TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 76
3
1
~ 763
9
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.62
17
7631
Re
cei
v
ed Ma
y 4, 2014; Re
vised July
6,
2014; Accept
ed Augu
st 2, 2014
Phasor Measur
e
ment Unit Based on Robust Dynamic
State Estimation in Power Systems Using M-Estimators
Sideig A. Dow
i
*
1
, Gengy
in Li
2
Schoo
l of Elect
r
ical a
nd Electr
onics En
gin
eer
i
ng, North C
h
in
a Electric Po
w
e
r Univ
ersit
y
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: sidei
gdo
w
i
@
y
a
h
o
o
.com
1
, lig
y@
nce
pu.ed
u.
cn
2
A
b
st
r
a
ct
T
h
is pap
er introduc
es the u
s
es
of Robust
Dyna
mic Sta
t
e Estimatio
n
(RDSE) w
i
th
Phaso
r
Measur
e
m
ent
Unit (PMU), T
he M-Est
i
m
ato
r
s Quadratic
L
i
ne
ar (QL) an
d Squ
a
re R
o
o
t
(SR) Estimat
o
r
s
have b
e
e
n
used. F
o
r the solutio
n
of the M-estimators p
r
obl
em, Iterativ
e
ly Re-w
eig
h
te
d Least Squ
a
r
e
s
Estimati
on
(IR
L
S) meth
od is app
lie
d.
In this
w
o
rk, w
e
use
d
the
Dec
oup
l
ed C
u
rre
nt Me
asure
m
ent (D
CM)
meth
od
to
incl
ude
the
Ph
asor Me
asure
m
e
n
t Un
it
in
R
o
b
u
st Dyn
a
m
ic
State Esti
mati
on. T
h
e
pr
opo
s
e
d
meth
od h
a
s be
en tested o
n
stand
ard d
a
ta 30
-bus testing sy
stem as a cas
e
study.
Ke
y
w
ords
: rob
u
st state estimation, DSE,
PMU, energy
mana
ge
me
nt system
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The po
we
r system can b
e
operated in
econ
omic
a
nd se
cu
re wit
h
high reli
abil
i
ty, if its
state is kno
w
n at the p
r
e
s
ent time an
d
next time
, on
e step
ah
ead
for a
kn
own l
oadin
g
condit
i
on
and n
e
two
r
k topolo
g
y [1]. Static State Estimation (
SSE
) p
r
ovide
s
the
informatio
n o
f
system
stat
e
of present time instant [2, 3]. Because th
e nature
of th
e power sy
stem is
not stat
ic, so, Dyna
mic
State Estimation (DSE
) ca
n provide the
informati
on o
f
system stat
e of the curre
n
t and next time
instant
(one
step ahe
ad) [4
]. The DSE can predi
ct
the
system
state
based o
n
th
e previo
us
st
ate
of the sy
stem
, followed
by
a filtering
pro
c
e
ss to
provide the
estima
ted stat
e
of the sy
stem [4
-6].
In ele
c
tric po
wer sy
stem t
he p
r
edi
ction
of the
stat
e
variable
s
at the n
e
xt time
interval, is ve
ry
importa
nt for operation an
d
control in b
o
th norm
a
l and
abno
rmal
con
d
itions.
Most of th
e e
x
isting
DSE
method
s at
p
r
edi
cti
ng
and
filtering
step
fail to d
e
termine the
true b
ehavio
r of the po
we
r system
dyna
mics [4,
5], [7-9]. Mo
reov
er, the o
u
tlieris an
d Leve
r
age
points,
whi
c
h
are
create
d
from the
bad
d
a
ta poi
nt
s i
n
t
he me
asurem
ents, h
a
ve a
l
a
rge
influe
nce
on the state
estimate. Therefo
r
e, M-Estimato
r co
nce
p
t is introdu
ced to d
e
velop a ro
bust
dynamic
stat
e estimatio
n
method b
a
se
d on m
ode
lin
g the sy
stem
dynamic
s fo
r predi
cting a
nd
filtering step t
o
improve the
performan
ce
of the f
ilter in presen
ce of outliers [1, 2, 10, 11].
In state e
s
timation, the
state vari
abl
e (b
us
volta
ge an
gle) i
s
very impo
rtant for
estimating
th
e state
of the
system. T
h
is voltage
a
ngl
e wa
s
not av
ailable
by SCADA sy
stem
as a
measurement
before. At
recent time,
PMUs a
b
le
to provide
the direct
m
easure
m
ent
of
synchro
n
ized
voltage
pha
se
angl
e a
s
well
as volta
ge ma
gnitud
e
an
d
curre
n
t
pha
sor at t
he
buses wh
ere it
is
install
ed, with
ad
dition to
highe
r a
c
cura
cy than th
e SCADA [1
2
-
14]. The
r
efo
r
e,
many metho
d
s are pro
p
o
s
ed to in
stall the PMUs
i
n
state esti
mation. In [15], Hybrid st
ate
estimation i
s
prop
osed, in whi
c
h a linea
r mea
s
ur
eme
n
t model of traditional SE in terms of the
voltage and current that provi
ded by PMU mea
s
u
r
e
m
ents to form an augme
n
ted mea
s
u
r
ement
vector
re
sulting in a no
nli
near
state e
s
timator.
