TELKOM
NIKA
, Vol. 11, No. 8, August 2013, pp. 43
5
1
~4
356
e-ISSN: 2087
-278X
4351
Re
cei
v
ed Fe
brua
ry 14, 20
13; Re
vised
Ma
y 11, 20
13
; Accepte
d
May 20, 20
13
Satellite Communication and Navigation Integrated
Signal
Junxia Cui*, Huli Shi
Natio
nal Astro
nomic
al Obser
v
atories, Ch
ine
s
e Academ
y of
Sciences
20A Datu
n Ro
ad, Cha
o
y
a
ng
District, Beijin
g
,
China, +
861
0
648
46
485
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: cuij
x@n
ao.ca
s.cn
A
b
st
r
a
ct
Under the rapid
dev
elopment of s
a
tellite co
mm
unic
ation syst
em
s
and
satellite navigatio
n
system
s, there is
an
urgent
need to c
o
m
b
ine the two together
in
or
der
to achieve loc
a
tion-bas
ed
s
e
rvic
es,
etc. Despite the long rel
a
tionshi
p history of navi
gation and communi
c
a
tion, the tw
o satellite system
s
ar
e
basic
ally i
nde
p
end
ent of each
other. As a result, termi
nal
si
ze tends to be r
e
lativ
e
ly lar
ge, and d
i
fficult to
b
e
mi
niat
uri
z
e
d
. T
h
is artic
l
e
puts
forw
ard a n
o
v
e
l i
dea
that sa
tellite
navi
gati
o
n
an
d sat
e
llit
e
co
mmun
icatio
n
functions are i
n
tegrate
d
tog
e
ther
i
n
the s
i
gn
al l
e
vel, a
nd
gi
ves four ty
p
e
s
of the int
egrate
d
nav
igati
on
a
n
d
communic
a
tio
n
sign
al structur
es w
h
ich ar
e c
o
mpos
ed of
messag
e
, spre
a
d
in
g cod
e
a
n
d
carrier. It lays
a
technic
a
l fou
n
datio
n for the in-d
epth d
e
vel
o
p
m
e
n
t of
the integrati
on of
navig
atio
n an
d commun
i
cati
o
n
system
s in signal level.
Ke
y
w
ords
: satellite c
o
mmun
i
c
aton, satell
ite
navi
gat
io
n, inte
gratio
n, sing
al
structure
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
The relatio
n
betwe
en navi
gation and
communi
ca
tio
n
has a lon
g
history. Fro
m
a brief
review of satellite navigation technology devel
opm
ent, it can be seen that navigation and
comm
uni
cati
on h
a
ve b
e
e
n
cl
osely co
nne
cted [1
-3]
.
In fact,
co
mmuni
cation
techn
o
logy i
s
th
e
corne
r
sto
ne
of navigation,
and n
a
vigation is
a
sp
eci
a
l appli
c
ation
of comm
uni
cation technol
ogy.
If communi
ca
tion function
can b
e
re
se
rved in navig
a
t
ion system,
you can m
a
ke the singl
e u
s
er
positio
ning i
n
formatio
n e
x
chan
ged
in
time bet
we
en u
s
e
r
s an
d u
s
er cent
ers.
In this
way,
navigation
a
nd p
o
sitioni
n
g
information
be
come
s
m
o
re active an
d
create
s
greater appli
c
a
t
ion
value. Furthe
rmore, navig
ation
ha
s be
en develop
e
d
from sin
g
le carrie
r nav
igation into u
s
er
grou
p n
a
vig
a
tion, re
alizi
ng mo
nitorin
g
an
d
control, com
m
an
d
i
ng, a
s
sessment, assi
stance,
operational o
p
timization a
nd effective manag
eme
n
t.
A majority of navigation use
r
s a
r
e on
the
mobile carrie
r, which dete
r
mine
s that terrestr
i
a
l mo
bile com
m
uni
cation (su
c
h
as GSM, CDMA,
3G, etc.) will
be the main
method
s ca
n be used.
Although the terrestrial m
obile
commu
nications
netwo
rk i
s
ve
ry popul
ar, its coverage
area is le
ss th
a
n
20% an
d it is still difficult
to comm
uni
cate
in remote a
r
eas, de
se
rt area
s an
d o
n
the oce
an.
