I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
,
p
p
.
812
~
818
I
SS
N:
2502
-
4752
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ee
cs
.
v
9
.
i3
.
p
p
8
1
2
-
818
812
J
o
ur
na
l
ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
Sea
rch Eng
ine
-
i
n
spired Ra
n
k
ing
A
lg
o
rith
m
f
o
r
Tra
ding
Net
w
o
rk
s
Andri M
irza
l
De
p
a
rtme
n
t
o
f
In
n
o
v
a
ti
o
n
a
n
d
T
e
c
h
n
o
l
o
g
y
M
a
n
a
g
e
m
e
n
t
,
A
ra
b
ian
G
u
lf
Un
iv
e
rsit
y
,
Ba
h
ra
in
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
7
,
2
0
1
8
R
ev
i
s
ed
Feb
1
6
,
2
0
1
8
A
cc
ep
ted
Feb
2
2
,
2
0
1
8
Ra
n
k
in
g
a
lg
o
rit
h
m
s
b
a
s
e
d
o
n
li
n
k
stru
c
tu
re
o
f
th
e
n
e
t
w
o
rk
a
re
we
ll
-
k
n
o
w
n
m
e
th
o
d
s
i
n
w
e
b
se
a
rc
h
e
n
g
in
e
s
to
im
p
ro
v
e
th
e
q
u
a
li
ty
o
f
th
e
se
a
r
c
h
e
s.
T
h
e
m
o
st
f
a
m
o
u
s
o
n
e
s
a
r
e
P
a
g
e
Ra
n
k
a
n
d
HIT
S
.
P
a
g
e
Ra
n
k
u
se
s
p
ro
b
a
b
il
it
y
o
f
ra
n
d
o
m
su
rf
e
rs
to
v
isit
a
p
a
g
e
a
s
th
e
sc
o
re
o
f
t
h
a
t
p
a
g
e
,
a
n
d
HIT
S
in
ste
a
d
o
f
p
ro
d
u
c
e
s
o
n
e
sc
o
re
,
p
r
o
p
o
se
s
u
s
in
g
tw
o
sc
o
re
s,
a
u
th
o
rit
y
a
n
d
h
u
b
sc
o
re
s,
w
h
e
re
th
e
a
u
th
o
rit
y
sc
o
re
s
d
e
sc
ri
b
e
th
e
d
e
g
re
e
o
f
p
o
p
u
larity
o
f
p
a
g
e
s an
d
h
u
b
sc
o
re
s
d
e
sc
rib
e
th
e
q
u
a
li
ty
o
f
h
y
p
e
rli
n
k
s
o
n
p
a
g
e
s.
In
th
is
p
a
p
e
r,
w
e
sh
o
w
th
e
d
if
fe
re
n
c
e
s
b
e
t
w
e
e
n
WW
W
n
e
tw
o
rk
a
n
d
trad
in
g
n
e
tw
o
rk
,
a
n
d
u
se
th
e
se
d
if
fe
re
n
c
e
s
to
c
re
a
te
a
ra
n
k
in
g
a
lg
o
rit
h
m
f
o
r
trad
in
g
n
e
tw
o
rk
s.
W
e
tes
t
o
u
r
p
ro
p
o
se
d
m
e
th
o
d
w
it
h
in
tern
a
ti
o
n
a
l
trad
in
g
d
a
ta
f
ro
m
Un
it
e
d
Na
ti
o
n
s.
T
h
e
sim
il
a
rit
y
m
e
a
su
re
s
b
e
t
w
e
e
n
v
e
c
to
rs
o
f
p
r
o
p
o
se
d
a
lg
o
rit
h
m
a
n
d
v
e
c
to
r
o
f
sta
n
d
a
rd
m
e
a
su
re
g
iv
e
p
ro
m
isin
g
re
su
lt
s.
K
ey
w
o
r
d
s
:
HI
T
S
P
ag
e
r
an
k
R
an
k
i
n
g
al
g
o
r
ith
m
s
Sear
ch
en
g
i
n
e
T
r
a
d
in
g
n
et
w
o
r
ks
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
An
d
r
i M
ir
za
l
,
De
p
a
rtme
n
t
o
f
In
n
o
v
a
ti
o
n
a
n
d
T
e
c
h
n
o
l
o
g
y
M
a
n
a
g
e
m
e
n
t
,
A
ra
b
ian
G
u
l
f
Un
iv
e
rsit
y
,
Ba
h
ra
in
.
E
m
ail:
a
n
d
rim@
a
g
u
.
e
d
u
.
b
h
1.
I
NT
RO
D
UCT
I
O
N
W
ith
t
h
e
f
a
s
t
g
r
o
w
in
g
o
f
I
n
te
r
n
et
u
s
e,
tr
ad
in
g
ac
ti
v
itie
s
t
h
a
t
u
s
e
I
n
ter
n
e
t
an
d
W
W
W
tech
n
o
lo
g
y
a
s
th
e
m
ed
i
u
m
ar
e
f
lo
u
r
i
s
h
.
So
m
e
w
o
r
k
s
h
a
v
e
tr
ied
to
a
n
al
y
ze
o
n
lin
e
tr
ad
in
g
ac
t
iv
i
ties
to
f
i
n
d
s
i
m
ilar
it
y
a
m
o
n
g
u
s
er
s
s
o
t
h
at
r
ec
o
m
m
e
n
d
atio
n
s
ch
e
m
e
s
ca
n
b
e
b
u
ilt.
Fo
r
e
x
a
m
p
le
Ka
w
ac
h
i
et
al.
[
1
]
u
s
e
r
a
n
k
i
n
g
al
g
o
r
ith
m
to
ch
ar
ac
ter
ize
u
s
er
s
i
n
o
n
li
n
e
a
u
ctio
n
n
et
w
o
r
k
a
n
d
g
r
o
u
p
th
e
u
s
er
s
b
ased
o
n
th
e
ir
s
i
m
ilar
i
t
y
i
n
c
h
ar
ac
ter
is
ti
c
v
ec
to
r
s
.
T
h
en
b
y
u
s
i
n
g
t
h
e
m
o
s
t
s
i
m
ilar
u
s
er
s
’
p
r
ef
er
e
n
tial,
t
h
e
r
ec
o
m
m
e
n
d
a
tio
n
t
o
th
e
u
s
er
s
u
n
d
er
co
n
s
id
er
atio
n
ca
n
b
e
cr
ea
ted
.
