go
o
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-
47
52
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
c
i
,
V
o
l
.
10
,
N
o
.
2
,
Ma
y
2
018
:
56
9
–
57
7
5
72
pe
r
f
o
r
m
a
nc
e
f
or
ne
w pi
xe
l
v
a
l
ue
di
f
f
e
r
e
nc
i
ng
.
Ba
s
e
6
4
i
m
p
l
e
m
e
n
t
a
t
i
o
n
u
s
e
s
A
–
Z
,
a
–
z
,
a
nd
0
–
9
fo
r t
h
e
fi
rs
t
6
2
v
al
u
es
.
T
h
e
r
e
ar
e
3
o
t
h
er
c
h
ar
act
er
+,
/
,
=.
E
x
am
p
l
e:
(
S
ec
r
et
T
ex
t
)
“
T
he
q
ui
c
k
b
r
o
w
n
f
ox
j
u
m
p
s
o
ver
t
h
e
l
a
z
y
d
o
g
”
E
nc
ode
d
T
e
xt
:
VG
h
l
I
H
F1
a
W
N
rI
G
J
y
b
3
d
u
I
G
Z
v
e
C
Bq
d
W
1
w
c
y
Bv
d
m
Vy
I
H
R
o
Z
S
BsY
Xp
5
I
G
Rv
Z
w
=
=
S
e
c
r
e
t
t
e
x
t
s
i
z
e
i
s
4
3
b
u
t
e
n
c
o
d
e
d
s
i
z
e
w
i
l
l
b
e
l
i
t
t
l
e
l
a
r
g
e
r
6
0
.
S
o
,
e
n
c
o
d
e
d
s
i
z
e
e
q
u
a
t
i
o
n
w
i
l
l
b
e
4
*
c
e
i
l
(
l
e
ngt
h
_o
f
_o
r
i
gi
na
l
_t
e
xt
/
3
)
(
6)
T
h
e
r
eas
o
n
t
o
us
e
t
he
e
nc
o
di
ng
m
e
c
ha
ni
s
m
,
t
o
m
i
nim
i
z
e
t
h
e
e
r
r
o
r
of
ne
w
pi
xe
l
s
va
l
ue
di
f
f
e
r
e
nc
e
.
O
u
r
f
o
c
u
s
i
s
t
o
i
n
c
r
e
a
s
e
t
h
e
s
e
c
u
r
i
t
y
,
c
a
p
a
c
i
t
y
o
f
s
e
c
r
e
t
d
a
t
a
a
n
d
s
i
m
p
l
i
f
y
t
h
e
i
m
p
l
e
m
e
n
t
a
t
i
o
n
f
o
r
f
u
r
t
h
e
r
de
ve
l
opm
e
nt
.
F
i
gu
r
e
1
s
h
ow
s
t
he
pr
o
pos
e
d
s
c
he
m
e
’
s
bl
oc
k
d
i
ag
r
am
f
o
r
P
V
D
i
m
ag
e
s
t
eg
an
o
g
r
ap
h
y
.
F
i
gu
r
e
1.
B
l
oc
k
Di
a
g
r
a
m
f
or
P
V
D
I
m
a
ge
S
t
e
ga
n
o
gr
a
p
hy
C
alcu
late th
e
p
ix
el v
alu
e
d
if
f
er
en
ce (
d
i
)
f
o
r
h
o
r
izo
n
tal,
v
er
tical an
d
d
iag
o
n
al d
ir
ectio
n
s
E
nc
odi
ng da
t
a
t
o
a
-
z
, A
-
Z
a
nd 0
-
9
u
s
i
ng ba
s
e
64
alg
o
r
ith
m
C
ove
r
I
m
a
ge
(
C
)
Par
titio
n
th
e C
o
v
er
I
m
ag
e
(x
i,
y
j
)
i
nt
o bl
oc
k (
2 x 2)
C
h
eck
in
g
th
e d
if
f
e
r
en
ce v
alu
e d
i
ag
ain
s
t th
e
f
ix
ed
4
/3
b
it
r
an
g
e
tab
le to
f
in
d
th
e lo
wer
an
d
u
p
p
er
li
m
it
Secr
et Data/
I
m
ag
e
d
i
>=
lo
wer
(
j
)
&
&
d
i
<= u
p
p
er
(
j)
E
m
be
d e
nc
ode
d 3 bi
t
s
(
b
i
)
to
each
d
ir
ectio
n
v
alu
es
.
T
h
en
calcu
late
e
m
b
ed
d
ed
n
ew
v
alu
e (
n
d
)
f
o
r
each
d
ir
ectio
n
s
u
s
in
g
nd(
i)
=
lo
w
er(
j
)
+
dec(
b
i
)
Ye
s
No
w calcu
late th
r
ee (
3
)
n
ew p
ix
el
v
al
u
e b
as
ed
o
n
n
eg
ativ
e an
d
p
o
s
itiv
e d
if
f
er
en
ces
.
s
b
[
]=
{
(1
,2
), (2
,1
)
,
(2
,2
)}
if
d(
i
) <
0
i
m
g
(
sb
(i
,0
)
+x
,
s
b
(i
,1
)
+
y
)=
f
(1
,
1
)
–
nd
(
i)
-
1;
els
e
i
m
g
(
sb
(i
,0
)
+x
,
s
b
(i
,1
)
+
y
)=
f
(1
,1
)
+
nd
(i
)
+
1;
No
Fin
al Steg
o
I
m
ag
e
(
FS)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
ci
IS
S
N
:
250
2
-
47
52
A
n
I
m
pr
ov
e
d
I
m
a
ge
St
e
g
a
no
g
r
ap
hy
A
l
g
or
i
t
h
m
B
as
e
d
on
P
V
D
(
Sh
ar
if
Sh
ah
N
e
w
a
j
B
h
u
iy
an
)
5
73
A
s
de
f
i
ne
d
a
b
ove
in T
r
i
-
w
a
y
pi
xe
l
m
e
t
hod
,
f
or
e
a
c
h
c
om
po
ne
nt
o
f
a
bl
oc
k
,
we
c
a
n
o
bt
a
i
n
t
h
r
ee
p
i
x
el
v
al
u
e
d
i
ffe
re
n
c
e
s
,
d
1,
d
2
an
d
d
3
.
p(
1,
1)
p(
1,
2)
p(
2,
1)
p(
2,
2)
d
1
=
p
(1
,
2
)
-
p
(
1,
1)
d
2
=
p
(2
,
1
)
-
p
(
1,
1)
d
3
=
p
(2
,
2
)
-
p
(
1,
1)
T
he
n
a
c
c
or
di
n
g
t
o
d
1,
d
2
an
d
d
3
t
o
f
i
n
d
t
h
e
h
i
d
i
n
g
c
a
p
a
c
i
t
y
f
r
o
m
r
a
n
g
e
t
a
b
l
e
R
j
,
t
h
e
w
i
d
t
h
w
=
u
p
p
e
r (j
)
–
l
o
we
r
(j
)
+
1
(
7)
T
he
hi
di
n
g
c
a
pa
c
i
t
y
o
f
b
i
t
s
i
s
f
i
xe
d f
or
o
ur
m
e
t
hod.