Espe
cially whe
n
natural
disa
ster o
ccurs,
terrestrial
m
obile communication net
work
w
ill be destroyed.
At this time, only satellite
comm
uni
cati
on can
be u
s
ed. T
herefore, as
no "
g
a
p
" cove
rag
e
and e
m
ergen
cy u
s
e, satell
ite
comm
uni
cati
on still remai
n
s indi
spe
n
sable, or sate
llite communi
cation is a
complem
ent and
extensio
n of t
e
rrestri
a
l mo
b
ile co
mmuni
cation
syst
em.
As the
satelli
te tran
smi
ssi
on
chan
nel
with
high q
uality, high
reliabilit
y, long tran
smissi
on
di
sta
n
ce
and
larg
er
coverage,
it is still ve
ry
popul
ar.
Existing satel
lite navigation and co
mm
unication
inte
gration a
ppro
a
ch
es a
r
e m
a
inly in
the system le
vel, such a
s
t
he co
mbinati
on of
Global
Positionin
g
System (GPS) [4] and mobi
le
comm
uni
cati
on, or
GPS and Inm
a
rsat. GPS re
ceivers are u
s
ed to
obtai
n user'
s
l
o
cation
informatio
n, a
nd the
n
info
rmation of
location, ti
me,
status
etc. i
s
transmitted
via
mobile
net
work
or satellite communi
cation system
to be
exchanged.
However, i
n
the "hig
hly sophisti
c
ated
gl
obal
positio
ning
system (HI
-
G
PS) proje
c
t”
[5], the se
co
nd gen
eratio
n of GPS-assiste
d
sig
nal
has
been t
r
an
smit
ted thro
ugh t
he Iridiu
m satellite co
ns
tell
ation succe
ssfully, by upgrading
enh
an
ced
narro
w-b
and
softwa
r
e on
-board com
p
u
t
er of Irid
ium satellite co
mmuni
cation
systems, which
make
s it faster and mo
re
accurate to realize
GPS positioni
ng. In the HI-GPS prog
ram, it has
been impl
em
ented to tran
smit satellite
navigati
on signal by sate
llite communi
cation
syste
m
,
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4351 –
4356
4352
whi
c
h is a
combinatio
n in the syste
m
level. If
you wa
nt to truly achi
eve the integratio
n of
navigation a
n
d
comm
uni
ca
tion function
s, it should be
in a system,
even by the same lin
k. In this
pape
r, four
n
o
vel satellite
comm
uni
cati
on an
d nav
ig
ation integ
r
at
ed si
gnal
strucutres are
put
forward.
2. Satellite Communicati
on and Satel
lit
e Nav
i
gation Integration Principle
All of the sat
e
llite navigati
on sy
stem
s, such as GPS
,
GLONASS,
Galileo,
COMPASS
,
etc.,
adopt
p
s
eu
do-co
de sprea
d
ing sp
e
c
trum sin
gal
system [6
-8]. Sprea
d
ing
code
s is u
s
e
d
as
the rangin
g
code
s. In the
navigation
m
e
ssag
e, th
e
r
e
are time
scal
e, orbital p
a
rameters, a
s
well
as vari
ous ty
pes of e
rro
r correctio
n
s. In gene
ra
l satell
ite commu
nication syste
m
, the messag
e
is
the comm
uni
cation me
ssa
ge, and the comm
uni
cati
on messa
ge
are di
re
ctly
modulate
d
o
n
to a
carrie
r. Ho
we
ver, therer i
s
one ki
nd of satellite sprea
d
ing spe
c
tru
m
commu
nication tech
nol
ogy,
whi
c
h i
s
simil
a
r to
the
navi
gation
sp
rea
d
i
ng p
r
o
c
e
ss.