T
h
e
r
ec
o
m
m
e
n
d
atio
n
s
c
h
e
m
es
ar
e
n
o
t
tr
iv
ial
tas
k
s
,
f
o
r
ex
a
m
p
le
s
Netf
lix
,
a
n
o
n
lin
e
DV
D
r
en
tal,
o
n
Octo
b
er
2
0
0
6
o
f
f
er
ed
o
n
e
m
ill
io
n
USD
p
r
ize
to
th
e
f
ir
s
t
d
ev
elo
p
er
w
h
o
ca
n
cr
ea
te
r
ec
o
m
m
e
n
d
atio
n
a
lg
o
r
it
h
m
t
h
at
co
u
ld
b
ea
t
its
ex
i
s
ti
n
g
al
g
o
r
ith
m
,
C
in
e
m
atc
h
,
at
p
r
ed
ictin
g
c
u
s
to
m
er
r
ati
n
g
s
b
y
m
o
r
e
th
a
n
1
0
%.
I
n
[
1
]
,
th
e
au
t
h
o
r
s
u
s
e
th
e
ir
m
o
d
i
f
ied
HI
T
S
to
g
r
o
u
p
th
e
u
s
er
s
b
ased
o
n
s
i
m
ilar
it
y
o
n
t
h
eir
lab
eled
lin
k
s
.
O
n
li
n
e
a
u
ctio
n
n
et
w
o
r
k
is
a
lab
eled
-
l
in
k
n
et
w
o
r
k
,
w
h
er
e
th
e
i
n
f
o
r
m
atio
n
ab
o
u
t
th
e
ac
tiv
itie
s
ca
n
n
o
t
b
e
r
ep
r
esen
ted
o
n
l
y
b
y
n
o
d
es c
o
n
n
ec
ted
w
it
h
w
ei
g
h
ted
li
n
k
s
,
b
u
t to
w
h
ic
h
ca
teg
o
r
y
a
li
n
k
b
elo
n
g
to
m
u
s
t a
l
s
o
b
e
in
cl
u
d
ed
.
T
h
e
m
et
h
o
d
f
ir
s
t
ca
l
cu
lates
au
th
o
r
it
y
a
n
d
h
u
b
v
ec
t
o
r
s
f
o
r
ea
c
h
ca
te
g
o
r
ies
(
i
n
y
a
h
o
o
j
ap
an
au
ctio
n
)
,
an
d
th
e
n
u
s
es
t
h
ese
v
ec
to
r
s
as
u
s
er
s
’
s
ig
n
at
u
r
e.
Gr
o
u
p
in
g
th
e
m
o
s
t
s
i
m
ilar
u
s
er
s
i
s
d
o
n
e
b
y
i
n
p
u
tt
in
g
t
h
e
ch
ar
ac
ter
is
tic
v
ec
to
r
s
i
n
to
s
elf
-
o
r
g
a
n
izin
g
m
ap
(
SOM)
[
2
]
.
T
h
e
clo
s
er
th
e
d
is
tan
ce
b
et
w
e
en
t
w
o
u
s
er
s
o
n
th
e
m
ap
,
th
e
m
o
r
e
s
i
m
ilar
t
h
e
y
wo
u
ld
.
Ho
w
e
v
er
,
th
er
e
i
s
o
n
e
q
u
esti
o
n
h
er
e,
ev
e
n
th
o
u
g
h
t
h
e
tr
ad
in
g
ac
ti
v
it
ies
ar
e
co
n
d
u
cted
o
n
W
W
W
n
et
w
o
r
k
,
is
tr
ad
in
g
n
et
w
o
r
k
r
ea
ll
y
s
i
m
ilar
to
W
W
W
n
et
w
o
r
k
s
o
th
at
a
tech
n
iq
u
e
f
r
o
m
W
W
W
n
et
w
o
r
k
r
esear
ch
li
k
e
HI
T
S c
an
b
e
u
s
ed
th
er
e?
I
n
t
h
is
w
o
r
k
,
w
e
tr
y
to
e
x
p
l
o
r
e
th
e
d
if
f
er
en
ce
s
b
et
w
ee
n
t
h
ese
t
w
o
n
et
w
o
r
k
s
a
n
d
p
r
o
p
o
s
e
a
n
e
w
r
an
k
i
n
g
alg
o
r
it
h
m
b
ased
o
n
t
h
eir
d
if
f
er
en
ce
s
.
T
o
test
th
e
alg
o
r
ith
m
,
in
s
tead
o
f
u
s
i
n
g
o
n
li
n
e
tr
ad
in
g
d
ata,
in
ter
n
a
tio
n
al
tr
ad
in
g
d
ata
f
r
o
m
Un
i
ted
Natio
n
s
[
3
,
4
]
is
u
s
ed
.
T
h
e
r
ea
s
o
n
f
o
r
ch
o
o
s
in
g
t
h
e
d
ataset
is
s
o
lid
,
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
S
ea
r
ch
E
n
g
i
n
e
I
n
s
p
ir
ed
R
a
n
ki
n
g
A
lg
o
r
ith
m
fo
r
Tr
a
d
in
g
N
etrw
o
r
ks
(
A
n
d
r
i Mir
z
a
l
)
813
s
h
o
w
n
i
n
t
h
e
n
ex
t
s
ec
tio
n
,
t
h
e
tr
ad
in
g
n
et
w
o
r
k
s
ar
e
s
i
m
ila
r
to
ea
ch
o
th
er
.
So
b
y
ch
o
o
s
in
g
m
u
ch
s
m
aller
n
et
w
o
r
k
s
w
ith
clea
r
clas
s
i
f
ic
atio
n
o
f
g
o
o
d
s
an
d
al
m
o
s
t
f
i
x
ed
p
r
ice
f
o
r
th
e
s
a
m
e
p
r
o
d
u
ct,
th
e
a
n
al
y
s
i
s
o
f
ad
j
ac
en
cy
m
a
tr
ices
o
f
n
et
w
o
r
k
b
ec
o
m
es
m
u
ch
ea
s
ier
.