I
t
i
s
e
i
t
he
r
4
o
r
3
d
e
pe
n
ds
o
n t
he
s
e
c
ur
i
t
y
a
n
d c
a
pa
c
i
t
y
l
ev
el
p
a
r
am
et
e
r
s
.
R
a
n
g
e
T
a
b
l
e
(1
)
L
owe
r
=
[
0
16
3
2 48 64
80 96
11
2 128 144
160 1
76 192 208
224
240
]
U
ppe
r
=
[
15
31
47 63 79
95 111
127 143 159
175
191 207
223 23
9 255
]
R
a
n
g
e
T
a
b
l
e
(2
)
L
owe
r
=
[
0 8 16
24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 1
92 200 20
8
216 224 232
240
2
4
8]
Up
p
e
r =
[
7 15
2
3 31 39 47
55 63
71 79 87
95 103
111 119 127
13
5 143 151 159
1
67 175 183 191
199 207 215
223 231 239
247
255
]
b
i
t
s
_
w
i
d
t
h
(
t
)
=
l
o
g
2
(
upp
e
r
i
–
l
o
we
r
i
+
1
)
(
8)
A
f
t
er
em
b
ed
d
i
n
g
s
ec
r
et
b
i
t
s
w
i
t
h
l
o
w
er
v
al
u
e o
f
r
a
n
g
e t
ab
l
e,
w
e
g
et
n
e
w
d
i
f
f
er
e
n
ce
v
al
u
e.
N
o
w
w
e
n
eed
t
o
c
on
s
t
r
uc
t
ne
w
pi
xe
l
va
l
ue
f
or
ou
r
p
r
op
os
e
d
s
c
he
m
e
.
W
e
ha
ve
o
bs
e
r
ve
d
s
e
ve
r
a
l
m
e
t
hods
a
n
d
di
d
ou
r
o
w
n
i
nve
s
t
i
ga
t
i
o
n.
T
he
n w
e
c
a
m
e
up t
he
f
ol
l
ow
i
ng ne
w va
l
ue
c
ons
t
r
uc
t
i
o
n m
e
t
hod w
hi
c
h
i
s
m
uc
h s
im
p
l
e
r
t
ha
n
a
ny
ot
he
r
m
e
t
h
ods
c
ur
r
e
n
t
l
y
e
x
i
s
t
.
W
e
c
on
s
i
de
r
t
h
e
f
i
r
s
t
pi
xe
l
(
1,
1)
f
r
om
s
ub
-
pi
xe
l
bl
oc
k
a
s
re
f
eren
ce
p
o
i
n
t
(
RF
)
f
o
r
p
o
s
i
t
i
v
e
a
n
d
n
e
g
a
t
i
v
e
s
d
i
ffe
re
n
c
e
s
.
N
o
w
,
i
f
d
i
f
f
e
r
e
n
c
e
i
s
p
o
s
i
t
i
v
e
t
h
e
n
t
h
e
g
e
n
e
r
a
l
f
o
r
m
w
i
l
l
b
e
:
NP
V
=
R
P
+
ND
+
1
(9
)
I
f
ne
ga
t
i
ve
t
he
n
NP
V
=
R
P
-
ND
–
1
(1
0
)
NP
V
=
n
e
w
p
i
x
e
l
v
a
l
u
e
R
F
=
r
ef
er
en
c
e
p
o
i
n
t
ND
=
n
e
w
d
i
f
f
e
r
e
n
c
e
D
at
a
E
x
t
r
a
ct
i
o
n
P
ro
ces
s
T
h
e
e
x
t
r
a
c
t
i
o
n
a
r
c
h
i
t
e
c
t
u
r
e
o
f
t
h
e
p
r
o
p
o
s
e
d
s
y
s
t
e
m
f
o
r
t
e
x
t
f
i
l
e
/
i
m
a
g
e
f
i
l
e
i
s
s
a
m
e
.
1.
P
a
r
t
i
t
i
o
n
t
h
e
s
t
e
g
o
-
im
a
g
e
in
to
th
e
(
2
x
2)
s
ub
-
pi
xe
l
bl
oc
ks
.
2.
Ca
l
c
u
l
a
t
e
t
h
e
d
i
f
f
e
r
e
nc
e
va
l
ue
s
a
s
we
di
d
i
n
e
m
be
dde
d
p
ha
s
e
.
3.
F
i
nd
t
he
e
m
be
ddi
ng
bi
t
s
ba
s
e
d
on
t
he
q
ua
nt
i
z
a
t
i
on
r
a
n
ge
t
a
bl
e
o
f
pi
xe
l
di
f
f
e
r
e
nc
e
va
l
ue
.
4.
C
ont
i
n
ue
t
he
p
r
oc
e
s
s
unt
i
l
w
e
f
i
n
d
a
l
l
t
he
hi
d
de
n
bi
t
s
a
c
c
or
d
i
ng
t
o
e
nc
o
de
d
f
i
l
e
l
e
ngt
h.
E
xi
t
f
r
om
t
he
e
xt
r
a
c
t
i
o
n
pr
oc
e
s
s.
5.
R
E
S
U
L
T
S
A
NA
L
Y
S
I
S
A
N
D
DI
S
S
C
U
S
S
I
O
N
W
e h
a
v
e ch
o
s
en
co
v
er
i
m
ag
es
f
r
o
m
t
h
e S
I
P
I
I
m
ag
e D
at
ab
as
e.