I
t
multiplyies t
he b
a
seba
nd
sig
nal
d(t) wi
th
a high-sp
eed
pseud
o co
d
e
signal
c(t) i
n
the time
domain to abtain a spreadin
g
code
stre
a
m
to
be se
nt to the satellite
cha
nnel. Sin
c
e the spre
a
d
ing code ra
te is much highe
r than
the
informatio
n rate, the pro
c
e
ss
of multiplyi
ng the b
a
se
ban
d sig
nal and
sp
readin
g
co
de
is
equivalent
to
make
convol
ution of th
e freque
ncy
sp
e
c
trum
in th
e f
r
equ
en
cy do
main. As a
re
sult,
sign
al
spe
c
trum is wi
den
e
d
. So that th
e
po
wer sp
e
c
tral de
nsity i
s
g
r
eatly
redu
ce
d. Ho
weve
r, the
IF (sho
rt for
“i
nterme
diate f
r
equ
en
cy”) si
gnal
ban
dwid
th after
de
sp
readin
g
i
s
very narro
w
so t
hat
interferen
ce and noi
se p
o
we
r
i
s
red
u
ce
d
a
nd
d
e
modul
ator i
nput
sign
al-t
o-noi
se
ratio
is
improve
d
. System interfe
r
ence su
ppre
ssi
on capa
bil
i
ty is raise
d
. At the same
time, there are
many advant
age
s of sp
readin
g
sp
ect
r
um commu
ni
catio
n
, su
ch as anti
-
int
e
rception, a
n
ti-
monitori
ng, g
ood resi
stan
ce to fading, a
n
ti-mul
tipath, and
multiple acce
ss comm
unication
abili
ty.
No
w we ca
n
make
a con
c
lu
sion that
pre
s
ent
satell
ite spreadi
ng
spe
c
tru
m
co
mmuniatio
n
and
satellite navi
gation spre
a
d
ing spe
c
tru
m
technol
og
y are interli
n
ke
d. So that we ca
n take
advantag
e of the sp
read
ing
pseud
o-code in the
satellite co
m
m
unication
system, su
ch
as
satellite
po
sitioning
sy
stem
appli
c
atio
ns,
not
only
a
s
a
spreadin
g
spe
c
tru
m
cod
e
,
but also
a
s
a
rangi
ng
co
de
. And if some
simpl
e
p
a
ra
meters
with i
n
formatio
n re
lated to the
p
o
sitioni
ng, su
ch
as the necessary tim
e
scale, sa
tellite
orbit, delay error in the tr
ansmission pathway
caculati
on
relevant p
a
rameters, we
can fini
sh
pse
udo
ran
g
e
mea
s
ureme
n
t and
solvi
ng mea
s
u
r
e
m
ent
equatio
ns to
achi
eve po
sitioning.
Navigatio
n an
d com
m
uni
ca
tion integrate
d
sin
gal
is
ca
pable of n
o
t only com
m
un
ication,
but
al
so pse
udo ran
ge
m
easure
m
ent, positio
ning a
nd timing
se
rvice, th
rou
g
h
a
sin
g
le li
nk.
Thereby, syst
em can b
e
si
mplified [9-1
0
]. This re
search can lay a tech
nical foun
dation for the
in
-
depth d
e
velo
pment of n
a
vigation a
nd
communi
catio
n
integration.
It will prom
ote the integ
r
at
ion
of navigation
and
comm
unication, create a n
e
w platform fo
r the time-a
n
d
location-ba
sed
servi
c
es, and explore new
ideas for satellite space ut
il
ization of
resources.
3. Satellite Communicati
on and Nav
i
ga
tion Integrated Signal
Structures
3.1. The First Signal Stru
cture
—
I and
Q Slips
The first integ
r
ated navig
ation and comm
unication
sig
n
a
l stru
cture is sho
w
n in Fig
u
re 1.
It is mad
e
u
p
of one
I slip
a
nd o
ne
Q sli
p
, whi
c
h
are
orthogon
al. The
sig
nal
stru
ct
ure
of ea
ch
sl
ip
is compo
s
e
d
of con
s
e
c
uti
v
e sup
e
r-fra
m
es
whe
r
e e
a
ch
su
per-fra
me co
nsi
s
ts
of several su
b-
frame
s
a
nd
each
sub
-
fra
m
e
contain
s
frame
si
gn
s, a sub
-
fram
e num
be
r, a
n
ide
n
tificati
on
numbe
r, the
main m
e
ssa
g
e
, ch
eck
bits
and th
e fram
e’s
end.