An al
ternative ap
p
r
oa
ch to in
clu
de syn
c
h
r
oni
zed
Phaso
r
m
e
a
s
urem
ent in traditional
stat
e estim
a
ti
on
is p
r
e
s
ente
d
in [16]. A mu
ltilevel sche
me
and two sta
g
e
s of
state e
s
timator
usi
n
g PMUs is
p
r
opo
se
d in [1
7, 18]. In [19], an extensi
v
e
review o
n
the
usag
e of PMUs i
s
pre
s
e
n
ted.
In this pa
pe
r, a Ro
bu
st Dy
namic State
Esti
mation
(RDSE) i
s
prop
ose
d
with
an
d witho
u
t
PMU, based
on M-Estim
a
tors. Qu
ad
ratic Linea
r (Q
L) an
d Squ
a
re Root (S
R) e
s
timators are
use
d
. Iteratively Re
-wei
gh
ted Lea
st Sq
uare
s
E
s
tima
tion(IRLS
) m
e
thod i
s
ap
pli
ed. A tech
niq
ue
usin
g DCM to add PMU i
n
state estim
a
tion is u
s
ed
. For predi
ct
ed and filtere
d
state we u
s
ed
Holt’s
dou
ble
expone
ntial smoothing te
chniqu
e and E
K
F. The prop
ose
d
metho
d
is ap
plied to t
he
s
t
andard data IEEE 30-bus as
a c
a
s
e
s
t
udy [20].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
31 – 763
9
7632
2. Mathema
t
ical Model
2.1. M-es
timators
The
Weig
hte
d
Le
ast Sq
ua
re
(WLS)
stat
e e
s
timation
model
ca
n b
e
found
in [2
1].The M
-
estimato
rs
are a maximu
m
likelih
ood
est
i
mator, mi
nim
i
ze a
n
obj
ecti
ve function
which
rep
r
e
s
e
n
t
s
the me
asure
m
ent resi
dua
ls
r
, subje
c
t to
the
co
nstrai
nts gi
ve
n by measurement
equ
ation
s
[2].
Min
1
m
i
i
r
(1)
Subjec
t to
zh
x
r
(2)
Whe
r
e,
r
is a
functio
n
rep
r
esents the
measurement
re
sid
ual
i
r
,
z
is the
vecto
r
of
th
e
measurement
s,
x
is the state variable
s
a
nd
hx
is the me
asu
r
em
ent function.
2.2. Iterativ
ely
Re-
w
e
i
gh
ted Leas
t Sq
uares Es
timation (IRLS)
This metho
d
can
supp
re
ss the
bad
dat
a in th
e
reg
u
l
ar m
e
a
s
u
r
e
m
ents,
and
a
l
so
ca
n
avoid the imp
a
ct of any existing of lever
age mea
s
u
r
e
m
ents
when t
hey carry bad
data [2].
The obje
c
tive
function is ex
pre
s
sed a
s
:
min
1
m
i
i
J
rr
(3)
Then,
0
JJ
r
xr
x
1
.0
m
i
i
i
r
p
rx
1
.0
m
i
ri
H
i
1
0
m
i
ri
ri
Hi
ri
1
0
m
i
ri
r
i
H
i
0
T
Hz
h
x
(4)
By using Tayl
or app
roximat
i
on for
kk
hx
h
x
H
x
yields:
Tk
T
k
HH
x
H
z
h
x
(5)
Whe
r
e,
12
,.
.
.