No
t
to
m
en
tio
n
t
h
at
t
h
e
m
atr
ices
ar
e
n
o
t
s
p
ar
s
e,
s
o
s
o
m
e
m
a
n
ip
u
lat
io
n
s
tep
s
to
e
n
s
u
r
e
t
h
e
co
n
v
er
g
e
n
ce
o
f
t
h
e
m
atr
ices c
an
b
e
a
v
o
id
ed
(
ev
en
t
h
o
u
g
h
th
e
p
r
o
p
o
s
e
d
m
o
d
el
is
w
r
it
ten
w
it
h
as
s
u
m
p
tio
n
t
h
at
t
h
e
m
atr
ix
is
s
p
ar
s
e
)
.
Fo
r
th
e
s
a
k
e
o
f
al
g
o
r
ith
m
te
s
tin
g
it
p
r
o
v
id
es
u
s
w
it
h
t
h
e
b
est co
n
d
itio
n
.
A
ct
u
all
y
t
h
er
e
ar
e
also
s
o
m
e
is
s
u
es
i
n
th
e
o
n
li
n
e
tr
ad
in
g
n
et
w
o
r
k
s
t
h
at
p
r
ev
en
t
i
t
f
r
o
m
b
ein
g
g
o
o
d
test
d
atasets
.
Fo
r
ex
a
m
p
le
i
n
an
au
ctio
n
n
et
w
o
r
k
,
w
h
ich
i
s
th
e
b
est
ex
a
m
p
le
o
f
t
r
ad
in
g
n
et
w
o
r
k
s
w
h
er
e
t
h
e
u
s
er
s
ar
e
f
r
ee
to
b
u
y
a
n
d
s
ell
g
o
o
d
s
(
s
o
ea
ch
u
s
er
s
ca
n
h
a
v
e
b
o
th
in
lin
k
s
an
d
o
u
tl
in
k
s
)
,
th
e
n
u
m
b
er
o
f
s
o
ld
g
o
o
d
s
ar
e
to
o
d
iv
er
s
e
i
n
b
o
th
t
y
p
e
a
n
d
p
r
ice
to
allo
w
a
n
y
cl
ass
i
f
icatio
n
w
o
r
k
s
.
C
o
n
s
eq
u
en
tl
y
,
i
t
i
s
d
i
f
f
ic
u
lt
to
in
f
er
th
a
t
g
o
o
d
s
i
n
t
h
e
s
a
m
e
c
lass
ar
e
m
o
r
e
s
i
m
ilar
th
a
n
g
o
o
d
s
f
r
o
m
o
th
er
cla
s
s
.
An
d
i
f
it
is
t
h
e
ca
s
e,
t
h
er
e
i
s
n
o
p
o
in
t
to
u
s
e
t
h
is
cla
s
s
i
f
ic
atio
n
as
th
e
b
ase
f
o
r
u
s
er
s
c
lu
s
ter
i
n
g
.
An
d
i
f
class
i
f
icat
io
n
ca
n
n
o
t
b
e
u
s
ed
,
ad
j
ac
en
cy
m
atr
i
x
f
o
r
ea
ch
k
i
n
d
o
f
g
o
o
d
s
m
u
s
t
b
e
co
n
s
tr
u
c
t
ed
,
w
h
ich
is
a
r
ea
ll
y
d
if
f
ic
u
lt
task
b
ec
a
u
s
e
th
er
e
w
il
l
b
e
to
o
m
an
y
s
p
ar
s
e
m
atr
i
ce
s
f
o
r
o
n
e
n
et
w
o
r
k
w
i
th
o
n
l
y
o
n
e,
o
r
t
w
o
n
o
n
ze
r
o
en
tr
ie
s
(
n
u
m
b
er
o
f
id
en
tica
l
g
o
o
d
s
b
o
u
g
h
t
b
y
a
u
s
er
)
.
An
d
f
o
r
o
th
er
t
y
p
e
o
f
tr
ad
in
g
n
e
t
w
o
r
k
s
li
k
e
o
n
li
n
e
s
h
o
p
p
in
g
w
h
er
e
th
er
e
ar
e
t
w
o
k
in
d
o
f
n
o
d
es,
b
u
y
er
s
an
d
s
eller
s
,
th
e
n
et
w
o
r
k
s
b
ec
o
m
e
b
ip
ar
tite
g
r
ap
h
s
s
o
r
an
k
in
g
a
n
d
clu
s
ter
in
g
ta
s
k
s
b
ec
o
m
e
d
i
f
f
er
e
n
t p
r
o
b
lem
,
w
h
ich
is
b
e
y
o
n
d
th
e
s
co
p
e
o
f
t
h
is
p
ap
er
.
2.
T
RAD
I
N
G
NE
T
WO
RK
S
T
h
e
u
s
u
al
w
a
y
to
ca
lcu
late
t
h
e
d
eg
r
ee
o
f
i
m
p
o
r
tan
ce
o
f
n
o
d
es
in
a
tr
ad
in
g
n
et
w
o
r
k
is
b
y
u
s
i
n
g
to
tal
a
m
o
u
n
t
o
f
ex
p
o
r
t/i
m
p
o
r
t
o
f
p
ar
ticu
lar
g
o
o
d
s
.
T
h
is
m
et
h
o
d
,
h
o
w
ev
er
,
f
ails
to
ca
p
tu
r
e
th
e
l
in
k
s
tr
u
ctu
r
e
o
f
t
h
e
n
et
w
o
r
k
;
to
w
h
ich
n
o
d
es
a
n
o
d
e
co
n
n
ec
t
to
an
d
b
ein
g
co
n
n
ec
ted
to
.
Fo
r
ex
am
p
le
t
h
e
s
a
m
e
a
m
o
u
n
t
o
f
e
x
p
o
r
t
to
an
in
s
i
g
n
i
f
ica
n
t
co
u
n
tr
y
an
d
to
an
i
m
p
o
r
tan
t
co
u
n
tr
y
w
i
ll
g
iv
e
t
h
e
s
a
m
e
w
ei
g
h
t
to
r
a
n
k
i
n
g
s
co
r
es.
T
h
is
p
r
o
b
lem
ac
t
u
all
y
h
ad
e
v
er
o
cc
u
r
r
ed
in
W
W
W
n
et
w
o
r
k
,
w
h
e
r
e
th
e
m
e
th
o
d
s
o
f
o
n
l
y
ca
lc
u
la
tin
g
co
n
te
n
t
s
co
r
es
o
f
w
eb
p
ag
es
w
er
e
n
o
lo
n
g
er
ad
eq
u
ate
to
d
ea
l
w
it
h
u
s
er
s
’
s
atis
f
ac
tio
n
a
n
d
ac
cu
r
ac
y
o
f
th
e
q
u
er
ies
r
esp
o
n
s
e
i
n
th
e
f
a
s
t
g
r
o
w
i
n
g
W
W
W
n
et
wo
r
k
en
v
ir
o
n
m
e
n
t.