H
e
re
,
w
e
h
a
v
e
u
s
e
d
pe
a
k s
i
gna
l
-
t
o
-
n
o
i
s
e
r
a
t
i
o
(
P
S
NR
)
a
n
d M
S
E
m
e
t
hods
t
o a
na
l
y
z
e
ou
r
r
e
s
ul
t
t
o
s
how
o
ur
m
e
th
od
is
w
e
ll de
f
in
e
d
a
nd t
he
n t
h
e
e
x
p
e
r
im
e
n
t
r
e
s
u
lts
s
how
th
e
pr
opo
s
e
d
m
e
t
hod
h
as
b
e
t
t
e
r
i
m
p
e
r
c
e
p
t
i
b
i
l
i
t
y
.
T
h
e
ou
tpu
t
i
m
a
g
e
q
u
a
l
i
t
y
i
s
ca
l
cu
l
at
ed
b
y
t
h
e
PSN
R
.
T
h
e
PSN
R
f
o
r
m
u
l
a
i
s
d
ef
i
n
ed
as
PSN
R
=
1
0
×
2
2
5
5
2
(d
B
)
(
11
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-
47
52
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
c
i
,
V
o
l
.
10
,
N
o
.
2
,
Ma
y
2
018
:
56
9
–
57
7
5
74
W
h
e
r
e
M
S
E
i
s
t
h
e
m
ean
s
q
u
a
r
e
er
r
o
r
b
et
w
ee
n
t
h
e
co
v
e
r
an
d
s
t
eg
o
i
m
ag
es
.
F
o
r
a
co
v
er
i
m
ag
e
,
w
hos
e
w
i
d
t
h
an
d
h
ei
g
h
t
ar
e
w
a
nd
h
,
t
he
n
M
S
E
i
s
de
f
i
ne
d
a
s
MS
E
=
1
ℎ
∑
∑
(
,
)
−
(
,
)
2
ℎ
=
1
=
1
(
12
)
Wh
e
re
(
,
)
de
not
e
s
pi
xe
l
va
l
ue
f
r
om
s
t
e
go
i
m
a
ge
s
a
nd
(
,
)
d
en
o
t
es
pi
xe
l
va
l
ue
s
f
r
om
c
ove
r
i
m
ag
es
r
es
p
ect
i
v
el
y
.
P
S
N
R
a
nd
MS
E
v
a
l
ue
s
of
t
he
70
,
8
27
b
yt
es
(7
0
K
B
)
i
m
ag
e
c
a
pa
c
i
t
i
e
s
f
or
e
m
be
ddi
ng
da
t
a
by
us
i
n
g
t
h
e
co
v
e
r
I
m
a
g
e
s
.
A
l
l
i
m
a
ge
s
a
r
e
51
2
x5
1
2
a
nd
t
w
o
s
e
t
of
w
i
dt
h
r
a
n
ge
s
a
r
e
us
e
d
f
or
g
r
a
y
va
l
ue
s
(
T
a
bl
e
1
a
n
d
F
i
gu
r
e
2)
.
T
a
b
l
e
1
:
EX
P
R
ES
1
C
ove
r
I
m
a
ge
(
512 x 512)
PSNR
(
d
b
)
f
o
r
R
an
g
e T
ab
le 1
(
wid
th
4
)
MS
E
PSNR
(
d
b
)
f
o
r
R
an
g
e T
ab
le
2 (
w
i
dt
h 3)
MS
E
Le
n
a
37.
765
10.
879
39.
119
7.
9652
B
a
boon
35.
898
16.
722
39.
503
7.
2909
Pep
p
er
s
37.
555
11.
417
39.
359
7.
5368
J
et
37.
508
11.
541
38.
906
8.
3656
T
if
f
an
y
37.
493
11.
581
39.
411
7.
4462
F
ig
ur
e
2
.
C
om
pa
r
i
s
on
o
f
P
S
N
R
f
o
r
3
bi
t
vs
4
bi
t
w
i
dt
h.
C
om
pa
r
i
s
on
o
f
o
r
i
gi
na
l
P
V
D
,
T
P
V
D
a
nd
ou
r
pr
o
pos
e
d
s
c
he
m
e
of
s
t
e
go
-
i
m
ag
es
(
5
1
2
x
51
2)
f
or
P
S
N
R
,
M
S
E
v
al
u
es
(
T
ab
l
e
2
an
d
F
i
g
u
r
e
3
)
.
T
ab
l
e
2
.
E
X
PR
E
S
2
Cove
r Im
a
ge
W
u a
nd T
s
a
i
O
ri
gi
na
l
P
V
D
Ko
-
Chi
n Cha
ng
T
ri
-
wa
y
P
VD
O
ur P
ropos
e
d
M
e
t
hod
C
ap
.
(
b
y
tes
)
PSNR
C
ap
.
(
b
y
tes
)
PSNR
C
ap
.
(
b
y
tes
)
PSNR
Le
n
a
5096
0
41.
79
7583
6
38.
89
7404
7
38.
907
B
a
boon
5629
1
37.
90
8240
7
33.
93
7404
7
39.
305
Pep
p
er
s
5068
5
40.
97
7557
9
38.
50
7404
7
39.
150
J
et
5124
3
40.
97
7635
2
38.
70
7404
7
38.
696
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
ci
IS
S
N
:
250
2
-
47
52
A
n
I
m
pr
ov
e
d
I
m
a
ge
St
e
g
a
no
g
r
ap
hy
A
l
g
or
i
t
h
m
B
as
e
d
on
P
V
D
(
Sh
ar
if
Sh
ah
N
e
w
a
j
B
h
u
iy
an
)
5
75
F
ig
ur
e
3
.
C
o
m
p
a
r
is
o
n
of
T
P
V
D
a
nd
P
r
o
pos
e
d
Me
thod
5.
1
Se
c
ur
it
y
V
e
r
if
ic
a
t
io
n
us
ing
R
S Me
t
ho
d
A
ft
e
r
e
m
be
dde
d
t
he
s
e
c
r
e
t
da
t
a
i
nt
o
t
he
c
ove
r
im
a
ge
s
us
i
n
g
ou
r
p
r
o
p
os
e
d
m
e
t
hod
,
t
h
e
p
ri
m
a
ry
t
ar
g
et
i
s
t
o
ge
ne
r
a
t
e
ou
r
f
i
na
l
s
t
e
go
i
m
ag
es
pe
r
c
e
pt
ua
l
l
y
a
s
m
uc
h
a
s
c
l
os
e
t
o t
he
or
i
gi
na
l
c
ove
r
im
a
ge
s
.