TT
T
T
i
im
h
HH
h
h
h
x
ii
ri
ri
is a diagon
al weig
ht matrix. The elem
ents of
ii
are d
e
termin
ed a
s
:
For Qu
ad
ratic linear e
s
tima
tor
2
2
2
()
i
i
ii
i
i
i
r
si
g
n
r
ot
he
r
w
i
s
e
r
(6)
For Squa
re
Root estimato
r
2
3
2
2
i
i
ii
i
ii
i
r
ot
he
r
w
i
s
e
rr
(7)
is the tuning
para
m
eter
wh
ose valu
es ra
nge
bet
wee
n
1 and 4, sp
ecified by the users.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Phaso
r
Mea
s
urem
ent Unit
Based o
n
Ro
bust Dy
n
a
m
i
c State Estim
a
tion in… (Sid
eig A. Dowi
)
7633
2.3 Deco
upl
ed Curr
ent
Measur
e
men
t
(DCM
) Method
In this metho
d
, the decou
pled formul
ation of Weight
ed Lea
st Square (WLS
) is use
d
[2,
14]. The
cu
rrent mea
s
u
r
e
m
ent which i
s
mea
s
u
r
ed
by
PMU i
s
de
co
upled
into a
c
t
i
ve and
re
acti
ve
measurement
and adde
d to the WLS state esti
mati
on decoupl
e
d
formula. Hence, the new
formulatio
n of the measu
r
e
m
ents
set is
written a
s
:
&
pq
ij
i
j
pq
ii
ZZ
R
A
V
ii
II
ij
r
i
j
i
(8)
""
A
Z
r
e
pr
es
e
n
t
active
me
a
s
ur
eme
n
t
s
.
""
R
Z
is th
e rea
c
tive m
easure
m
ent
s. The sub
s
cri
p
ts
""
r
and
""
i
are the real and ima
g
i
nary pa
rt of the pha
so
r me
asu
r
em
ents.
The line curre
n
t
ij
I
in line
""
ij
is ca
lculate
d
as in
[16].
c
o
s
c
o
s
si
n
s
i
n
si
n
0
Ig
V
V
b
V
V
b
v
ij
i
i
j
j
i
j
i
i
j
j
i
i
i
ij
r
(9)
cos
c
os
s
i
n
s
i
n
cos
0
Ib
V
V
g
V
V
b
V
i
j
ii
j
j
i
j
i
i
j
j
ii
i
ij
i
(10)
The se
ries
ad
mittance bet
wee
n
bu
s
""
i
an
d bu
s
""
j
is
ij
ij
ij
yg
j
b
, an
d the
shu
n
t a
d
mittance
at bus
""
i
is
00
ii
y
jb
.Th
e
nonlin
ear.
The Ja
co
bin
matrix of the pha
sor m
e
a
s
urem
ent is written as.
i
j
For a
c
tive me
asu
r
em
ents
A
H
=
12
10
i
ij
r
CC
(11)
i
V
j
V
For rea
c
tive measurement
s
R
H
=
34
10
i
ij
i
V
CC
(12)
Whe
r
e,
1
ij
r
i
C
,
2
ij
r
j
C
,
3
ij
i
i
C
V
,
(
ij)
i
4
j
∂Ι
C=
∂V
2.4. Robus
t D
y
namic State Estimatio
n
w
i
th PMU
The ba
sic m
o
del of DSE is given by:
1
x
Fx
G
w
kk
k
k
k
(13)
Whe
r
e
k
x
is the state vector
a
t
inst
ant
k,
1
x
k
is the state vector at instant
1
k
,
F
k
is
a function
rep
r
e
s
ent
s th
e state
tra
n
sit
i
on b
e
twe
en t
w
o i
n
sta
n
ts
o
f
time, and
is an
nn
diago
nal
matrix,
G
k
is a vecto
r
asso
ciated
with trend b
ehavio
r of t
he syste
m
of the state
trajecto
ry dimensi
onal
1
n
and
w
k
is white
Gau
ssi
an noi
se with
zero mean an
d co
varian
ce matrix Q.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
31 – 763
9
7634
The pa
ram
e
ters
F
k
and
G
k
are
cal
c
ulate
d
using Holt’
s
do
uble expo
nen
tial smoothi
n
g
method [7, 22
].
For p
r
e
d
icte
d state, L
e
t
ˆ
k
x
and
k
be th
e estim
a
ted
state at a ti
me
k
and it
s
c
o
varianc
e
matrix, at time
1
k
, the predi
cted state ve
ct
or
1
x
k
and its
covarian
ce
m
a
trix
1
k
M
can be o
b
tai
ned by:
ˆ
1
x
Fx
G
kk
k
k
(14)
1
T
kk
k
k
k
M
FF
Q
(15)
1
T
A
AA
A
A
kk
k
k
k
M
FF
Q
and
1
T
R
RR
R
R
kk
k
k
k
M
FF
Q
(16)
For filte
r
ing
state, now
we
obtain
e
d
the
ne
w m
e
a
s
u
r
ements
1
k
z
at th
e in
stant
of time
1
k
. Based on t
he data at a time
k
the foreca
sted state
vector
at the
instant of time
1
k
will then
be
filtered to o
b
tain the e
s
t
i
mated
state
1
k
x
at the insta
n
t
of time
1
k
wit
h
its
es
timated error
’
s covar
i
anc
e
1
k
. By us
ing
EKF
,
the
obje
c
tive fun
c
tion
minimizes th
e re
sid
ual
s
of the me
asurem
ents an
d erro
r in th
e state
vect
o
r
. He
nce, the
obje
c
tive fu
nction
for
act
i
ve
measurement
s and rea
c
tive measureme
n
ts
at the next time (k+1
) is given by:
1
A
T
T
JZ
h
Z
h
M
AA
A
A
A
A
(17)
1
T
T
RR
R
R
R
R
R
J
VZ
h
V
Z
h
V
V
V
M
V
V
(18)
Note that, the time index
1
k
has be
en omitted to simplify the notation.
