TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 10, Octobe
r 20
14, pp. 7311
~ 731
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.538
4
7311
Re
cei
v
ed
De
cem
ber 1
7
, 2013; Re
vi
sed
Jul
y
8, 2014;
Acce
pted Jul
y
29, 201
4
Underwater Acoustic Communication Based on
Hyperbolic Frequency Modulated M-ary Binary
Orthogonal Keying
Yuan Fei*, Lin Xiao-Yang,
Wei Qian, Cheng En*
Ke
y
Lab
orator
y of Under
w
a
t
e
r
Acoustic Com
m
unic
a
tion a
n
d
,
Marine Inform
a
t
ion T
e
chnol
og
y (
X
iam
en U
n
iv
er
sit
y
), Min
i
str
y
of Educatio
n, P.R.C
T
e
l: +
86-059
2-
258
01
43;
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: cheng
en@
xmu.edu.cn
A
b
st
r
a
ct
In this paper
w
e
propose
the HFM-MB
OK (H
yperbol
i
c
Frequency
Modu
lated-M-
a
r
y Binary
Orthogon
al
Ke
ying)
mod
u
lati
on tec
h
n
o
lo
gy
bas
ed
on
fre
que
ncy b
a
n
d
s
all
o
cati
on
w
h
i
c
h is
suita
b
l
e
for
und
erw
a
ter ac
oustic co
mmu
n
icati
on. T
h
is
soluti
on h
a
ve
character
i
stic of cons
tant en
velo
pe. Un
der
the
gui
danc
e of th
e theory, w
e
t
e
st the
pr
actic
abil
i
ty of the s
ystem thr
oug
h
MAT
L
AB simul
a
tion. T
h
is sys
te
m
uses MF
SK-M
B
OK cascad
e
d
tech
nol
ogy
and
red
u
ce
d
calcul
atio
n a
m
ount s
i
gn
ifica
n
t
ly. F
i
nally, th
e
und
erw
a
ter acoustic co
mmu
n
icati
on syste
m
w
e
pr
opos
e
d
has be
en te
sted by poo
l exper
iments. The
exper
imenta
l
r
e
sults sh
ow
that the
syste
m
i
s
abl
e to
achi
e
v
e a r
obust
an
d rel
i
ab
le c
o
mmu
n
ic
ation
un
de
r
the cond
itio
ns of low
signal-to
-
noi
s
e
ratio an
d strong
multi
p
ath.
Ke
y
w
ords
:
un
derw
a
ter acou
stic commu
n
ic
ation, HF
M spr
ead sp
ectru
m
, Dop
p
ler Effect
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Shallow
wat
e
r a
c
ou
stic
cha
nnel i
s
a
quite com
p
lex spa
c
e
-
time-fre
que
ncy
varying
cha
nnel, the
inherent ch
ara
c
teri
stics,
such a
s
extensive multi
path,
narro
w band
width,
low
freque
ncy an
d high ambie
n
t noise [1]. Acou
stic
si
gn
als propa
gat
e unde
rwater at a speed of
1500m/
s
, it i
s
mu
ch
slo
w
e
r
than
the
sp
e
ed of
ele
c
tro
m
agneti
c
wa
ve, minor flu
c
tuation
s
of t
h
e
sea
waves
and
relative
movement
of re
ceive
r-tra
nsmitter will
cau
s
e
mu
ch
larg
er Dopp
ler
freque
ncy shi
ft
than
comm
on wirel
e
ss communi
catio
n
.
Besid
e
s,
multiple refle
c
tion, refra
c
ti
on of
see surface,
seabed and step gradient structur
e of
acoustic velocity
in ocean will cause
extensive mu
ltipath in und
erwater a
c
o
u
s
tic
c
han
nel
and p
r
od
uce
stron
g
amplit
ude an
d pha
se
fluctuation
[2]. Therefore,
how to a
c
hi
e
v
e a
ro
b
u
st a
nd reliabl
e co
mmuni
cation
in
complex
a
n
d
cha
nge
able unde
rwater aco
u
sti
c
ch
annel
is a
key pro
b
l
e
m
in und
erwater
a
c
o
u
stic
comm
uni
cati
on are
a
whi
c
h is ne
ce
ssary to deal with.