T
h
e
m
e
t
ho
d
w
h
i
c
h
i
s
c
a
l
l
e
d
s
t
e
g
o
-
a
n
a
l
y
s
i
s
i
s
g
e
n
e
r
a
l
l
y
u
s
e
d
t
o
c
h
eck
a
n
d
d
et
ect
w
h
et
h
er
an
i
m
ag
e
i
s
a
s
t
eg
o
-
i
m
a
ge
or
not
.
T
h
e
d
u
a
l
s
t
a
t
i
s
t
i
c
a
l
s
t
e
g
o
-
an
a
l
y
t
i
c
t
e
c
h
n
i
q
u
e
p
r
o
p
o
s
e
d
b
y
F
r
i
d
r
i
c
h
e
t
a
l
.
[1
5
]
ca
n
d
et
ect
w
he
t
he
r
t
he
f
i
na
l
s
t
e
g
o
-
i
m
a
g
e
i
s
s
us
pi
c
i
ou
s
or
n
ot
,
u
s
i
n
g
L
S
B
s
ub
s
t
i
t
ut
i
on.
T
he
r
e
f
o
r
e
,
w
e
h
a
ve
a
p
pl
i
e
d R
S
m
e
t
hod a
ga
i
ns
t
o
u
r
g
en
e
r
at
ed
f
i
n
al
s
t
eg
o
-
i
m
a
ge
t
o t
e
s
t
o
u
r
pr
op
os
e
d ne
w
m
e
t
hod
pe
r
f
or
m
a
nc
e f
o
r
s
ec
u
r
i
t
y
m
eas
u
r
em
en
t
;
d
at
a i
s
s
ho
w
n
i
n
T
a
bl
e
3.
T
h
e
‘
m
a
s
k
’
i
n
R
S
S
t
e
ga
na
l
y
s
i
s
[
1
5]
de
t
e
r
m
i
ne
s
ho
w
t
he
pi
x
e
l
s
a
r
e
gr
o
upe
d
a
nd
w
hi
c
h
pi
x
e
l
s
of
e
a
c
h
g
r
ou
p
a
r
e
L
S
B
-
f
l
i
p
pe
d
.
T
he
m
a
s
ks
[
0
1
1
0
]
a
nd
[
0,
1;
1,
0]
w
e
r
e
us
e
d
b
y
F
r
i
d
r
i
c
h
e
t
a
l
.
,
AC
M
w
o
r
ks
ho
p.
R
S
r
e
s
u
l
t
v
a
l
u
e
i
s
0
~
100
%
,
i
f
R
S
<=
0
,
t
he
n
i
t
m
e
a
ns
n
o
e
m
be
dde
d
m
e
s
s
a
ge
e
xi
s
t
s
i
n
t
he
i
m
a
ge
.
T
ab
l
e
3
.
M
a
s
k
m
a
t
r
i
x
1
F
i
n
a
l
S
t
e
g
o
-
I
m
ag
e
Ma
s
k
RS
r
e
s
u
l
t
C
o
m
m
e
n
t
L
en
a
[
1
0
1
0
1
]
0
.
0
102
32
Le
ss
S
u
s
p
i
c
i
o
u
s
B
a
boo
n
[
1
0
1
0
1
]
-
0.
021
465
N
o
Ms
g
P
ep
p
er
s
[1
0
1
0
1
]
-
0.
071
083
N
o
Ms
g
J
et
[
1
0
1
0
1
]
-
0.
019
284
N
o
Ms
g
T
i
ffa
n
y
[
1
0
1
0
1
]
-
0.
087
895
N
o
Ms
g
T
ab
l
e
4
.
M
a
s
k
m
a
t
r
i
x
2
F
i
n
a
l
S
t
e
g
o
-
I
m
a
g
e
Ma
s
k
(
U
s
e
d
b
y
F
r
i
d
r
i
c
h
e
t
a
l
.
)
RS
r
e
s
u
l
t
C
o
m
m
e
n
t
L
en
a
[
0
1
1
0
]
0
.
0
068
959
Le
ss
S
u
s
p
i
c
i
o
u
s
B
a
b
oon
[
0
1
1
0
]
-
0.
106
37
N
o
Ms
g
P
ep
p
er
s
[
0
1
1
0
]
0
.
0
066
805
Le
ss
S
u
s
p
i
c
i
o
u
s
J
et
[
0
1
1
0
]
-
0.
003
463
N
o
Ms
g
T
i
ffa
n
y
[
0
1
1
0
]
-
0.
123
53
N
o
Ms
g
F
r
om
ou
r
a
bo
ve
r
e
s
ul
t
s
(
T
a
bl
e
4
)
,
w
e
c
a
n s
e
e
t
ha
t
M
a
s
k m
a
t
r
i
x i
s
v
e
r
y
im
por
t
a
nt
f
o
r
t
he
R
S
S
t
e
g
a
n
a
l
y
s
i
s
m
e
t
hod.
I
n
f
ut
ur
e
w
e
c
a
n i
m
pr
o
ve
o
ur
a
l
g
o
r
i
t
hm
m
or
e
a
ga
i
ns
t
t
he
R
S
m
a
t
r
i
x va
l
ue
.
S
o t
ha
t
at
t
ack
er
ca
n
’
t
u
s
e a
n
y
s
m
al
l
e
r
m
at
r
i
x
t
o
s
u
s
p
ect
o
u
r
f
i
n
al
g
en
e
r
at
ed
s
t
eg
-
i
m
a
ge
.
W
e
ha
ve
t
o
i
m
pr
ove
s
uc
h
a
w
a
y
,
R
S
m
e
t
hod
ha
s
t
o
be
u
s
e
d t
he
bi
g
ge
r
m
ul
t
i
-
dim
e
ns
iona
l
m
a
t
r
i
x
t
o
d
e
t
e
c
t
,
w
h
i
c
h
w
o
n
’
t
b
e
f
e
a
s
i
b
l
e
i
n
r
eal
-
t
i
m
e
o
r
ev
en
f
ew
w
ee
k
s
s
i
t
u
at
i
o
n
.