T
h
e
s
o
lu
tio
n
s
o
f
t
h
is
p
r
o
b
le
m
w
er
e
p
r
o
p
o
s
ed
in
d
ep
en
d
en
tl
y
b
y
B
r
in
a
n
d
P
ag
e
[
5
,
6
]
an
d
Klein
b
er
g
[
7
]
.
B
o
th
s
o
lu
tio
n
s
u
s
e
lin
k
s
tr
u
ctu
r
e
o
f
W
W
W
n
etw
o
r
k
to
i
m
p
r
o
v
e
t
h
e
q
u
alit
y
o
f
w
eb
s
ea
r
ch
.
I
n
P
ag
eRa
n
k
,
t
h
e
i
m
p
o
r
ta
n
t
p
ag
es
ar
e
th
e
p
a
g
es
w
i
th
m
a
n
y
in
li
n
k
s
an
d
a
f
e
w
o
r
n
o
o
u
tli
n
k
s
[
8
,
p
p
.
3
2
]
.
A
n
d
HI
T
S,
in
s
tead
o
f
p
r
o
d
u
cin
g
o
n
l
y
o
n
e
s
co
r
e,
p
r
o
p
o
s
es
to
u
s
e
t
w
o
s
co
r
es;
au
t
h
o
r
it
y
an
d
h
u
b
s
co
r
es.
G
o
o
d
au
th
o
r
ities
ar
e
p
o
in
ted
to
b
y
g
o
o
d
h
u
b
s
a
n
d
g
o
o
d
h
u
b
s
p
o
in
t
to
g
o
o
d
au
th
o
r
ities
[
8
,
p
p
.
1
1
5
]
.
T
h
e
f
in
al
lin
k
s
tr
u
ct
u
r
e
s
co
r
es
ar
e
o
b
tain
ed
b
y
co
m
b
i
n
i
n
g
t
h
e
s
e
s
co
r
es
(
in
w
eb
s
ea
r
c
h
p
u
r
p
o
s
e,
u
s
u
all
y
o
n
l
y
a
u
t
h
o
r
it
y
s
co
r
es a
r
e
u
s
ed
)
.
E
v
en
t
h
o
u
g
h
t
h
er
e
ar
e
alr
ea
d
y
g
o
o
d
r
an
k
i
n
g
al
g
o
r
ith
m
s
th
a
t
d
ea
l
w
ith
li
n
k
s
tr
u
ct
u
r
e
o
f
t
h
e
n
et
w
o
r
k
s
,
P
ag
eRan
k
o
r
HI
T
S
ca
n
n
o
t
s
i
m
p
l
y
b
e
u
s
ed
b
ec
au
s
e
t
h
e
n
a
tu
r
e
o
f
tr
ad
in
g
n
et
w
o
r
k
s
a
n
d
W
W
W
n
et
w
o
r
k
i
s
d
if
f
er
e
n
t.
E
ac
h
n
o
d
es
i
n
tr
ad
i
n
g
n
et
w
o
r
k
s
h
as
at
least
o
n
e
t
y
p
e
o
f
r
eso
u
r
ce
b
ef
o
r
e
an
y
tr
a
n
s
ac
tio
n
ca
n
o
cc
u
r
.
T
h
e
lin
k
s
ad
d
itio
n
h
ap
p
en
s
wh
en
t
w
o
n
o
d
es
w
it
h
d
if
f
er
e
n
t
t
y
p
e
o
f
r
eso
u
r
ce
s
ex
c
h
a
n
g
e
t
h
e
ir
r
eso
u
r
ce
s
.
T
h
u
s
,
th
e
a
m
o
u
n
t
o
f
r
eso
u
r
ce
s
l
i
m
it
s
n
u
m
b
er
a
n
d
w
ei
g
h
t
o
f
li
n
k
s
th
at
a
n
o
d
e
ca
n
h
av
e.
I
n
W
W
W
n
et
w
o
r
k
,
lin
k
s
ad
d
itio
n
is
s
i
m
p
l
y
b
y
p
u
tt
in
g
n
e
w
h
y
p
er
li
n
k
s
o
n
w
eb
p
ag
es
,
s
o
t
h
er
e
is
n
o
r
eso
u
r
ce
n
ee
d
s
to
b
e
al
lo
ca
ted
i
n
cr
ea
tin
g
n
e
w
lin
k
s
.
An
o
th
er
i
m
p
o
r
ta
n
t
p
o
in
t
th
at
d
i
f
f
er
e
n
ti
ates
th
ese
n
et
w
o
r
k
s
is
lin
k
s
ad
d
itio
n
in
tr
ad
in
g
n
et
w
o
r
k
s
is
m
u
t
u
al
p
r
o
ce
s
s
,
if
th
e
f
ir
s
t
n
o
d
e
cr
ea
tes
a
n
e
w
lin
k
to
th
e
s
ec
o
n
d
n
o
d
e,
th
e
s
ec
o
n
d
n
o
d
e
also
cr
ea
tes
a
n
e
w
li
n
k
to
t
h
e
f
ir
s
t
n
o
d
e.
T
h
is
is
n
o
t
th
e
ca
s
e
i
n
W
W
W
n
et
w
o
r
k
.
F
u
r
th
er
,
li
n
k
s
attac
h
m
e
n
t
p
u
r
p
o
s
e
in
tr
ad
in
g
n
et
w
o
r
k
s
is
to
m
a
x
i
m
ize
t
h
e
b
en
e
f
it
o
f
t
h
e
tr
a
n
s
ac
tio
n
s
.
T
h
u
s
,
i
n
t
h
e
ex
p
o
r
t
s
id
e,
ea
ch
n
o
d
es
co
m
p
ete
s
to
g
e
t
tr
an
s
ac
tio
n
s
f
r
o
m
o
t
h
er
n
o
d
es
t
h
at
lac
k
o
f
th
e
r
e
s
o
u
r
ce
it
o
f
f
er
s
,
a
n
d
in
i
m
p
o
r
t
s
id
e,
it
co
m
p
ete
s
to
g
et
r
eso
u
r
ce
s
f
r
o
m
o
th
er
n
o
d
es
th
at
h
av
e
ab
u
n
d
an
t
r
eso
u
r
ce
it
n
ee
d
s
.