11
11
1
kk
kk
A
A
A
k
KZ
h
(19)
11
11
1
kk
kk
R
R
R
k
VV
K
Z
h
V
(20)
11
1
1
kk
k
k
T
AA
A
A
A
KH
(21)
11
1
1
1
1
1
kk
k
k
k
T
AA
A
A
A
A
A
HH
M
(22)
Whe
r
e K is called the gai
n
matrix.
3. The Simulation An
aly
s
is
3.1. Descrip
tion of Simulation
In this paper, IEEE 30-bus
tes
t
s
y
s
t
em is
us
ed to evaluate the
performance of the
prop
osed me
thod. The lo
ad cu
rve at each bu
s
wa
s co
mpo
s
ed
of a linear trend an
d ra
n
dom
fluctuation
(jitter). Fo
r si
mu
lating the dyn
a
mic n
a
tu
re o
f
the system,
the simul
a
tio
n
is
carrie
d o
u
t
over a pe
rio
d
of 20 time sa
mple interval
s. Du
ring e
a
ch interval, the
load pe
r bu
s is increa
se
d
by
a con
s
tant
ch
ange of 5% for all bu
se
s
with a co
ns
ta
nt powe
r
fact
or, so that th
e rea
c
tive po
wer
followe
d the active power.
The true values of
mea
s
urem
ents we
re obtain
ed b
y
the load flo
w
.
The simul
a
te
d
mea
s
u
r
em
e
n
ts were
o
b
ta
ined by
addi
n
g
a normally distrib
u
ted error
fun
c
tion
wi
th
zero me
an a
nd sta
nda
rd
deviation. In this work
, Holt’s do
uble
para
m
eter li
n
ear exp
one
ntial
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Phaso
r
Mea
s
urem
ent Unit
Based o
n
Ro
bust Dy
n
a
m
i
c State Estim
a
tion in… (Sid
eig A. Dowi
)
7635
smoothi
ng m
e
thod for pre
d
icting
state
is u
s
ed.
F
o
r filtering stat
e we
used t
he EKF[23].The
tuning pa
ram
e
ter
of the M-Es
timators
is
c
h
os
en to be
2.5 for the
bo
th QL
an
d S
R
estimators.
The pa
ramet
e
rs of
α
and
β
for state predi
ction a
r
e cho
s
e
n
to be 0.7 and
0.435, whil
e the
element
s of Q is fixed at 10
-6
.
3.2. Perform
a
nce Indice
s
The ave
r
ag
e
perfo
rman
ce
indices fo
r vo
ltage ma
gnitu
des
and volt
age a
ngle
s
i
s
given
by:
_
1
1
10
0%
pr
e
t
r
u
e
tr
u
e
n
ii
vp
r
e
i
i
vv
nv
(23)
_
1
1
100%
pr
e
t
r
u
e
tr
u
e
n
ii
pr
e
i
i
n
(24)
_
vp
r
e
and
_
pr
e
represe
n
t the a
b
solut
e
predi
cted
e
rro
r
as a
percentage
ratio,
of the voltage
magnitud
e
s a
nd voltag
e a
ngle
s
,
tr
u
e
v
and
tr
u
e
a
r
e th
e true v
a
lue
of voltag
e ma
gnitude
and
angle
a
nd
pr
e
v
and
pr
e
are tran
sp
ose
d
of the predicte
d
voltage magnitu
de
and voltage
angle.
3. Results a
nd Analy
s
is
In this p
ape
r, the pro
p
o
s
ed meth
od i
s
ap
plied to
30-bu
st un
der
normal
operating
con
d
ition
s
, a
nd teste
d
wit
h
and
without
PMU, wh
ere
a sin
g
le PMU has
been
ad
ded to eve
r
y bus
at each expe
riment. It also comp
are
d
with t
he tradi
tional WLS state estimatio
n
method. The
weig
ht of the
PMU me
asu
r
ements is fix
ed at 10
0 tim
e
s the
no
rmal
SCADA me
a
s
ureme
n
t for
all
buses.