For the I
slip, the
data
rate i
s
l
o
w,
and it
s me
ssage p
r
ovid
es
mainly time
si
gnal, lo
cati
on
inform
ation a
nd
satellite o
r
bit informatio
n.
Short co
de b
enefits captu
r
e and
re
cap
t
ure. T
he Q
slip ad
opts l
ong code
s, whi
c
h have t
h
e
advantag
e o
f
longe
r
co
h
e
rent
integ
r
a
t
ion time
, hi
gher rangi
ng
preci
s
ion,
better
se
cu
ri
ty
perfo
rman
ce
and a
n
ti-inte
r
feren
c
e
ability. It can play
an imp
o
rtant
role i
n
tra
c
ki
ng an
d p
r
e
c
i
s
e
measurement
of time
del
a
y
. The
comm
unication
me
ssage
is mo
dulated
in
th
e Q
sli
p
. In t
h
is
sign
al structu
r
e, a co
mbin
ation of the I slip an
d Q sli
p
sign
als
use
s
t
he direct
seque
nce sp
re
ad
spe
c
tru
m
(DS
SS). The tran
smissio
n
sig
n
a
l can b
e
exp
r
esse
d as:
)
2
cos(
)
2
sin(
p
sp
p
p
c
sc
c
c
c
t
f
t
D
t
P
A
t
f
t
D
t
C
A
t
S
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Parallel
Com
puting Pro
perties of Tail Co
polym
er
Chai
n (He
-
Bei Ga
o)
4353
whe
r
e A
c
i
s
the am
plitude
of the comm
unication
spread
spe
c
trum
cod
e
; C
c
(
t
) i
s
the
sp
rea
d
i
ng
cod
e
f
o
r
co
mmuni
cat
i
on;
D
c
(
t
) is communi
catio
n
data;
f
sc
i
s
carrie
r fre
quen
cy for t
h
e
comm
uni
cati
on info
rmatio
n;
c
is
co
mmun
i
cat
i
on
c
a
r
r
ier
pha
se;
A
p
i
s
amplitude
spreadin
g
cod
e
for the n
a
viga
tion and
po
sit
i
oning; P
(t) i
s
spr
eadi
ng
code fo
r the
n
a
vigation a
n
d
positio
ning;
Dp
(t) i
s
the
na
vigation an
d
po
sitioning
messag
e;
fsp
is ca
rri
er freque
ncy of
navigation
and
positio
ning
in
formation;
p
is
carrie
r
pha
se
for
navigatio
n an
d p
o
sitio
n
ing. Be
cau
s
e the
sy
stem
can
p
r
ovide
contin
uou
s
a
nd
stable
ran
g
ing
and
nav
igation
sig
nal
s a
s
well a
s
comm
uni
cati
on
sign
als,
thi
s
sign
al can p
r
ovide co
ntin
uou
s
r
eal
-time navig
ation
and
po
sitio
n
ing li
ke
a
GPS
positio
ning system.
Figure 1. First Integrate
d
Navigatio
n an
d Comm
uni
cation Signal
Structu
r
e
3.2. The Sec
ond Signal Struc
t
ure Sin
g
le Slip
The second
sign
al structu
r
e is sh
own i
n
Figu
re 2.
The former
p
a
rt is th
e na
vigation
se
ction, an
d
the latter is the com
m
u
n
icatio
ns
seg
m
ent. The t
w
o
segm
ent
s are tra
n
sm
itted
alternately. T
he main fun
c
tion of the fo
rmer p
a
rt is to captu
r
e an
d transmit navigation-relat
ed
informatio
n, inclu
d
ing u
s
e
r
ID, messa
g
e
length, time information
,
and so on.
In this capture
se
ction, a sh
ort co
de i
s
used for rapid
a
c
qui
sition.
The latter, is
the track
section whi
c
h is m
a
i
n
ly
to achieve transmi
ssion
o
f
informatio
n
and
pre
c
i
s
ion
ran
g
ing. T
h
e
com
m
uni
cati
on me
ssag
e
is
also mo
dulat
ed on the latter part, too. The comm
u
n
icatio
n messag
e length
can b
e
fixed or
variable.