I
n
W
W
W
n
et
w
o
r
k
,
t
h
e
lin
k
s
attac
h
m
e
n
t
is
to
g
et
i
n
li
n
k
s
f
r
o
m
p
o
p
u
lar
p
ag
es
(
p
ag
e
s
w
it
h
m
an
y
i
n
li
n
k
s
)
an
d
t
h
e
p
o
p
u
lar
p
ag
es
w
il
l
lik
el
y
to
g
et
m
o
r
e
i
n
li
n
k
s
.
Fi
g
u
r
e
1
s
h
o
w
s
t
h
e
d
i
f
f
er
en
ce
s
b
et
w
ee
n
tr
ad
in
g
n
et
w
o
r
k
a
n
d
W
W
W
n
et
w
o
r
k
w
h
er
e
i
n
tr
ad
i
n
g
n
et
w
o
r
k
t
h
e
p
r
o
ce
s
s
o
f
lin
k
s
ad
d
itio
n
is
m
u
tu
al,
an
d
th
e
li
n
k
s
ar
e
d
i
f
f
er
en
t
i
n
t
y
p
e
an
d
w
ei
g
h
t,
w
h
ich
d
escr
ib
es
t
h
e
n
atu
r
e
o
f
tr
an
s
ac
tio
n
.
I
n
W
W
W
n
et
w
o
r
k
t
h
e
li
n
k
s
t
h
at
co
n
n
ec
t
p
ag
e
A
an
d
B
ar
e
h
y
p
er
li
n
k
s
,
w
h
ich
w
h
e
n
A
h
as
a
h
y
p
er
lin
k
to
B
,
it d
o
esn
’
t
n
e
ce
s
s
ar
y
t
h
at
B
h
as a
h
y
p
er
li
n
k
to
A
also
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
8
1
2
–
818
814
Fig
u
r
e
1
.
T
h
e
Dif
f
er
en
ce
s
B
etw
ee
n
T
r
ad
in
g
Net
w
o
r
k
(
L
e
f
t)
an
d
WWW
Netw
o
r
k
(
R
i
g
h
t)
3.
P
RO
P
O
SE
D
AL
G
O
R
I
T
H
M
I
n
tr
ad
in
g
n
et
w
o
r
k
s
,
ev
er
y
n
o
d
es
s
h
o
u
ld
b
e
ca
r
ef
u
l
i
n
m
a
k
i
n
g
n
e
w
i
n
li
n
k
s
an
d
o
u
t
lin
k
s
d
u
e
to
th
e
n
ee
d
ed
r
eso
u
r
ce
s
.
E
ac
h
n
o
d
es
co
m
p
etes
to
g
e
t
i
n
li
n
k
s
f
r
o
m
o
t
h
er
i
m
p
o
r
ta
n
t
n
o
d
es
(
n
o
d
es
w
it
h
ab
u
n
d
an
t
n
u
m
b
er
o
f
r
e
s
o
u
r
ce
s
t
h
at
co
m
p
etin
g
n
o
d
es
n
ee
d
)
an
d
co
m
p
etes
to
m
ak
e
o
u
tli
n
k
s
to
t
h
e
o
th
er
i
m
p
o
r
ta
n
t
o
n
e
s
(
n
o
d
es th
at
n
ee
d
r
eso
u
r
ce
s
f
r
o
m
co
m
p
eti
n
g
n
o
d
es)
b
y
co
n
s
id
er
in
g
t
h
e
co
s
t.
Du
e
to
t
h
e
n
at
u
r
e
o
f
tr
ad
in
g
n
et
w
o
r
k
s
,
n
o
n
e
o
f
t
h
e
p
r
ev
io
u
s
d
i
s
cu
s
s
ed
w
eb
r
a
n
k
in
g
al
g
o
r
ith
m
s
ar
e
s
u
itab
le.
P
ag
e
R
an
k
w
h
ic
h
f
o
cu
s
e
s
o
n
i
n
li
n
k
s
clea
r
l
y
ca
n
n
o
t
b
e
u
s
ed
in
th
e
e
n
v
ir
o
n
m
en
t
wh
er
e
in
l
in
k
s
a
s
w
ell
as
o
u
tli
n
k
s
ar
e
h
i
g
h
l
y
r
e
g
ar
d
ed
.
HI
T
S
is
m
o
r
e
i
n
ter
esti
n
g
th
a
n
P
ag
eRa
n
k
,
b
ec
au
s
e
it
a
cc
o
m
m
o
d
ates
b
o
th
in
li
n
k
s
a
n
d
o
u
tli
n
k
s
.
B
u
t
b
y
d
ef
i
n
itio
n
,
i
n
HI
T
S’s
a
n
o
d
e
s
h
o
u
ld
estab
lis
h
n
e
w
o
u
tli
n
k
s
to
o
th
er
s
w
it
h
m
a
n
y
in
li
n
k
s
,
a
n
d
s
h
o
u
ld
r
ec
ei
v
e
i
n
li
n
k
s
f
r
o
m
o
t
h
er
s
w
i
th
m
an
y
o
u
t
lin
k
s
.
I
n
th
e
co
n
te
x
t
o
f
o
u
r
p
r
o
b
lem
,
w
h
er
e
m
ak
in
g
an
d
r
ec
eiv
i
n
g
n
e
w
li
n
k
s
ca
n
b
e
e
x
p
en
s
iv
e,
it
is
m
o
r
e
ap
p
r
o
p
r
iate
t
o
m
a
k
e
n
e
w
o
u
tlin
k
s
to
n
o
d
es
th
at
h
av
e
m
an
y
o
u
tl
in
k
s
a
n
d
r
ec
eiv
in
g
i
n
li
n
k
s
f
r
o
m
n
o
d
es
th
at
h
as
m
a
n
y
i
n
li
n
k
s
,
b
ec
au
s
e
r
ec
ei
v
in
g
i
n
li
n
k
s
m
ea
n
s
g
etti
n
g
r
e
s
o
u
r
ce
s
a
n
d
cr
ea
tin
g
o
u
tlin
k
s
m
ea
n
s
g
i
v
i
n
g
u
p
r
es
o
u
r
ce
s
.