Table 1. The
Average
Re
sults of the
Variou
s Estimat
o
rs
without P
M
U
Estimation
method
Predicted Erro
r%
Filtered Erro
r %
Voltage
Angle Voltage Angle
QL
0.1854
1.0313
0.1739
0.9403
SR
0.1869
1.0165
0.1753
0.9268
WLS
0.3960
2.2864
0.3712
2.0806
2
4
6
8
10
12
14
16
18
20
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
WL
S
QL
SR
Fi
lt
ered volt
age
magintude err
o
r
(
%
)
T
i
m
e
sam
p
l
e
Figure 1. Performa
nce Inde
x of the IEEE
30-b
u
s
T
e
st
System for Estimated Volt
age Mag
n
itud
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
31 – 763
9
7636
2
4
6
8
1
0
1
21
41
6
1
8
2
0
0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0
3.
5
4.
0
4.
5
5.
0
F
i
l
t
er
ed
vo
lt
ag
e a
ngl
e
e
r
ro
e (
%
)
T
i
m
e
sam
p
l
e
WL
S
QL
S
R
Figure 2. Performa
nce Inde
x of the IEEE
30-b
u
s T
e
st
System for Estimated Volt
age Angle
Table 1
sh
ows a
comp
arat
ive st
udy of the average
result
s of
the
estimato
rs
at norm
a
l
operation
wit
hout PMU.
Where
a
s it sh
o
w
s th
at, the
u
s
e
of rob
u
st M-e
s
timators is
bette
r
than
the
use of WLS e
s
timator, be
cause these M
-
estim
a
tors are desig
ned fo
r automati
c
all
y
detecting the
bad mea
s
u
r
e
m
ents an
d su
ppre
s
sing the
i
r influen
ce
s on the state e
s
timate.
Figure 1 a
nd
Figure 2
rep
r
ese
n
t the pe
rf
orma
nc
e characteri
stics fo
r
the average
error of
voltage mag
n
itude a
nd v
o
ltage a
ngle
at the filter
ed state
ove
r
a p
e
rio
d
of
20 time
sa
mple
intervals.
Table 2. The
Percentag
e o
f
the Average
Erro
r in Volta
ge Magnitu
de
and Angle u
s
ing QL
Es
timator
Location
Of P
M
U
Predicted Erro
r%
Filtered Erro
r %
Location
Of P
M
U
Predicted Erro
r%
Filtered Erro
r %
Voltage
Angle
Voltage Angle
Voltage Angle
Voltage
Angle
NO
PMU
0.1854
1.0313
0.1739
0.9403
16
0.0833
0.4810
0.0614
0.2771
2
0.0721
0.4717
0.0464
0.2415
17
0.0911
0.4479
0.0687
0.2260
3
0.0737
0.4821
0.0513
0.2719
18
0.0923
0.4711
0.0704
0.2611
4
0.0701
0.4751
0.0495
0.2625
19
0.0968
0.4634
0.0759
0.2487
5
0.0700
0.6030
0.0431
0.4544
20
0.0902
0.446
0.0685
0.2302
6
0.0737
0.4433
0.0500
0.2130
21
0.0856
0.4542
0.0634
0.2336
7
0.0731
0.4990
0.0501
0.3024
22
0.0882
0.4537
0.0666
0.2364
8
0.0775
0.4967
0.0540
0.3028
23
0.0944
0.5168
0.0770
0.3408
9
0.0778
0.45374
0.0535
0.2357
24
0.0824
0.4757
0.0606
0.2585
10
0.0785
0.4602
0.0521
0.2399
25
0.0795
0.5120
0.0602
0.3187
11
0.0998
0.4579
0.0808
0.2457
26
0.0775
0.5756
0.0569
0.4277
12
0.0682
0.49579
0.0412
0.3058
27
0.0749
0.4904
0.0487
0.2800
13
0.0740
0.5247
0.0547
0.3573
28
0.0722
0.5122
0.0491
0.3163
14
0.0794
0.5184
0.0598
0.3427
29
0.0729
0.5610
0.0500
0.3972
15
0.0854
0.4897
0.0630
0.2900
30
0.0749
0.5986
0.0526
0.4526
Table 3. The
Percentag
e o
f
the Average
Erro
r in Volta
ge Magnitu
de
and Angle u
s
ing SR
Es
timator
Location
Of P
M
U
Predicted Erro
r%
Filtered Erro
r %
Location
Of P
M
U
Predicted Erro
r%
Filtered Erro
r %
Voltage
Angle
Voltage Angle
Voltage Angle
Voltage Angle
NO
PMU
0.1869
1.0165
0.1753
0.9268
16
0.0799
0.4789
0.0579
0.2726
2
0.0715
0.4846
0.0453
0.2644
17
0.0908