T
h
i
s
w
ay
w
e
can
p
r
o
v
i
d
e
1
0
0
%
r
e
al
t
i
m
e
s
ecu
r
i
t
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-
47
52
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
c
i
,
V
o
l
.
10
,
N
o
.
2
,
Ma
y
2
018
:
56
9
–
57
7
5
76
In
fu
t
u
re
,
w
e
c
a
n
a
p
p
l
y
m
o
re
s
i
m
i
l
a
ri
t
y
m
e
a
s
u
re
s
p
a
ra
m
e
t
e
rs
l
i
k
e
R
M
S
E
,
S
S
IM
,
S
h
a
n
n
o
n
’s
E
n
t
r
o
p
y
,
N
AE
,
A
v
e
ra
g
e
d
i
f
fe
re
n
c
e
a
n
d
s
o
o
n
.
I
t
c
a
n
a
l
s
o
b
e
t
e
s
t
e
d
a
g
a
i
n
s
t
BP
N
N
,
S
V
M
a
n
d
K
-
N
N
cl
as
s
i
f
i
e
r
b
as
ed
S
t
e
ga
na
l
y
s
i
s
a
l
go
r
i
t
hm
[
18]
.
6.
C
O
N
CL
US
I
O
N
T
hi
s
w
o
r
k
de
s
i
gns
a
ne
w
n
o
v
e
l
e
f
f
i
c
i
e
nt
i
m
a
ge
s
t
e
g
a
n
o
gr
a
phy
P
V
D
ba
s
e
d m
e
t
hod t
o e
m
be
d s
e
c
r
e
t
i
nf
or
m
a
t
i
on i
nt
o i
m
a
ge
s
wi
t
hout
p
r
od
uc
i
n
g
a
ny
pe
r
c
e
pt
i
bl
e
im
a
ge
di
s
t
or
t
i
ons
.
I
n
pa
r
t
i
c
ul
a
r
,
w
e
p
r
o
p
o
s
e
d a
n
i
nt
ui
t
i
ve
i
de
a
o
f
s
e
c
r
e
t
da
t
a
e
nc
o
di
n
g t
o a
p
p
l
y
i
n im
a
ge
s
t
e
ga
n
o
gr
a
p
hy
.
I
t
he
l
ps
t
o r
e
duc
e
t
he
e
dge
di
s
t
or
t
i
o
n
b
ecau
s
e o
f
n
e
w
v
al
u
e co
n
s
t
r
u
ct
i
o
n
.
T
h
er
e i
s
n
o
n
ee
d
o
f
r
ef
er
e
n
ci
n
g
t
he
or
i
gi
na
l
i
m
a
ge
w
he
n e
xt
r
a
c
t
i
ng t
he
e
m
be
dde
d da
t
a
f
r
om
a
s
t
e
go
-
i
m
a
g
e
.
If w
e
c
h
o
o
s
e
a
pr
op
e
r
r
an
g
e t
ab
l
e
w
i
d
t
h
t
h
en
w
e can
al
s
o
i
m
p
r
o
v
e t
h
e
P
S
N
R
a
n
d
i
n
c
r
eas
e t
h
e d
at
a
e
m
b
ed
d
i
n
g
ca
p
aci
t
y
,
as
w
el
l
as
,
b
et
t
er
i
m
a
g
e q
u
al
i
t
y
.
T
h
e t
h
eo
r
et
i
cal
an
al
y
s
i
s
s
h
ow
s
th
e
pr
op
o
se
d
s
ch
em
e
i
s
w
el
l
d
ef
i
n
e
d
an
d
h
as
l
ar
g
er
cap
aci
t
y
an
d
h
i
g
h
er
P
S
N
R
t
h
a
n tho
s
e
of
W
u a
nd
T
s
a
i
(
o
r
i
g
i
n
a
l
P
D
)
,
Ko
-
Chi
n
C
ha
ng
(T
ri
-
w
a
y
P
V
D)
a
n
d
ot
he
r
P
VD
ba
s
e
d
m
e
t
ho
ds
.
A
C
K
N
O
W
L
E
D
G
E
ME
NT
S
T
h
e
a
u
t
h
o
r
w
i
s
h
e
s
t
o
t
h
a
n
k
I
n
t
e
r
n
a
t
i
o
n
a
l
I
s
l
a
m
i
c
U
n
i
v
e
r
s
i
t
y
M
a
l
a
y
s
i
a
(
I
I
U
M
)
f
or
s
u
pp
o
r
t
i
ng t
he
di
s
s
e
m
i
na
t
i
on of
t
hi
s
r
e
s
e
a
r
c
h.
T
hi
s
r
e
s
e
a
r
c
h w
a
s
s
u
p
po
r
t
e
d by
M
i
ni
s
t
r
y
of
E
duc
a
t
i
o
n M
a
l
a
y
s
i
a
t
hr
o
u
gh
R
es
ear
ch
I
n
i
t
i
at
i
v
e
G
r
an
t
S
ch
e
m
e
(
R
I
G
S
)
2
0
1
6
.
R
EF
ER
E
N
C
ES
[1]
L
ee Y
P
,
L
ee
J
-
C,
Che
nW
-
K
,
C
ha
ng K
-
C,
S
u I
-
J
,
Cha
ng C
-
P,
"
H
i
gh P
a
y
l
oa
d
I
m
ag
e
H
i
di
ng
W
i
t
h
Q
u
a
l
i
t
y
R
eco
v
er
y
U
s
i
ng
T
ri
-
W
ay
P
ix
e
l V
al
u
e
D
i
ff
e
re
nc
i
ng
,
"
In
f
or
m
at
i
on Sc
i
e
nc
e
s
,
vol
.
191,
pp.
21
4
-
225,
2012
.
[2]
Hsi
e
n
-
W
e
n T
s
e
ng a
nd
Hu
i
-
S
hi
h L
e
ng
,
"
A
S
t
e
ga
nogra
phi
c
M
e
t
hod Ba
s
e
d on
P
i
xe
l
-
V
a
l
u
e
D
i
f
fe
re
nc
i
ng a
nd
t
he
P
e
rfe
c
t
S
qua
re
N
um
be
r,
"
J
our
nal
of
A
ppl
i
e
d
Ma
t
he
m
at
i
c
s
,
2013
.