Fig
u
r
e
2
s
h
o
w
s
t
h
e
li
n
k
s
ad
d
itio
n
p
r
o
ce
s
s
w
h
er
e
in
tr
ad
in
g
n
et
w
o
r
k
,
A
p
r
ef
er
s
B
(
n
o
d
e
w
i
th
m
an
y
o
u
tlin
k
s
t
h
er
ef
o
r
e
lack
o
f
r
eso
u
r
ce
)
w
h
e
n
m
ak
i
n
g
a
n
e
w
o
u
tli
n
k
an
d
C
(
n
o
d
e
w
it
h
m
a
n
y
in
lin
k
s
t
h
er
ef
o
r
e
f
u
ll
o
f
r
eso
u
r
ce
)
w
h
e
n
lo
o
k
in
g
f
o
r
a
n
e
w
i
n
li
n
k
.
T
h
i
s
p
r
ef
er
en
tial is o
p
p
o
s
ite
to
W
W
W
n
et
w
o
r
k
.
Fig
u
r
e
2
.
L
in
k
s
A
d
d
itio
n
P
r
o
c
ess
i
n
T
r
ad
in
g
Net
w
o
r
k
(
L
e
f
t)
an
d
W
W
W
Netw
o
r
k
(
R
i
g
h
t)
.
P
r
o
p
o
s
ed
alg
o
r
ith
m
is
d
ef
in
e
d
w
it
h
t
h
e
f
o
llo
w
in
g
s
tate
m
e
n
t:
a
n
o
d
e
b
ec
o
mes
mo
r
e
imp
o
r
ta
n
t
if
b
ein
g
p
o
in
ted
to
b
y
o
th
ers
th
a
t
h
a
ve
ma
n
y
in
lin
ks
a
n
d
p
o
i
n
ts
to
o
th
ers
w
ith
ma
n
y
o
u
tli
n
ks
.
An
d
f
u
r
t
h
er
,
b
y
co
m
p
ar
i
n
g
th
e
p
r
o
ce
s
s
o
f
li
n
k
s
ad
d
itio
n
as
s
h
o
w
n
i
n
f
ig
.
2
a
n
d
HI
T
S
m
o
d
el
[
8
,
p
p
.
1
1
5
]
,
th
is
d
e
f
i
n
itio
n
ca
n
b
e
w
r
itte
n
i
n
to
f
o
llo
w
i
n
g
eq
u
atio
n
.
j
i
j
i
j
j
i
ch
n
r
ca
n
r
n
r
)
(
)
1
(
)
(
)
(
(
1
)
W
h
er
e
B
C
A
C
A
B
B
C
A
A
B
C
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
S
ea
r
ch
E
n
g
i
n
e
I
n
s
p
ir
ed
R
a
n
ki
n
g
A
lg
o
r
ith
m
fo
r
Tr
a
d
in
g
N
etrw
o
r
ks
(
A
n
d
r
i Mir
z
a
l
)
815
o
u
t
l
i
n
k
s
n
i
n
l
i
n
k
s
n
o
u
t
l
i
n
k
s
n
i
n
l
i
n
k
s
n
o
u
t
l
i
n
k
s
n
i
n
l
i
n
k
s
n
p
o
u
t
l
i
n
k
s
n
i
n
l
i
n
k
s
n
l
i
n
k
s
n
o
u
t
l
i
n
k
s
n
ch
o
u
t
l
i
n
k
s
n
i
n
l
i
n
k
s
n
l
i
n
k
s
n
i
n
l
i
n
k
s
n
ca
j
j
j
j
j
j
j
p
j
j
j
j
p
j
j
j
j
j
j
if
0
if
1
-
if
1
a
n
d
,
,
r
(
n
i
)
is
t
h
e
r
an
k
i
n
g
s
co
r
e
o
f
n
o
d
e
i
,
|
*
|
d
e
n
o
tes
ab
s
o
l
u
te
v
al
u
e
o
f
*
,
i
→
j
d
en
o
te
s
t
h
at
n
o
d
e
i
lin
k
s
to
n
o
d
e
j
,
an
d
∑
n
j
in
lin
k
s
/
o
u
tli
n
k
s
/
li
n
k
s
d
en
o
te
s
th
e
n
u
m
b
e
r
o
f
in
li
n
k
s
/
o
u
tli
n
k
s
/
li
n
k
s
n
o
d
e
j
h
as.
T
h
e
f
ir
s
t
ter
m
o
f
r
i
g
h
t
h
a
n
d
p
ar
t
i
s
d
e
f
in
ed
as
au
th
o
r
it
y
p
ar
t
a
n
d
t
h
e
s
ec
o
n
d
o
n
e
as
h
u
b
p
ar
t
o
f
c
o
r
r
esp
o
n
d
in
g
n
o
d
e.
P
ar
am
eter
β
(
0
≤
β
≤
1
)
is
u
s
e
d
to
d
eter
m
i
n
e
w
h
ic
h
li
n
k
s
ar
e
m
o
r
e
i
m
p
o
r
tan
t.
I
f
o
u
tlli
n
k
s
a
n
d
in
l
in
k
s
ar
e
eq
u
al
s
et
β
=
0
.
5
,
if
o
u
tli
n
k
s
ar
e
m
o
r
e
i
m
p
o
r
tan
t set
β
<
0
.
5
,
an
d
β
>
0
.
5
o
th
er
w
i
s
e.
T
h
e
lo
g
ic
b
eh
in
d
ab
o
v
e
eq
u
ati
o
n
is
:
r
an
k
i
n
g
s
co
r
e
o
f
a
n
o
d
e,
r
(
n
i
)
,
d
ep
en
d
s
o
n
t
h
e
r
an
k
i
n
g
s
co
r
es
o
f
o
th
er
s
th
at
p
o
in
t
to
it
(
r
(
n
j
)
w
h
er
e
j
→
i
,
th
e
f
ir
s
t
ter
m
o
f
th
e
r
ig
h
t
h
a
n
d
p
ar
t)
an
d
th
e
n
o
d
es
t
h
at
it
p
o
in
ts
to
(
r
(
n
j
)
w
h
er
e
i
→
j
,
t
h
e
s
ec
o
n
d
ter
m
o
f
t
h
e
r
i
g
h
t
h
a
n
d
p
ar
t)
.