Long code i
s
used in
the
tracking section, whi
c
h w
ill hel
p improve the measurem
ent
accuracy a
n
d
make it difficult to deci
pher,
a
nd wi
ll provide b
e
tter anti-jam
m
ing capabili
ty.
Captu
r
ing
of t
he latter seg
m
ent is led
b
y
the fo
rm
er,
or a
s
siste
d
b
y
the precedi
ng p
a
ra
gra
p
h
to
re-
c
a
p
ture.
The me
ssag
e modulate
d
is a com
b
i
nation of an
alternating
comm
uni
cati
on and
navigation
sh
ort me
ssage.
This
co
mbin
ation me
ssag
e is m
odul
ate
d
onto the
ra
nging P
N
co
de,
and th
en m
o
dulated
to the
ca
rri
er. It
co
nsi
s
ts
of navi
gation
and
co
mmuni
cation
informatio
n, so it
has a d
ual f
unctio
n
of
communi
catio
n
an
d
po
siti
oning. T
he
p
s
eu
do-co
de
of the n
a
vigation
se
ction a
nd t
he commu
nication sectio
n can
be the
sa
me
or
differe
nt. In this sig
nal structu
r
e,
the
sign
al tran
sm
issi
on form
at is expre
s
sed
as:
t
f
t
D
t
AP
t
S
s
2
sin
,
(2)
whe
r
e A i
s
th
e sp
rea
d
ing
code am
plitud
e; P(t) is
the
spreadi
ng
co
de; D(t
)
is th
e navigation
and
comm
uni
cati
on messa
ge; fs is the ca
rri
er freq
uen
cy;
is the pha
se.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4351 –
4356
4354
Figure 2. The Secon
d
Integrate
d
Navi
gation an
d Communi
catio
n
Signal Stru
cture
3.3. The Third Signal Structur
e Plug-in
The thi
r
d
sig
nal
stru
cture i
s
p
r
od
uced
b
y
in
se
rting
th
e navig
ation
messag
e into
the pil
o
t
frame of
the
comm
uni
cati
on sign
al
to a
c
hieve
t
he i
n
tegratio
n of
n
a
vigation
and
co
mmuni
cati
on.
For
exampl
e, one
can
u
s
e
the
CMMB
b
r
oad
ca
st
sig
n
a
ls’ pilot sign
al
fram
e dire
ctly,
as sho
w
n
in
Figure 3, whi
c
h is on
e se
cond pe
r fram
e. Each fr
am
e is divided in
to 40 time slots, and each slot
delay is 25 m
s
, whi
c
h in
clu
des a b
e
a
c
on
sub-f
r
ame a
nd 53 OF
DM
sub
-
fram
es.
The bea
co
n sub-
frame st
ru
ctu
r
e is
sho
w
n in
Figure 4.
Figure 3. Fra
m
e Structu
r
e
Diag
ram
Figure 4. Sch
e
matic Di
ag
ram of the Beaco
n
Signal
Sub-fra
m
e
As the bea
co
n sign
al is th
e band
-limite
d
(12.5M
Hz)
part of the pseudo
-rando
m
spread
-
spe
c
tru
m
sig
nal, it can be used to achieve accu
rate
rangin
g
. The
beaco
n
sig
n
a
l is made u
p
of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Parallel
Com
puting Pro
perties of Tail Co
polym
er
Chai
n (He
-
Bei Ga
o)
4355
the tra
n
smitte
r id
entificatio
n (TxID)
and
two
synchr
on
ous si
gnal
s.
TxID con
s
ist
s
of a
cy
clic p
r
efix
T1 (10.4µ
s) and data vol
u
me T0 (25.
6µs). Th
e d
a
ta volume
can b
e
used
to send tim
e
information, satellite orbital
information a
nd othe
r rel
e
vant inform
ati
on so that it can constitute
a
navigation an
d time service messag
e. The data
lengt
h of the spre
ading code of
each be
acon
is
191, an
d it can send 1
-
bi
t information.