People take
a variety of method
s to improv
e the q
uality of unde
rwate
r
comm
unication,
and spre
ad spectrum tech
nology is a
p
p
lied to unde
rwater a
c
o
u
sti
c
co
mmuni
ca
tion, beca
u
se
it
has st
rong
a
n
ti-interfe
ren
c
e ability, hig
h
co
nceal
me
nt, and
effective anti
-
multipa
t
h ch
aracte
ristic
and
can
achi
eve better
pe
rforma
nce u
n
der th
e condit
i
on of lo
w
sig
nal-to
-
noi
se
ratio. Und
e
rwater
spread
spect
r
um communications technologi
es
incl
ude FHSS and DSSS, the former has poor
perfo
rman
ce
unde
r the co
ndition of lon
g
distan
ce
a
nd low
sign
al
-to-n
o
ise rati
o, it needs e
x
tra
cha
nnel
codi
ng te
chn
o
log
y
to improve
its
perfo
rma
n
ce; th
e latte
r i
s
very
sen
s
itive to
Dop
p
ler
frequency shi
ft, i
t
needs strict synchronization
and complex phase
real
-time tracking technol
og
y
[3].
Face
d
with the sho
r
tage
of tradition
al
spr
ead
spe
c
trum, researchers a
d
vise
applying
Chirp sp
rea
d
spe
c
tru
m
(CS
S
) techn
o
logy
to
underwate
r comm
uni
cat
i
on [4].CSS is different fro
m
FHSS and
DSSS, it need not
add
pseudo-random
se
quence,
but uses fr
equency lin
earity
cha
r
a
c
teri
stic of Chirp sig
n
a
l itself. Compare
d
to
tradi
tional sp
rea
d
spe
c
tru
m
sig
nal, Chirp sig
nal
has high
proce
s
sing
gai
n and
inn
e
r anti-inte
rfer
ence char
ac
ter
i
s
t
ic
s
;
it
als
o
makes some
progress in
anti-Doppl
er
frequency shift.
These characteri
st
ics make
Chirp spread
spectrum
techn
o
logy a
pplicable i
n
the a
r
ea
of u
nderwate
r a
c
ousti
c comm
unication, an
d rel
a
ted
stu
d
ies
have al
so b
e
gun to
enter t
he ap
plicatio
n stag
e. HF
M
sign
al that
commonly u
s
e
d
in a
c
tive so
nar
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 731
1
– 7317
7312
has
also
beg
un to attra
c
t attention re
ce
nt years [5],
s
o
me st
u
d
ie
s
sho
w
t
hat
it is more appli
c
able
than Chi
r
p sign
al in so
lving Doppl
e
r
freque
ncy
shift appea
red in und
e
r
wate
r acou
stic
comm
uni
cati
on. HFM sig
n
a
l not only has better correl
ation pro
perti
es than Chirp
signal, but also
has
Dop
p
ler invarian
ce [6], it can improve
the pe
rforma
nce of underwate
r comm
uni
cati
on
s
y
s
t
em in greater extent.
Based
on
th
e ide
a
s
of de
signi
ng
CSS, this
pape
r
choo
se
s
HFM
sig
nal a
s
m
odulatin
g
sign
al an
d d
e
s
ign
s
a
ne
w
spread
spe
c
trum te
chnol
og
y which h
a
s
anti-noi
se,
an
ti-multipath a
nd
anti-Doppl
er frequ
en
cy shif
t chara
c
te
risti
cs. Compa
r
e
d
to Chirp si
gnal, HFM si
gnal ha
s better
Dop
p
ler tole
rance.
2. HFM Signal and Its Ch
arac
teris
t
ics
Analy
s
is
2.1. HFM Signal
Hyperboli
c
F
r
equ
en
cy Mo
dulated
(HF
M
)
sign
al i
s
a commo
n
sonar si
gnal
[7], it has
better Do
ppl
er tolera
nce than Chi
r
p si
gnal. Espe
ci
ally in recent
years, HFM
signal be
co
mes
central i
s
sue
in und
erwate
r a
c
ou
stic co
mmuni
ca
tion,
location a
n
d
anti-sub
m
ari
ne
sona
r
are
a
s
becau
se
of it
s
Dop
p
le
r inv
a
rian
ce.
Pra
c
tice h
a
s
p
r
ov
ed that
tran
smitting or receiving
HFM
si
gnal
on moving pl
atform, it has better dete
c
tion ca
pability than othe
r sig
nals [8].
HFM
sign
al i
s
a
non
-line
a
r
freq
uen
cy
modul
atio
n
signal that m
o
dulated
re
gul
arity for
hyperb
o
lic fu
nction,
su
ppo
sed
that
1
f
is sta
r
ting frequ
en
cy,
2
f
is en
ding
freque
ncy,
T
is t
he
rang
e
of time. If the
freque
ncy in
crea
se
s (
12
f
f
<
), we
call it up-HF
M, conversel
y
, named do
wn-HFM.