[3]
Wu
D
-
C
an
d
T
s
ai
W
-
H
.,
"
A
S
t
e
ga
nogra
phi
c
M
e
t
hod
F
or
I
m
ag
es
B
y
P
ix
e
l
V
al
u
e
D
i
ffe
re
nc
i
ng
,
"
P
at
t
e
r
n R
e
c
ogni
t
i
on
L
e
tte
r
s
,
vo
l
.
24,
pp.
1613
-
1626
,
2003
.
[4]
E
l
S
ay
e
d
M
.
El
A
l
f
y
a
n
d
A
zz
at
A
.
A
l
-
S
ad
i
,
"
I
m
prove
d P
i
xe
l
V
a
l
ue
D
i
ffe
r
e
nc
i
ng S
t
e
ga
nogr
a
p
h
y
U
s
i
ng L
ogi
s
t
i
c
Cha
ot
i
c
M
a
p
,
"
I
nnov
at
i
ons
i
n Inf
or
m
at
i
on T
e
c
hn
ol
ogy
,
2012.
[5]
H
.C
. W
u
, N
.I
.
W
u
, C
.S
. T
s
a
i
a
n
d
M
.S
. H
w
an
g
,
"
Im
a
ge
S
t
e
ga
no
gra
phi
c
S
ch
em
e
B
as
ed
O
n
P
i
xe
l
-
V
al
u
e
D
i
ff
e
re
n
c
i
ng
a
nd
L
SB
R
ep
l
ac
em
en
t
M
e
t
hods
,"
I
E
E
E
P
r
o
ce
ed
i
n
g
s
-
V
i
s
i
on,
Im
age
and Si
gnal
P
r
oc
e
s
s
i
ng
,
v
ol
.
15
2,
N
o.
5,
pp.
611
-
615,
2005
.
[6]
W
e
i
qi
L
uo,
F
a
ngj
un H
ua
ng,
J
i
w
u H
ua
ng,
"
A
M
ore
S
ecu
r
e
S
t
e
ga
nogra
ph
y
B
as
ed
O
n
A
da
pt
i
ve
P
i
xe
l
-
V
al
u
e
D
i
ffe
re
nc
i
ng
S
ch
e
m
e
,
"
Mul
t
i
m
e
di
a T
ool
s
and
A
ppl
i
c
at
i
ons
,
vo
l
.
52,
pp
.
407
-
430
,
2011
.
[7]
C
. M
. W
an
g
, N
. I
. W
u
, C
. S
. T
s
ai
an
d
M
. S
. H
w
an
g
,
"
A
H
i
gh
Q
u
a
lit
y
S
t
e
ga
no
gra
phi
c
M
e
t
hod
w
ith
P
i
xe
l
-
V
a
l
u
e
D
i
ffe
re
nc
i
ng
a
nd
M
odul
us
F
unc
t
i
on,
"
J
our
nal
of
S
y
s
t
e
m
s
and Sof
t
war
e
,
vol
.
81
,
pp
.
150
-
158
,
2008
.
[8]
C
.
Y.
W
en
g
, H
.
K
. T
s
o
an
d
S
.
J
. W
an
g
,
"
S
t
e
g
a
nogra
phi
c
D
at
a
H
i
di
ng i
n
I
m
ag
e
P
roc
e
s
s
i
ng us
i
ng
P
r
e
d
i
c
t
i
v
e
D
i
ffe
re
nc
i
ng,
"
Op
t
o
-
E
l
ect
r
o
n
i
cs
R
ev
i
ew
,
vol
.
20
,
pp.
126
-
133
,
20
12
.
[9]
J.
K.
Ma
n
d
a
l
a
n
d
De
b
a
sh
i
s Da
s,
"
Col
our Im
a
ge
S
t
e
ga
nogr
a
ph
y
Ba
s
e
d on P
i
x
e
l
V
a
l
u
e
D
i
ffe
r
e
nc
i
ng i
n S
pa
t
i
a
l
D
om
a
i
n,
"
Int
e
r
n
at
i
onal
J
our
nal
of
In
f
or
m
at
i
on
S
c
i
e
n
c
e
s
and
T
e
c
hni
que
s
,
v
o
l
. 2
,
2012.
[10]
Yu
a
n
-
Y
u
T
s
ai
, J
i
an
-
T
i
ng Che
n,
a
nd Chi
-
S
hi
a
ng Cha
n,
"
E
xpl
o
ri
n
g L
S
B S
ubs
t
i
t
ut
i
on a
nd P
i
xe
l
-
va
l
ue
D
i
ffe
r
e
nc
i
ng
for Bl
oc
k
-
b
a
s
e
d
A
da
pt
i
ve
D
a
t
a
H
i
di
ng,
"
In
t
e
r
nat
i
onal
J
our
nal
of
Ne
t
wor
k
S
e
c
ur
i
t
y
,
vo
l
.
16,
pp.
36
3
-
368,
2014
.
[11]
Che
ng
-
H
s
i
ng Y
a
ng,
Chi
-
Y
a
o W
e
ng,
S
hi
uh
-
J
e
ng
W
a
ng a
nd H
ung
-
M
i
n S
un,
"
A
da
pt
i
ve
D
a
t
a
H
i
di
n
g i
n E
dge
A
re
a
s
of
Im
a
ge
s
w
i
t
h S
pa
t
i
a
l
L
S
B D
om
a
i
n S
y
s
t
e
m
s
,
"
IE
E
E
T
r
ans
ac
t
i
ons
on Inf
or
m
at
i
on F
or
e
ns
i
c
s
and Se
c
ur
i
t
y
, V
o
l
. 3
, N
o
.
3,
pp
.
488
-
49
7
,
2008.
[12]
Ko
Chi
n Cha
ng
a
,
Ch
i
e
n
-
P
i
ng C
ha
nga
,
P
i
ng S
.
H
ua
ngb,
a
nd
T
e
-
M
i
ng T
u,
"
A
N
ove
l
Im
a
ge
S
t
e
g
a
nogra
phi
c
M
e
t
hod
U
s
i
ng T
ri
-
w
a
y
Pi
x
e
l
-
V
a
l
ue
D
i
ffe
re
nc
i
ng
,
"
J
our
na
l
of
Mul
t
i
m
e
di
a
,
vol
. 3
,
no
.
2
,
200
8.
[13]
P
.