Each pi
l
o
t frame
co
ntain
s
40
slot
s, so the me
ssa
g
e
conte
n
t that
can
be t
r
an
smitted pe
r
seco
nd i
s
:
1bi
ts×4
0 =
4
0
b
p
s.
Inform
ation whi
c
h ca
n
be
transmitted may be slig
htly less tha
n
the GPS navigation d
a
ta messa
g
e
.
Howeve
r, some
informatio
n can be
redu
ce
d, so that 40
bps i
s
ad
equ
ate for the transmi
ssion
p
o
sitioni
ng tim
i
ng
messag
e of
one
satellite
(GPS inform
ation tran
smi
ssi
on rate is 50 bp
s, an
d the amo
u
n
t
of
sup
e
r-fram
e informatio
n transmitted in
GPS can be
1500 bit
s
in 3
0
se
con
d
s). The bea
co
n length
is 445.6µ
s, in
cludi
ng TxID
duratio
n of 3
6
.0µs, whi
c
h
has a 1
9
1
-
bit
PN sp
readi
n
g
cod
e
with t
h
e
spreadi
ng gai
n of 22.8dB.
As sh
own in Figure 5, the respe
c
tive
time slot
s befo
r
e the be
acon
sectio
n 136
μ
s CMMB
data seg
m
ent
(inclu
ding 36
μ
s TxID and synchro
n
ization sign
al 100
μ
s) is repla
c
e
d
to be the gold
cod
e
of a
cod
e
length
of 51
1, use
d
for
ca
pture, tra
c
kin
g
and
demo
dulation. 1
04.
8
μ
s i
s
re
se
rv
ed
synchro
n
ization
sign
al a
s
a g
u
a
r
d i
n
terval,
do
es
not affect
sy
nch
r
oni
zatio
n
and
chan
n
e
l
estimation.
Figure 5. The
Beacon Pa
rt Inserte
d
with
Sprea
d
ing
Co
de Sche
matic Diagram
3.4. The Fou
rth Signal Structur
e—c
o
de Div
i
sion
In the CDM
A
commu
nication sy
stem
, one of the
comm
uni
cat
i
on code
ch
annel
s is
sele
cted for n
a
vigation pu
rposes, an
d the other
code
cha
nnel
s are still use
d
for communi
catio
n
.
4. Conclusio
n
Integrated na
vigation
and comm
uni
cati
on
si
gnal
structure in
clud
es ma
ny types. Which
of these four kinds of
signal
structures
will be us
ed
depends on the
transm
i
ssion capability
of
the sy
stem. If system
po
we
r (or th
e
carri
e
r to
noi
se
rat
i
o) i
s
e
nou
gh
to bea
r b
o
th I
slip
and
Q
sli
p
transmissio
n, the first kind
of signal tra
n
smi
ssi
on format is re
com
m
ende
d. If th
e power (or t
h
e
carrie
r to noi
se ratio) i
s
limi
t
ed and
can
n
o
t bear t
he t
r
ansmi
ssion
o
f
two slip
sign
als, the seco
n
d
sign
al tran
sm
issi
on form
at is su
gge
sted,
transmitting
a singl
e slip.
Becau
s
e
the
i
n
tegrate
d
nav
igation
and
communi
catio
n
si
gnal
ne
ed
s to
complete
preci
s
e
distan
ce m
e
a
s
ureme
n
t, it
sho
u
ld ad
opt
a broa
dba
n
d
sp
rea
d
-spe
ctrum, o
r
a speci
a
l wid
e
b
and
spread
-spe
ctrum
system. I
n
this
way, we can
get
hig
h
spreadin
g
g
a
in, so th
at th
e si
gnal
can
be
burie
d un
de
r
the noi
se b
a
ckgroun
d du
rin
g
tran
sm
i
ssi
o
n
, and
so th
at the si
gnal tra
n
smi
ssi
on
ha
s
good
anti-inte
rfere
n
ce cap
ability. If the system
ha
s
multiplex ca
p
abilities,
we
can u
s
e the
fo
urth
sign
al structu
r
e, in which
a cod
e
chan
nel is
u
s
e
d
for navig
ation
and po
sitioni
ng, and the
o
t
her
cod
e
i
s
still u
s
ed
for comm
unication. In t
he
sate
llite broad
ca
sting si
gnal
s,
du
e
to
the
p
r
e
s
en
ce
of
a spread
-spe
ctrum pil
o
t frame, we can
use t
he sp
readin
g
cod
e
for rangin
g
. If other empty
frame
s
a
r
e
a
dded
with
o
r
bit and
time
para
m
eter
s, t
hese info
rmat
ion
can
serve
as a
navigati
on
messag
e. M
u
ltiplex tra
n
smissi
on
is re
dund
ant
in
d
i
stan
ce
ra
ngi
ng, which
ca
n imp
r
ove
th
e
rangi
ng a
c
curacy.