A HFM sig
nal
can be
writte
n as:
()
1
(1
/
)
[2
]
0
ln
k
t
f
s
tc
o
s
t
T
k
p
+
=£
£
(1)
W
h
er
e HFM-rate k
is
:
12
12
**
f
f
k
Tf
f
-
=
(2)
The insta
n
tan
eou
s frequ
en
cy is:
()
1
()
11
21
/
i
dt
ft
dt
k
t
f
j
p
==
+
(3)
Whe
r
e
()
t
j
is the pha
se, the in
stantan
eou
s frequ
en
cy also can b
e
defi
ned a
s
:
12
11
2
1
2
1
1
11
1
1
1
1
()
i
ff
t
kt
t
f
tf
T
f
f
f
f
f
T
f
æö
-
÷
ç
÷
=+
=
+
=
-
+
ç
÷
ç
÷
ç
èø
(4)
The insta
n
tan
eou
s frequ
en
cy cha
nge
s with time t in th
e form of hyperboli
c
in the
rang
e of
12
,
f
f
é
ù
ë
û
.
Error! Re
fere
nce
s
o
urce not
found.
sho
w
s the time-fre
quen
cy relati
onship of HF
M sign
al
and Chirp
si
gnal.
Error
!
Refere
nce source not
found.
sho
w
s the
time domai
n wavefo
rm
and
spe
c
tru
m
dia
g
ram of HFM sign
al, and th
e freque
ncy i
s
from 10 K
H
z to 20 KHz.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Und
e
rwate
r
Acou
stic
Com
m
unication B
a
se
d on Hy
p
e
rboli
c
Frequ
ency Mod
u
lat
ed… (Yu
an F
e
i)
7313
Figure 1. Time-fre
que
ncy
Relatio
n
ship of HFM
Signal and
Chirp Sign
al
Figure 2. Time Domai
n
an
d Freq
uen
cy
Domai
n
of HFM Signal
2.2. Pulse Compression
Char
acteristi
c
HFM sig
nal
h
a
s simila
r
p
u
l
s
e com
p
ressi
on cha
r
a
c
teri
stic as
Chi
r
p
sign
al,
as
sh
own
in
Figure 3.
Just as Chirp
si
gnal’
s
p
u
lse
comp
re
ss
ion
cha
r
a
c
teri
stic, the mai
n
l
o
be
width
of t
h
e
output of
HF
M sig
nal i
n
matche
d filter is
2/
B
, the main
lobe
height i
s
BT
. HFM
sig
nal
ca
n
repla
c
e
Chirp
signal to buil
d
comm
unica
tion system
, its pulse com
p
re
ssi
on characteri
stic i
s
the
basi
c
co
nditi
on.
Be
side
s, the
HFM sig
n
a
l
comp
are
d
to
the chi
r
p signal ha
s
the
anti-noi
se,
a
nd
the anti-multi
path ch
ara
c
te
ristic
s an
d be
tter Doppl
er t
o
lera
nce.
Figure 3. Output Wavefo
rm in Matche
d
Filter
2.3. Doppler
In
v
a
riance
We a
s
sum
e
that HFM
sign
al o
c
curs Doppl
er freque
ncy
shif
t durin
g tran
smissio
n
.
Similarly, sup
posi
ng that th
e rel
a
tive sp
e
ed of receiver is
v
, acou
stic
speed i
s
c
, so th
e Do
pple
r
factor can
be expre
s
sed
a
s
:
1/
vc
D=
+
(5)
The insta
n
tan
eou
s frequ
en
cy of HFM sig
nal is re
written as:
()
1
()
1
21
/
r
r
dt
ft
dt
k
t
f
j
p
D
==
D+
(6)
0
1
2
3
4
5
6
7
8
9
10
10
15
20
I
n
s
t
ant
aneous
f
r
equ
enc
y
of
H
F
M
Ti
m
e
/
m
s
F
r
e
quenc
y
/
K
H
z
0
1
2
3
4
5
6
7
8
9
10
10
15
20
I
n
s
t
ant
aneous
f
r
eq
uenc
y
of
C
h
i
r
p
Ti
m
e
/
m
s
F
r
equenc
y
/
K
H
z
0
1
2
3
4
5
6
7
8
9
10
-1
-0.
5
0
0.