M
oha
n K
um
a
r a
nd
K
. L
.
S
h
an
m
u
g
an
at
h
an
,
"
D
e
ve
l
opi
ng
a
S
e
c
ure
Im
a
ge
S
t
e
ga
nogra
ph
i
c
S
ys
t
e
m
u
si
n
g
T
P
V
D
A
da
pt
i
ve
L
S
B M
a
t
c
hi
ng R
e
vi
s
i
t
e
d A
l
gori
t
hm
for M
a
xi
m
i
z
i
ng t
he
E
m
be
ddi
ng
Ra
t
e
,
"
Inf
or
m
at
i
on Se
c
ur
i
t
y
J
our
nal
:
A
G
l
o
b
a
l
P
er
s
p
ect
i
ve,
vol
.
21
,
pp
.
65
-
7
0,
2011
.
[14]
M
oj
t
a
ba
Ba
hm
a
nz
a
de
g
a
n J
a
hro
m
i
a
nd
K
ar
i
m
F
aez
,
"
An
A
da
pt
i
ve
S
t
e
ga
nogra
ph
y
S
c
he
m
e
Ba
s
e
d
on V
i
s
ua
l
Q
ua
l
i
t
y
a
nd E
m
be
ddi
ng Ca
pa
c
i
t
y
Im
prove
m
e
nt
,
"
Int
e
r
nat
i
onal
J
our
nal
of
E
l
e
c
t
r
i
c
al
and
Com
put
e
r
E
ngi
ne
e
r
i
ng,
vol
.
4,
p
p.
573
-
584,
2014
.
[15]
J.
F
ri
dri
c
h,
M
.
G
ol
j
a
n a
nd R.
D
u,
"
D
et
ect
i
n
g
L
S
B
S
t
e
ga
nogra
ph
y
i
n
C
ol
or,
a
nd
G
r
ay
-
S
c
al
e
I
m
ag
es
,
"
I
EE
E
M
u
ltim
e
d
ia
, v
o
l
.
8,
pp.
22
-
28,
20
01.
[16]
Chi
n
-
Che
n Cha
n
g a
nd
Hsi
e
n
-
W
en
T
s
en
g
,
"
A
S
t
e
ga
nogra
phi
c
M
e
t
hod for
D
ig
ita
l
I
m
a
ge
s
us
i
ng
S
i
de
M
at
ch
,
"
P
a
t
t
er
n
R
eco
g
n
i
t
i
o
n
L
et
t
er
s
,
vol
.
25
,
pp
.
1431
-
1437,
200
4
.
[17]
E
s
ka
nda
ri
,
A
hm
a
d Re
z
a
,
"A
Ro
bus
t
S
t
e
ga
nogra
ph
y
m
e
t
hod U
s
i
ng A
dj
us
t
a
bl
e
P
a
ra
m
e
t
e
rs
,
"
Int
e
r
nat
i
onal
J
our
nal
of
E
l
e
c
t
r
i
c
a
l
and
C
om
put
e
r
E
ngi
n
e
e
r
i
ng,
vo
l
.
3,
pp.
207
-
214,
2013.
[18]
S
ouvi
k
Bha
t
t
a
c
h
a
r
y
y
a
a
nd
G
a
u
t
am
S
a
n
y
a
l
,
"
M
o
m
en
t
s
an
d
S
i
m
i
l
ar
i
t
y
M
e
as
u
r
e F
eat
u
r
e B
as
ed
I
m
ag
e S
t
eg
an
a
l
y
s
i
s
T
ec
hn
i
que
(M
S
M
)
,
"
Int
e
r
nat
i
on
al
J
our
nal
of
Inf
or
m
at
i
on and Ne
t
wor
k
Se
c
ur
i
t
y
,
v
ol
.
2
,
pp
.
138
-
15
3,
2013
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
one
s
i
a
n
J
E
l
e
c
E
n
g
&
C
o
m
p
S
ci
IS
S
N
:
250
2
-
47
52
A
n
I
m
pr
ov
e
d
I
m
a
ge
St
e
g
a
no
g
r
ap
hy
A
l
g
or
i
t
h
m
B
as
e
d
on
P
V
D
(
Sh
ar
if
Sh
ah
N
e
w
a
j
B
h
u
iy
an
)
5
77
B
I
O
G
R
A
P
H
I
E
S
O
F
A
U
T
H
O
R
S
Sha
r
i
f
Sha
h N
e
w
a
j
B
hui
y
a
n
o
bt
a
i
n
e
d hi
s
BS
c
de
gre
e
i
n
Com
put
e
r S
c
i
e
nc
e
a
nd E
ngi
ne
e
ri
n
g
from
A
hs
a
nul
l
a
h
U
ni
ve
rs
i
t
y
of S
c
i
e
n
c
e
a
nd
T
e
c
h
nol
og
y
(A
U
S
T
),
Ba
ngl
a
d
e
s
h i
n 2008.
Curre
n
t
l
y
he
i
s
c
om
pl
e
t
i
ng
hi
s
M
S
c
i
n Com
put
e
r a
nd Info
rm
a
t
i
on E
ngi
n
e
e
ri
ng from
IIU
M
,
M
a
l
a
y
s
i
a
.
H
e
ha
s
10
y
e
a
rs
of e
xpe
ri
e
nc
e
i
n S
oft
w
a
re
E
ngi
n
e
e
ri
ng
.
H
i
s
a
re
a
of i
nt
e
re
s
t
s
i
n
c
l
ude
s
t
o Im
a
ge
P
roc
e
s
s
i
ng,
A
rt
i
f
i
c
i
a
l
In
t
e
l
l
i
g
e
nc
e
,
D
i
s
t
ri
bu
t
e
d
Co
m
put
i
ng,
P
a
ra
l
l
e
l
Com
put
i
ng
a
nd
D
a
t
a
M
i
ni
ng
.
O
th
man
O
mr
an
K
h
al
i
fa
re
c
e
i
ve
d hi
s
Ba
c
he
l
o
r’s
de
gre
e
i
n E
l
e
c
t
ron
i
c
E
ngi
n
e
e
ri
ng from
t
he
G
a
r
y
ouni
s
U
ni
v
e
rs
i
t
y
,
L
i
b
y
a
i
n
1986.