0.4435
0.0684
0.2311
3
0.0718
0.4841
0.0489
0.2733
18
0.0925
0.4676
0.0707
0.2583
4
0.0705
0.4730
0.0497
0.2576
19
0.0971
0.4598
0.0762
0.2475
5
0.0692
0.5887
0.0422
0.4319
20
0.0909
0.4466
0.0690
0.2362
6
0.0734
0.4487
0.0499
0.2150
21
0.0867
0.4515
0.0641
0.2377
7
0.0726
0.5127
0.0496
0.3241
22
0.0896
0.4482
0.0678
0.2388
8
0.0745
0.4975
0.0496
0.3048
23
0.0949
0.4647
0.0734
0.2530
9
0.0765
0.4548
0.0514
0.2411
24
0.0841
0.4608
0.0622
0.2467
10
0.0783
0.4578
0.0515
0.2410
25
0.0810
0.4717
0.0596
0.2574
11
0.0989
0.4510
0.0793
0.2405
26
0.0785
0.5496
0.0568
0.3933
12
0.0678
0.5039
0.0411
0.3163
27
0.0727
0.4808
0.0448
0.2669
13
0.0733
0.5208
0.0540
0.3497
28
0.0696
0.5100
0.0454
0.3146
14
0.0772
0.5149
0.0566
0.3374
29
0.0714
0.5424
0.0480
0.3717
15
0.0798
0.4893
0.0568
0.2862
30
0.0735
0.5791
0.0506
0.4268
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Phaso
r
Mea
s
urem
ent Unit
Based o
n
Ro
bust Dy
n
a
m
i
c State Estim
a
tion in… (Sid
eig A. Dowi
)
7637
Table 2
and Table 3 s
h
ow
the
performanc
e
of
propos
ed method f
o
r IEEE 30-bus
with
and with
out PMU. It is obvious from th
ese resu
lts the influen
ce
s of the PMU in RDSE, wh
ere
about
(50%
- 75%
) imp
r
ovement of
estimated
vo
ltage ma
gnit
ude. O
n
the
other ha
nd,
the
improvem
ent
in the
voltag
e an
gle i
s
ab
out (4
2% - 7
7
%) for both
QL
and
SR
method. T
h
e
s
e
results al
so p
r
ove the accu
racy of DC
M tech
niqu
e for inclu
d
ing PM
U in DSE.
5
1
01
52
0
2
5
3
0
0.
00
0.
02
0.
04
0.
06
0.
08
0.
10
0.
12
0.
14
0.
16
0.
18
0.
20
p
r
e
d
ic
t
e
d
f
ilt
e
r
e
d
average
vo
lt
a
ge magnitude error %
P
M
U
L
o
cat
i
o
n
No
PM
U
Figure 3. The
Perce
n
tage
of the Averag
e Erro
r in Voltage Mag
n
itud
e usin
g QL Estimator
2
4
6
8
10
12
14
16
18
20
22
24
26
28
3
0
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
pr
edi
c
t
ed
f
i
l
t
er
ed
av
erage vol
t
age angl
e erroe%
P
M
U
Loc
a
t
i
o
n
NO
PM
U
Figure 4. The
Perce
n
tage
of the Averag
e E
rro
r in Voltage Angle u
s
i
ng QL Estima
tor
2
4
6
8
1
0
12
14
16
1
8
20
22
2
4
2
6
28
30
0.
00
0.
02
0.
04
0.
06
0.
08
0.
10
0.
12
0.
14
0.
16
0.
18
0.
20
p
r
e
d
ic
t
e
d
f
ilt
e
r
e
d
av
er
a
g
e
v
o
lt
ag
e m
a
g
n
i
t
ud
e e
r
r
o
r
%
P
M
U
Lo
c
a
t
i
on
NO
PM
U
Figure 5. The
Perce
n
tage
of the Averag
e Erro
r in Voltage Mag
n
itud
e usin
g SR Estimator
2
4
6
8
10
1
2
1
4
16
18
20
2
2
2
4
26
28
30
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
pr
ed
i
c
t
e
d
f
i
l
t
er
ed
averag
e v
o
lt
ag
e ang
le
e
r
roe
%
P
M
U
L
o
cat
i
o
n
NO
PM
U
Figure 6. The
Perce
n
tage
of the Averag
e E
rro
r in Voltage Angle u
s
i
ng SR Estima
tor
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 76
31 – 763
9
7638
Figures 3, 4,
5 and 6 di
splay the vari
ations
of the
percenta
ge o
f
the estimated erro
rs
whe
n
the PM
U is in
clu
ded
individually
at each
bu
s. It can be
see
n
that, the importan
c
e
of the
PMU to imp
r
ove the
accura
cy of the
estimato
r.
Additionally, further i
m
pro
v
ements
at the
predi
cted a
n
d
filtered state
that
obtained
by the PMU are sh
own.