5
1
T
i
me
d
o
ma
i
n
o
f
H
F
M s
i
g
n
a
l
Ti
m
e
/
m
s
A
m
plit
ude
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
0
20
40
60
80
f
r
eq
uenc
y
s
p
ec
t
r
um
of
H
F
M
s
i
gnal
F
r
eque
nc
y
/
K
H
z
Am
p
l
i
t
u
d
e
-1
0
-8
-6
-4
-2
0
2
4
6
8
10
-4
00
-3
00
-2
00
-1
00
0
10
0
20
0
30
0
40
0
50
0
m
a
t
c
hed
f
i
l
t
er
Ti
m
e
/
m
s
A
m
p
l
i
t
ude
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 731
1
– 7317
7314
Whe
r
e the ph
ase i
s
:
()
1
(1
/
)
2
r
ln
k
t
f
t
k
j
p
D+
=
(7)
We set time delay as
:
1
t
fk
D
D=
-
´´
D
(8)
From
(3) we can
g
e
t:
()
()
ri
f
tt
f
t
-D
=
(9)
The above st
ates that afte
r occurri
ng frequency shift, HFM
signal
exists a time
delay
t
D
whi
c
h ma
ke
s signal
s afte
r occu
rri
ng f
r
equ
en
cy shi
ft matched
with ori
g
inal
signal
s, this is
Dop
p
ler inva
riance of HFM
signal.
3. MFSK-M
BOK commun
i
cations sy
st
em archite
c
ture
The main ide
a
of MFSK-MBOK is combi
n
ing mod
u
lati
on and dem
o
dulation meth
od with
multiple BO
K demodul
ation. Re
ceive
r
use
d
MFS
K
to select
different freque
ncy ba
nds.
Comp
ared wi
th MFSK-MCrSK(Multiple
freque
ncy
shi
ft keying-mult
iple chi
r
p
-rat
e
shift keyin
g
),
MFSK-MBOK
use
d
FFT a
n
d
match
ed filter to dem
odu
lation. And th
e limitation of
MFSK-MCrSK
system i
s
tha
t
the struct
ure of
demod
ul
ation is q
u
ite compli
cate
d
and the
comp
utation incre
a
s
e
s
rapidly alo
ng
with increa
sin
g
the value of M.
The follo
wing
is the exam
p
l
e of 4FSK-
4
B
OK modulat
ion an
d dem
o
dulation
syst
em
,
the
block dia
g
ra
m of the sy
stem is shown as
Figure 4.
Figure 4. Block
Diag
ram o
f
4FSK-4BOK Commu
nication System
We
sup
p
o
s
ed
that the ban
d
w
idth of the
comm
uni
catio
n
system
ra
n
ge from
10 K
H
z to
20
KHz,
and
the
ban
dwi
d
th
will be
divided
into four
sub
-
band
s
of MF
SK (10
k
-12.5
k
Hz
;
12
.5
k-
15
k
Hz
;
15
k-1
7
.
5
k Hz
,
1
7
.5k-20k
Hz). An
d
each
sub
-
ba
nd will
be
m
odulate
d
in
HFM
-
4BOK.
And
the symbol ti
me is 10m
s,
and ea
ch
symbol carriers
4bits info
rmat
ion, so the tra
n
smi
ssi
on rate of
the syste
m
is 400b
ps. Fi
g
u
re 5
shows t
hat the relati
onship b
e
twe
en sym
bol m
appin
g
an
d time-
freque
ncy di
agra
m
of HF
M.
Error!
Re
ference s
o
urc
e
not
found.
sho
w
s an
ex
ample
of sy
mbo
l
mappin
g
.
Se
le
ct
or
Ch
an
n
e
l
da
ta
HF
M
4B
O
K
Ma
tc
he
d
fi
lt
er
s
gr
ou
p
1
S/
P
HF
M
4B
O
K
Ma
tc
he
d
fi
lt
er
s
gr
ou
p
2
HF
M
4B
O
K
Ma
tc
he
d
fi
lt
er
s
gr
ou
p
3
HF
M
4B
O
K
Ma
tc
he
d
fi
lt
er
s
gr
ou
p
4
S/
P
HF
M
1
HF
M
2
HF
M
3
HF
M
16
..
.