H
e
ob
t
a
i
ne
d hi
s
M
a
s
t
e
r
de
gre
e
i
n E
l
e
c
t
r
oni
c
s
S
c
i
e
n
c
e
E
ngi
ne
e
ri
ng a
nd
P
hD
i
n D
i
gi
t
a
l
Im
a
ge
P
roc
e
s
s
i
ng from
N
e
w
c
a
s
t
l
e
U
ni
ve
rs
i
t
y
,
U
K
i
n 1996 a
nd
2000 re
s
pe
c
t
i
ve
l
y
.
H
e
w
ork
e
d i
n i
ndus
t
ri
a
l
for
e
i
ght
y
e
a
rs
a
nd
he
i
s
c
urre
nt
l
y
a
P
rof
e
sso
r
a
t
E
l
e
c
t
ri
c
a
l
a
nd
Com
put
e
r E
ngi
ne
e
ri
ng D
e
p
a
rt
m
e
nt
,
Int
e
rna
t
i
o
na
l
Is
l
a
m
i
c
U
ni
ve
rs
i
t
y
M
a
l
a
y
s
i
a
.
H
i
s
a
re
a
of
re
s
e
a
rc
h i
nt
e
re
s
t
i
s
C
om
m
uni
c
a
t
i
on S
y
s
t
e
m
s
,
Inform
a
t
i
on t
he
or
y
a
nd C
odi
ng,
D
i
gi
t
a
l
i
m
a
ge
/
vi
de
o pr
oc
e
s
s
i
ng,
c
odi
ng
a
nd Com
pre
s
s
i
on,
W
a
ve
l
e
t
s
,
F
r
a
c
t
a
l
a
nd P
a
t
t
e
r
n Re
c
ogni
t
i
on.
H
e
publ
i
s
he
d m
ore
t
ha
n
450 pa
pe
rs
i
n i
nt
e
rna
t
i
ona
l
j
ourn
a
l
s
a
n
d Confe
re
n
c
e
s
.
H
e
i
s
S
IE
E
E
m
e
m
be
r,
IE
E
E
c
om
put
e
r,
Im
a
ge
proc
e
s
s
i
ng
a
nd
Com
m
uni
c
a
t
i
on S
oc
i
e
t
y
m
e
m
be
r
.
N
o
r
un A
bd
ul
M
a
l
e
k
obt
a
i
ne
d
he
r P
hD
de
gr
e
e
from
S
c
hool
of
E
l
ect
r
o
n
i
c
,
E
l
e
ct
r
i
cal
an
d
S
y
s
t
e
m
s
E
ngi
ne
e
ri
ng,
L
oughbor
ough U
ni
ve
rs
i
t
y
,
U
K
i
n 2013.
S
he
ha
s
be
e
n a
ppoi
nt
e
d a
s
a
n
Assi
st
a
n
t
P
rofe
s
s
or i
n E
l
e
c
t
r
i
c
a
l
a
nd Com
put
e
r E
ngi
ne
e
r
i
ng D
e
pa
rt
m
e
nt
,
F
a
c
ul
t
y
of E
ngi
ne
e
r
i
ng
,
Int
e
rna
t
i
ona
l
Is
l
a
m
i
c
U
ni
ve
rs
i
t
y
M
a
l
a
y
s
i
a
(IIU
M
)
. H
er
r
es
e
ar
ch
i
n
t
er
es
t
i
n
cl
u
d
es
t
o
an
t
en
n
a an
d
propa
ga
t
i
on,
s
i
gna
l
proc
e
s
s
i
ng pa
rt
i
c
ul
a
rl
y
o
f a
nt
e
nn
a
a
r
ra
y
s
,
a
l
gori
t
hm
s
a
nd w
i
re
l
e
s
s
c
om
m
uni
c
a
t
i
on s
y
s
t
e
m
s
.
S
he
i
s
a
n a
c
t
i
ve
m
e
m
be
r of t
he
IE
E
E
,
a
r
e
gi
s
t
e
r
e
d m
e
m
be
r of t
he
Boa
rd
of E
ngi
n
e
e
rs
M
a
l
a
y
s
i
a
(BE
M
) a
n
d
I
ns
t
i
t
ut
e
of
E
n
gi
ne
e
rs
M
a
l
a
y
s
i
a
(IE
M
).
F
ar
ah
D
i
y
an
a
A
b
d
u
l
R
ah
man
obt
a
i
ne
d h
e
r P
hD
de
gre
e
from
D
e
pa
rt
m
e
nt
of
E
l
e
c
t
ri
c
a
l
a
nd
E
l
e
c
t
roni
c
E
ngi
ne
e
ri
ng
,
U
ni
ve
r
s
i
t
y
of Br
i
s
t
ol
,
U
K
i
n 2015.
S
he
ha
s
be
e
n
a
p
poi
nt
e
d
a
s
a
n
Assi
st
a
n
t
P
rofe
s
s
or i
n E
l
e
c
t
r
i
c
a
l
a
nd Com
put
e
r E
ngi
ne
e
r
i
ng D
e
pa
rt
m
e
nt
,
F
a
c
ul
t
y
of E
ngi
ne
e
r
i
ng
,
Int
e
rna
t
i
ona
l
Is
l
a
m
i
c
U
ni
ve
rs
i
t
y M
a
l
a
y
s
i
a
(IIU
M
).
H
e
r re
s
e
a
rc
h i
nt
e
re
s
t
i
n
c
l
u
de
s
i
m
a
ge
a
nd
vi
de
o proc
e
s
s
i
ng,
vi
de
o qua
l
i
t
y
e
v
a
l
u
a
t
i
o
n,
m
ul
t
i
m
e
di
a
t
ra
ns
m
i
s
s
i
on
a
nd w
i
re
l
e
s
s
c
om
m
uni
c
a
t
i
on s
y
s
t
e
m
s
.
S
he
i
s
a
n a
c
t
i
ve
m
e
m
be
r of t
he
IE
E
E
,
a
r
e
gi
s
t
e
r
e
d m
e
m
be
r of t
he
Boa
rd
of E
ngi
n
e
e
rs
M
a
l
a
y
s
i
a
(BE
M
)
a
n
d
I
ns
t
i
t
ut
e
of
E
n
gi
ne
e
rs
M
a
l
a
y
s
i
a
(IE
M
).
Evaluation Warning : The document was created with Spire.PDF for Python.