4. Conclusio
n
Reg
a
rd
s to th
e above
re
sul
t
s, we
co
ncl
u
de that
the
u
s
es of th
e rob
u
st M
-
Estimat
o
rs are
the pe
rfect
solution fo
r
Wi
de Area M
e
a
s
ureme
n
t
System, with
hi
gh robu
stne
ss a
nd effici
e
n
cy
relativ
e
to a WLS state e
s
timator. Furth
e
rmo
r
e,
the u
s
e
s
of the rob
u
st M-Estim
a
tors im
prove t
h
e
predi
cting
an
d filtering
states. Also
the result
s sho
w
the adva
n
tag
e
s of the
De
cou
p
led
Cu
rrent
Measurement
method
for
inclu
d
ing PM
U in
Dy
n
a
mi
c State E
s
timation, which imp
r
ove
s
t
he
quality of the estimato
r the
n
upgrade
s th
e system reli
ability.
Referen
ces
[1]
G Durgapr
asa
d
, S
T
hakur. Robust d
y
n
a
mic
state es
timatio
n
of po
w
e
r s
y
st
ems base
d
on
M-estimatio
n
and re
al
istic mode
lin
g of s
y
stem d
y
nam
ics.
Power System
s, IEEE Transactions
on,
1
998;
1
3
: 133
1-
133
6.
[2]
A Abur, AG Exposito.
Pow
e
r system state e
s
timati
on:
theo
ry and i
m
p
l
e
m
entatio
n
: CRC
Press. 2004.
[3]
F
.
Chen,
X. Ha
n, Z
.
Pan,
L. H
an. State estim
a
tion m
o
d
e
l a
n
d
al
gorithm
inc
l
udi
ng
pmu.
El
ectric Utili
t
y
Dere
gul
atio
n a
nd R
e
structuri
n
g an
d P
o
w
e
r T
e
ch
n
o
lo
gi
es, T
h
ird Inter
nati
o
n
a
l C
onfer
ence
on
N
a
n
j
ui
ng.
200
8: 109
7-11
02.
[4]
N Shiv
akumar,
A Jain. A r
e
v
i
e
w
of po
w
e
r
s
y
stem
d
y
nam
ic state estim
a
tion tech
ni
que
s. in
Power
System
Technology and IEEE Power Indi
a Confer
ence, P
O
WERCON on New Delhi.
20
08; 1-6.
[5]
AS Debs, RE L
a
rson, A d
y
n
a
m
ic estimator f
o
r tracking th
e
state of a po
wer s
y
stem.
Po
w
e
r Apparatu
s
and Syste
m
s. IEEE Transacti
ons on.
1
970; 89(7):
16
70-
16
78.
[6]
A Jain, N Shivakumar. Impact of PMU in dy
namic stat
e estimati
on o
f
po
w
e
r s
y
ste
m
s. in
Power
Sym
p
osium
,
NAPS'08. 40th North American
. Calg
ar
y
.
200
8: 1-8.
[7]
AL da Silv
a, M Do Coutto F
ilho, J De Queir
o
z. State forecasti
ng in
electric p
o
w
e
r
s
y
stems.
IEE
Procee
din
g
s C
(Generatio
n,
T
r
ans
missi
on a
n
d
Distrib
ution)
.
198
3; 130(
5): 237-2
44.
[8]
SJ Hu
ang,
K
R
Sh
ih. D
y
n
a
m
ic-state-estim
ation
sch
eme inclu
d
i
ng no
nli
near
meas
ure
m
ent-functio
n
consi
derati
ons.
Generatio
n, T
r
ans
missi
on a
n
d
Dis
trib
ution, IEE Proceed
in
g
s
.
2002; 14
9(6)
: 673-67
8.
[9]
KP Schn
ei
der,
Z
Hu
an
g, B
Yang, M
H
a
u
e
r, Y N
i
e
p
loc
h
a. D
y
n
a
mic st
ate estim
a
tio
n
util
izin
g
hig
h
performa
nce c
o
mputi
ng m
e
th
ods.
Power Sy
stem
s
Confer
ence a
nd
Expos
ition, PSCE'
09.
IEEE/PES
.
Seattle. 20
09: 1-6.
[10]
H Z
hu, GB Gia
nnak
is. Ro
bust
po
w
e
r s
y
stem
state estimati
o
n
for th
e n
onl
in
ear AC
flo
w
m
ode
l. in
Nort
h
Am
er
ican Power Sym
p
osium
(NAPS). Champaign.
20
12; 1-
6.
[11]
R Bal
d
ick, K
Cleme
nts, Z Pinjo-
Dzig
al, P
Davis.