FF
T
Hi
gh
b
it
s
Jud
gm
en
t
Jud
gm
en
t
Jud
gm
en
t
Ju
dg
me
nt
Lo
w
bi
ts
Da
ta
bu
ff
er
Da
ta
Se
le
ct
or
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Und
e
rwate
r
Acou
stic
Com
m
unication B
a
se
d on Hyp
e
rboli
c
Frequ
ency Mod
u
lat
e
d… (Yu
an F
e
i)
7315
Figure 5. Symbol Map
p
in
g
Figure 6. An Example of Symbol Mappi
ng
As the
sche
m
e
we p
r
op
ose
d
ha
s i
n
com
m
on
with MF
SK, receive
r
can
jud
g
e
wh
ich
su
b-
band t
he
re
ceive data l
o
cated by u
s
in
g
FFT p
r
o
c
e
ssing
similar to
MFSK. Base
d on th
e lo
cat
i
on
of sub-ban
d, receiver
can
demod
ul
ate the high bits o
f
the symbol
. Next, we use matc
hed filters
grou
p to
p
r
o
c
essing
the
re
ceive
data
in
orde
r to
g
e
t the lo
w bits.
F
i
gure
7
s
h
o
ws the F
FT
dom
ain
of four su
b-b
and HF
M sig
nals.
High
bits of
symb
ol d
e
termin
e
whi
c
h mat
c
he
d fi
lters group
i
s
sele
cted.
And e
a
ch
matche
d filters gro
up is e
q
u
ivalent to the demod
ul
ati
on blo
ck of si
ngle carrier
HFM
-
4BOK that
contai
ns four parallel m
a
tch f
ilters.
We can
demo
dulate l
o
w
bi
ts informatio
n by ju
dging
the
positio
n of co
rrel
a
tion pe
ak.
Figure 7. Fre
quen
cy Dom
a
in of each HFM Signal
4. Experimental Verifica
tion
Multipath effect is the most
severe imp
a
c
t on the co
mmuni
cation
system in the
shallo
w
water a
c
ou
sti
c
chan
nel,
so the e
n
viron
m
ent of
n
on-ane
choi
c p
o
o
l
can
si
mulat
e
the m
u
ltipa
t
h
effect in the ocea
n ch
ann
el
.
The mod
e
l o
f
the pool is sho
w
n a
s
Error! Re
ferenc
e
sour
ce not
found.
. In the figure,
point S is the sen
der
Hydrop
hon
e, an
d point R is
t
he re
ceiv
e
r
.
We s
e
le
ct
t
h
e chir
p sig
n
a
l
t
o
prob
e
chan
n
e
l of the p
ool
, the re
sult is sho
w
n
as
Error!
Refere
nc
e source not found.
. From t
h
e
figure, we ca
n see that the
second p
a
th’
s
ene
rgy is
cl
ose to the ma
in path and th
e delay is qui
te
sho
r
t. So the experim
ent can verify anti-
multipath feature of
the HF
M system.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 731
1
– 7317
7316
Figure 8. Model of Non
-
an
ech
o
ic Pool
Figure 9. Impulse
Re
spo
n
se of Pool
Fi
gure 10. Co
ntrast b
e
twee
n Sending
Da
ta
and Receiving
Error!
Refer
e
n
ce source not found.
sho
w
s the wave o
f
sende
r sign
al and the re
ceiver
sign
al. From
the comp
ari
s
on with send
er data an
d
receive
r
data, we can find n
o
ise of the p
ool
has little effe
ct on the
syst
em. We
sele
cted the
64*6
4
Len
a 8-bit grayscal
e a
s
the so
urce, a
nd
the amou
nt o
f
bits is 32
76
8. Details
of the expe
rimen
t
are sho
w
n i
n
Error! Refe
rence source
not
fou
nd.
.
Table 1
Sy
st
e
m
B
T
C
o
mm
un
i
c
a
t
io
n
rate
BER
-10dB
-15dB
-20dB
4FSK-4B
OK
6.25
400bps
<
10
3.05
1
0
6.62
1
0
The 4FSK-4
B
OK system
can g
e
t error-free tr
a
n
smi
ssi
on when t
he sig
nal-to
-
noise ratio
is 10dB. Whe
n
the sign
al-t
o-noi
se
ratio i
s
-15
D
b, the
BER is less than
3
3.
0
5
10
-
´
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Und
e
rwate
r
Acou
stic
Com
m
unication B
a
se
d on Hyp
e
rboli
c
Frequ
ency Mod
u
lat
e
d… (Yu
an F
e
i)
7317
(a)-10 dB
(b) -15dB
(c
) -20
d
B
Figure 11. Re
ceiving Imag
e
5. Conclusio
n
In this pape
r we propo
se
the HFM B
O
K unde
rwater a
c
ou
stic
comm
uni
c
ati
on. The
scheme h
a
ve
characte
ri
stic of co
n
s
tant
envelop
e. The pool test
s re
sult
s sh
ow t
h
at the syste
m
is
able to
achie
v
e a robu
st a
nd reliabl
e
co
mmuni
ca
tion
unde
r the
co
ndition
s of lo
w
sign
al-to-n
o
ise
ratio and
stro
ng multipath.