Ackn
o
w
l
e
dg
ements
This
wo
rk i
s
financi
a
lly suppo
rted by
Nati
on
al Natural S
c
ien
c
e
Foun
dation
of Chin
a
(610
011
09).
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 8, August 2013: 4351 –
4356
4356
Referen
ces
[1]
Shi HL, Jin
g
GF
. Navigatio
n a
nd commu
nicat
i
on re
latio
n
s.
Satellit
e an
d net
w
o
rk
. 2007; 11
: 40-42.
[2]
E Del Re, M
Rug
g
ier
i
.
Satel
lite co
mmu
n
ic
ations a
nd n
a
v
igati
on Syste
m
s
. Ne
w
Y
o
rk
: Springer
US,
200
7.
[3]
Ai GX
, Shi HL,
Wu HT, et al.
A positio
nin
g
s
ystem based
on
communi
c
a
tio
n
satell
ites an
d
the Chin
ese
Area Positi
oni
n
g
S
y
stem (CA
PS).
Chin Jour
nal Astron Astr
ophys
. 20
08; 8
(
6): 610-6
30.
[4]
Kapl
an E D, Hegart
y
CJ.
Und
e
rstand
ing GP
S: Principl
e an
d Appl
icatio
n
. Boston: Artech
House. 20
06.
[5]
Committee of
Exp
e
rts on the
field of aer
os
pace.
Sig
n
ific
a
n
t progress us
ing the "Iri
diu
m
" satellite t
o
improve GPS a
b
ilit
y. 86
3 Aero
space T
e
chno
l
o
g
y
Ne
w
s
. 2
0
0
9
; 31.
[6]
Lu
XC, W
u
HT
, Bian
YJ, et al.
Sign
al st
ructur
e of C
h
in
ese A
r
ea Pos
i
tio
nni
n
g
s
y
stem.
Sci
Chin
a S
e
r G-
Phys Mech Astron.
200
9. 52(3
)
: 412-42
2.
[7]
Cui JX
, Shi HL, Pei J, et al.
A Novel L
o
w
-rate Satell
ite
Co
mmun
icati
o
n System Bas
ed on SIGSO
Satell
ite
. Intern
ation
a
l
Confer
ence
on I
n
form
ation M
a
n
age
ment an
d E
ngi
neer
ing
(ICIME 200
9). Ku
a
l
a
Lump
u
r. 200
9: 519-
522.
[8]
Cui J
X
, Shi
HL
, Chen JB, et a
l
.
T
he transmis
s
ion l
i
nk of CA
PS navi
gatio
n
and c
o
mmun
i
c
a
tion s
y
stem.
Sci China Ser
G-Phys Mech Astron.
200
9; 52(3): 402-
41
1.
[9]
Ning
CL, Shi HL, Hu C. GPS/CAPS dual-mode soft
w
a
r
e
receiver. Sci China Ser G-Phy
s
Mech Astron.
200
9; 52(3): 36
0-36
7.
[10]
Lei
LH, S
h
i H
L
, Ma GY. CA
PS satel
lite s
p
read s
pectrum
commun
i
cati
o
n
bl
in
d mu
lti-u
s
er det
ectin
g
s
y
stem b
a
sed
on cha
o
tic seq
uenc
es.
Sci China Ser G-Phys
Mech Astron
. 200
9; 52(3): 33
9-34
5.
Evaluation Warning : The document was created with Spire.PDF for Python.