Impl
em
entin
g n
onq
ua
dratic
o
b
jectiv
e functio
n
s for
state estimatio
n
and b
ad d
a
ta
rejectio
n.
Power System
s. IEEE Transactions on.
19
97; 1
2
(1): 376-
38
2.
[12]
J De La Re
e, V Centen
o, JS
T
horp, Ay
G Ph
adke. S
y
nchr
o
n
ize
d
phas
or measur
ement
app
licati
ons i
n
po
w
e
r s
y
stems
.
Sm
art Grid, IEEE Transactions on.
2
010; 1(1):
20-2
7
.
[13]
P Z
han
g. Ph
asor M
eas
ur
e
m
ent U
n
it (P
MU) Implem
e
n
tation
a
n
d
A
pplic
atio
ns.
Electric Power
Research Institute (EPRI).
2007.
[14]
H Xu
e, Qq Jia, N W
ang, Z
q
Bo, Ht W
ang, H
x
Ma. A d
y
n
a
m
ic state estimation meth
od
w
i
t
h
PMU an
d
SCADA me
as
ureme
n
t for p
o
w
e
r
s
y
stems.
Pow
e
r Eng
i
ne
erin
g C
onfere
n
c
e, IPEC
. Sin
g
apor
e. 20
07:
848-
853.
[15]
R Nu
qu
i, AG
Phadk
e. H
y
br
i
d
li
ne
ar state
estimatio
n
uti
l
i
z
ing
s
y
n
c
hr
oni
zed
phas
or m
e
asurem
ents. in
Pow
e
r Tech, IEEE Lausa
n
n
e
. 2007: 16
65-1
669.
[16]
M Z
hou, VA C
enten
o, JS T
horp,
AG Pha
d
k
e. An a
l
ternat
ive for i
n
cl
udi
n
g
ph
asor m
e
a
s
ureme
n
ts i
n
state estimator
s
.
Power Syste
m
s, IEEE Transactions on, 2006;
21(4): 1
930
-193
7.
[17]
A Gomez-Exp
o
sito, A Abur,
A de la Vi
lla
Jaen,
C Go
mez-Quiles. A
multilev
e
l sta
t
e estimatio
n
para
d
igm for s
m
art grids.
Proceedings
of the IEEE.
2011; 99(6): 952-9
76.
[18]
K Jamun
a
, K
S
w
a
r
u
p
, T
w
o
stage state
es
timator
w
i
th
p
hasor m
eas
ur
ements. in
Power System
s,
ICPS'
09. Internation
a
l Co
nfere
n
ce on
. Kh
arag
pur. 200
9; 1-5.
[19]
M Hassanz
ade
h, CY Evrenos
ogl
u.
Use of PMUs in regr
es
sion-
bas
e
d
po
w
e
r s
y
stem
d
y
namic stat
e
estimation.
Nor
t
h Am
eric
an P
o
wer Sym
p
osium
(NAPS).
C
hamp
a
ig
n. 201
2; 1-5.
[20]
R Christie. Po
w
e
r s
y
st
ems t
e
st case archive.
Electrical E
ngineer
ing dept.,
University of Washington,
http://
w
w
w
.
ee.w
ashington
.edu/research/pstca/.
[21]
Lin
Xu, Yo
ng-
hon
g T
ang, Min Li, W
e
i Pu.
Stud
y
on
Pract
i
cal Issues for
the
State Estimation of t
h
e
Automatic V
o
lt
age
Co
ntrol S
ystem.
T
E
LKOMNIKA Indo
ne
sian J
our
nal
of
Electrica
l
En
gi
neer
ing
. 20
13;
11(3): 17
14-
17
20.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Phaso
r
Mea
s
urem
ent Unit
Based o
n
Ro
bust Dy
n
a
m
i
c State Estim
a
tion in… (Sid
eig A. Dowi
)
7639
[22]
H Li, W
Li. Est
i
matio
n
an
d for
e
castin
g of
d
y
namic
state es
timation in po
w
e
r
s
y
stems.
i
n
Sustai
na
bl
e
Pow
e
r Generat
ion a
nd Su
pply
.
SUPERGE
N'
09. Internati
o
n
a
l Co
nferenc
e
on
. 200
9: 1-6.
[23]
Z
heng Z
HU, D
an LIU, Yon
gbi
ng
Ro
ng, Jin
w
ei SUN. SOC EKF
Estimation Based o
n
a
Secon
d
-ord
e
r
LiF
e
PO4 B
a
tte
r
y
M
o
d
e
l.
T
E
L
K
OMNIKA Ind
ones
ian
Jo
urn
a
l
of Electric
al
Eng
i
ne
eri
n
g
. 201
3;
1
1
(8):
420
8-42
13.
Evaluation Warning : The document was created with Spire.PDF for Python.