In the future
, in ord
e
r to
increa
se th
e data
rate,
we pl
an to
com
b
ine th
e pha
se
modulatio
n a
nd the
ch
an
nel e
s
timatio
n
. And n
e
xt, we
will
do
experi
ment
s in the
oce
a
n
environ
ment
with moving p
l
atform in ord
e
r to ve
rify the robu
stne
ss of the sch
em
e we propo
se
d.
Ackn
o
w
l
e
dg
ements
This
wo
rk was
su
ppo
rte
d
by the F
undam
ental
Re
sea
r
ch Fu
nds for th
e
Cent
ral
Universitie
s
(2011
1210
50
) and the National Natu
ral
Scien
c
e Fou
ndation of China (6
1001
1
42,
6107
1150
).
Referen
ces
[1]
Chitre, Man
dar
, Shiraz Shah
abu
de
en, Milic
a St
ojan ov
ic. Und
e
r
w
ater ac
oustic commu
nicati
ons an
d
net
w
o
rk
ing: Re
cent adva
n
ces
and future ch
alle
ng
es
.
Marin
e
techno
logy s
o
ciety jour
na
l.
200
8;
42(1):
103-1
16.
[2]
Chitre, Man
dar
, Shiraz Shah
abu
de
en, Milic
a St
ojan
ovic. Und
e
r
w
ater ac
oustic commu
nicati
ons an
d
net
w
o
rk
ing: Re
cent adva
n
ces
and future ch
alle
ng
es.
Marin
e
techno
logy s
o
ciety jour
na
l
. 200
8;
42(1):
103-1
16.
[3]
Lou
bet, Gerard, V
i
ttorio Cap
e
lla
no, Rich
ar
d Filipiak.
Und
e
rw
ater sprea
d
spectrum co
mmu
n
icati
ons
.
OCEANS'97. MT
S
/IEEE Conference
Proc
ee
din
g
s. IEEE. 1
997; 1.
[4]
Palmese, M.,
et al. "
Sprea
d
spectru
m
mo
dul
ation for a
c
oustic co
mmunic
a
tion i
n
s
hall
o
w
w
a
ter
chan
nel
. OCE
A
NS 200
7-Eur
ope. IEEE. 200
7.
[5]
GREEN, Maurice D.
High R
a
n
ge Rate Si
gn
ali
n
g
. W
I
PO
Pate
nt No. 200
505
544
2. 17 Jun.
200
5.
[6]
Z
H
ANG
,
Xue-s
en, F
an-hui K
O
NG
, Hai-hon
g F
E
NG
. F
r
equenc
y
of
fset estimation an
d s
y
nc
hro
n
izati
o
n
of under
w
a
t
e
r
acoustic communicati
on
w
i
t
h
h
y
per
bol
i
c
frequenc
y
modu
latio
n
signa
l.
T
e
chnic
a
l
Acoustics
. 201
0; 2: 024.
[7]
Cole, Ber
nard
,
et al. Cohe
rent bottom reve
rb
eratio
n: Mode
lin
g an
d
comparis
ons
w
i
th at-s
e
a
measur
ements
.
" T
he
Journal of
the
Acoustic
a
l Soci
ety of
Amer
ica.
20
04; 1
16: 198
5.
[8]
Lin, Z
h
e
nbi
ao.
W
i
deba
nd
a
m
big
u
it
y
fu
ncti
on of bro
a
d
b
a
nd sig
n
a
l
s.
T
he Jour
nal
of the
Acoustica
l
Society of
A
m
erica
. 198
8; 83: 210
8.
[9]
Z
H
ANG
Xu
eS
en, KO
NG
F
anHui, F
E
NG
HaiH
on
g. Achi
eved
w
i
t
h
HF
M Signa
l F
r
eq
uenc
y O
ffset
Estimation of
Under
w
a
ter
Acoustic Com
m
unic
a
tion a
n
d
S
y
nc
hro
n
iza
t
ion.
Journ
a
l of
T
e
chnica
l
Acoustics.
201
0; 29(2): 21
0-2
13.
Evaluation Warning : The document was created with Spire.PDF for Python.