T
h
e
r
ests
o
f
t
h
e
r
i
g
h
t
h
a
n
d
p
ar
t
f
u
n
c
tio
n
as
th
e
co
n
s
ta
n
ts
th
at
d
ep
en
d
o
n
t
h
e
n
u
m
b
er
o
f
i
n
li
n
k
s
a
n
d
o
u
tl
in
k
s
o
f
ea
ch
n
o
d
es,
w
h
er
e
f
o
r
au
t
h
o
r
ity
/
h
u
b
p
ar
t
t
h
e
b
ig
g
er
th
e
n
u
m
b
er
o
f
in
l
in
k
s
/
o
u
tli
n
k
s
a
n
d
t
h
e
s
m
al
ler
t
h
e
n
u
m
b
er
o
f
o
u
t
lin
k
s
/
in
li
n
k
s
,
t
h
e
lar
g
er
t
h
e
co
n
s
ta
n
ts
b
ec
o
m
e.
So
,
th
e
ab
o
v
e
eq
u
atio
n
a
g
r
ee
s
w
it
h
p
r
o
p
o
s
ed
alg
o
r
ith
m
d
ef
i
n
it
io
n
.
Fig
u
r
e
3
.
A
Sc
h
e
m
atic
E
x
p
la
n
atio
n
o
f
t
h
e
Dif
f
er
e
n
ce
s
Am
o
n
g
A
l
g
o
r
ith
m
s
; P
ag
er
a
n
k
(
L
ef
t)
,
HI
T
S
(
C
en
ter
)
an
d
P
r
o
p
o
s
ed
A
l
g
o
r
ith
m
(
R
ig
h
t)
.
T
h
e
ca
lcu
latio
n
o
f
n
o
d
es
’
r
an
k
in
g
s
co
r
es
ca
n
b
e
d
o
n
e
i
n
t
w
o
d
i
f
f
er
e
n
t
w
a
y
s
,
th
e
f
ir
s
t
i
s
b
y
u
s
in
g
d
ir
ec
t
m
et
h
o
d
b
y
i
n
s
p
ec
ti
n
g
t
h
e
l
i
n
ea
r
s
y
s
te
m
p
r
o
p
er
ty
o
f
th
e
eq
u
a
tio
n
[
8
p
p
.
7
1
-
7
4
]
an
d
th
e
s
ec
o
n
d
is
b
y
u
s
i
n
g
iter
atio
n
p
r
o
ce
s
s
(
p
o
w
er
m
e
th
o
d
)
,
a
co
m
m
o
n
m
eth
o
d
in
ca
lcu
la
tin
g
r
an
k
i
n
g
v
ec
to
r
f
o
r
w
eb
p
ag
es.
Fo
r
s
m
al
l
n
et
w
o
r
k
th
e
f
ir
s
t
m
et
h
o
d
is
p
r
ef
er
ab
le
b
ec
au
s
e
it
m
u
c
h
f
aster
t
h
a
n
p
o
w
er
m
e
t
h
o
d
.
A
s
t
h
e
n
et
w
o
r
k
g
etti
n
g
b
i
g
g
er
,
o
n
l
y
s
ec
o
n
d
m
eth
o
d
is
v
iab
le.
I
n
t
h
is
p
ap
er
,
h
o
w
ev
er
,
s
ec
o
n
d
m
eth
o
d
is
u
s
ed
b
ec
au
s
e
w
e
w
a
n
t
to
co
m
p
ar
e
co
n
v
er
g
en
ce
p
r
o
p
er
t
y
o
f
p
r
o
p
o
s
ed
alg
o
r
ith
m
to
P
ag
eRan
k
an
d
HI
T
S.
W
e
w
ill
m
o
d
i
f
y
eq
.
(
1
)
in
to
m
atr
i
x
f
o
r
m
n
o
t
o
n
l
y
to
allo
w
p
r
o
p
er
t
y
o
f
n
et
w
o
r
k
b
ei
n
g
s
ee
n
f
r
o
m
lin
ea
r
al
g
eb
r
a
p
er
s
p
ec
tiv
e
b
u
t
also
to
en
s
u
r
e
p
o
w
er
m
e
th
o
d
ap
p
lied
to
th
e
ad
j
ac
en
cy
m
atr
ix
co
n
v
er
g
e
s
b
y
ad
j
u
s
tin
g
it
in
to
a
s
to
ch
as
tic
an
d
p
r
im
iti
v
e
m
atr
i
x
.
L
et
M
=
β
F
+(
1
-
β
)
G
,
w
h
er
e
F
=
KD
-
1
D
i
L
is
t
h
e
au
t
h
o
r
it
y
p
ar
t
w
h
ic
h
d
escr
ib
es
f
r
ac
tio
n
o
f
s
co
r
es
a
n
o
d
e
r
ec
eiv
es
f
r
o
m
its
i
n
li
n
k
s
,
an
d
G
=
K
-
1
D
-
1
D
o
L
T
is
t
h
e
h
u
b
p
ar
t
w
h
ic
h
d
escr
ib
es
f
r
ac
tio
n
o
f
s
c
o
r
es
a
n
o
d
e
r
ec
eiv
e
s
f
r
o
m
its
o
u
tlin
k
s
.
An
d
L
is
N
×
N
t
h
e
a
d
j
ac
en
cy
m
atr
i
x
o
f
th
e
n
et
w
o
r
k
.
T
h
u
s
,
eq
.
(
1
)
ca
n
b
e
r
ew
r
it
ten
a
s
:
T
T
T
T
k
k
k
L
D
D
K
L
D
KD
r
G
F
r
r
o
i
1
1
1
)
1
(
)
(
)
1
(
)
(
)
1
(
(
2
)
w
h
er
e
k
=
0
,
1
,
2
,
.
.
.
d
en
o
tes th
e
iter
atio
n
p
r
o
ce
s
s
o
f
th
e
al
g
o
r
ith
m
,
d
iag
o
n
al
m
atr
ices
D
i
,
D
o
a
n
d
D
ar
e
d
ef
in
ed
as:
D
i
=
d
i
ag
(
d
i
)
,
D
o
=
d
iag
(
d
o
)
,
a
n
d
D
=
D
i
+
D
o
(
3
)
an
d
K
is
a
d
iag
o
n
al
m
atr
ix
w
i
t
h
d
iag
o
n
al
e
n
tr
ies d
e
f
i
n
ed
as:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
8
1
2
–
818
816
i
p
ii
ii
K
o
i
D
D
(
4
)
g
iv
e
n
i
i
=
∑
j
L
ji
is
t
h
e
s
e
t
o
f
i
n
lin
k
s
o
f
n
o
d
e
i
,
o
i
=
∑
k
L
ik
is
t
h
e
s
et
o
f
o
u
tli
n
k
s
o
f
n
o
d
e
i
,
d
i
=
(
i
1
,
i
2
,
…,
i
N
)
T
is
in
li
n
k
v
ec
to
r
,
an
d
d
o
= (
o
1
,
o
2
,
…,
o
N
)
T
is
o
u
tlin
k
v
ec
to
r
o
f
n
o
d
e
i
.
T
o
en
s
u
r
e
th
e
p
o
w
er
m
et
h
o
d
[
9
]
co
n
v
er
g
es
to
a
p
o
s
itiv
e
an
d
u
n
iq
u
e
d
o
m
i
n
a
n
t
eig
e
n
v
ec
to
r
o
f
m
a
tr
ix
M
,
tw
o
ad
j
u
s
t
m
e
n
t
s
ar
e
n
ee
d
ed
.
T
h
e
f
ir
s
t
is
s
to
ch
a
s
ticity
a
d
ju
s
tmen
t
;
n
o
r
m
alize
s
all
n
o
n
z
er
o
r
o
w
s
o
f
M
an
d
th
en
f
ills
ze
r
o
r
o
w
s
b
y
1
×
N
p
o
s
itiv
e
r
ea
l
v
ec
to
r
s
w
h
ic
h
h
av
e
1
-
n
o
r
m
eq
u
al
s
to
o
n
e.
Us
u
all
y
,
ea
ch
en
tr
y
o
f
th
ese
v
ec
to
r
s
is
s
e
t
to
1
/
N
.
L
et
e
T
is
a
1
×
N
r
o
w
v
ec
to
r
w
h
ich
ea
ch
o
f
its
e
n
tr
ies
i
s
o
n
e
an
d
c
is
a
N
×1
co
lu
m
n
v
ec
to
r
w
h
ich
its
i
th
r
o
w
is
s
et
to
1
i
f
r
o
w
i
o
f
M
is
ze
r
o
r
o
w
,
a
n
d
0
o
th
er
w
i
s
e.
T
h
en
s
t
o
ch
asti
c
v
er
s
io
n
o
f
m
atr
i
x
M
is
:
S
=
M
+
(
1
/
N
)
ce
T
.
A
n
d
th
e
s
ec
o
n
d
,
p
r
imitiv
ity
a
d
ju
s
tmen
t
is
d
o
n
e
b
y
r
ep
lacin
g
ea
ch
ze
r
o
e
n
tr
ie
s
o
f
S
w
it
h
a
s
m
all
p
o
s
itiv
e
n
u
m
b
er
;
P
=
α
S
+
(
1
/
N
)(1
-
α
)
ee
T
,
w
h
er
e
0
<
α
<
1
is
a
p
ar
am
eter
th
at
co
n
tr
o
l
t
h
e
a
m
o
u
n
t o
f
er
r
o
r
(
ee
T
)
in
tr
o
d
u
ce
d
to
m
atr
i
x
P
.
T
h
u
s
,
eq
.
(
1
)
c
an
b
e
w
r
itte
n
i
n
m
o
r
e
co
m
p
ac
t
f
o
r
m
as:
P
r
r
)
(
)
1
(
k
k
T
T
(
5
)
f
o
r
in
itial
co
n
d
itio
n
r
T
(
0
)
=
(
1
/
n
)
e
T
,
u
n
til
er
r
o
r
o
f
th
e
p
r
o
ce
s
s
|
|
r
T
(
k
+1
)
-
r
T
(
k
)
|
|
1
is
s
m
aller
th
an
d
esire
d
er
r
o
r
.
No
te
th
at
in
s
tead
o
f
u
s
i
n
g
1
-
n
o
r
m
ter
m
i
n
atio
n
cr
iter
io
n
,
t
h
e
co
m
p
ar
is
o
n
b
et
w
ee
n
p
r
e
v
io
u
s
r
a
n
k
an
d
c
u
r
r
en
t
r
an
k
o
r
d
er
ca
n
also
b
e
u
s
ed
to
ter
m
i
n
ate
th
e
iter
at
io
n
p
r
o
ce
s
s
[
1
0
-
1
5
]
4.
NUM
E
RICAL
R
E
SU
L
T
S
B
ec
au
s
e
P
i
s
s
to
c
h
asti
c
an
d
p
r
i
m
iti
v
e,
t
h
e
p
o
w
er
m
eth
o
d
ap
p
lied
to
it
co
n
v
er
g
es
to
a
u
n
iq
u
e
p
o
s
iti
v
e
v
ec
to
r
ca
lled
s
tat
io
n
ar
y
v
ec
to
r
f
o
r
an
y
s
tar
ti
n
g
v
ec
to
r
[
8
8
,
p
p
.
3
6
]
.
So
th
e
p
r
o
b
lem
lef
t
is
“
w
ill
i
t
co
n
ve
r
g
e
to
s
o
meth
in
g
th
a
t
ma
ke
s
s
en
s
e
in
th
e
co
n
text
o
f
tr
a
d
in
g
n
etw
o
r
ks?
”.
W
e
tr
y
to
an
s
w
e
r
th
is
q
u
e
s
tio
n
b
y
m
ea
s
u
r
in
g
th
e
s
i
m
ilar
it
y
b
et
wee
n
v
ec
to
r
o
f
p
r
o
p
o
s
ed
alg
o
r
it
h
m
w
it
h
s
ta
n
d
ar
d
m
ea
s
u
r
e,
v
e
cto
r
o
f
to
tal
e
x
p
o
r
t
i
m
p
o
r
t.
T
h
e
d
ata
u
s
ed
in
th
e
e
x
p
er
i
m
e
n
ts
is
i
n
ter
n
a
tio
n
al
tr
ad
in
g
d
ata
f
r
o
m
U
n
ited
Na
tio
n
s
[
3
,
4
]
w
h
er
e
t
h
e
n
o
d
es
ar
e
th
e
co
u
n
tr
ies
t
h
at
i
n
v
o
l
v
ed
in
t
h
e
ex
p
o
r
t
an
d
i
m
p
o
r
t
ac
tiv
ities
,
an
d
t
h
e
lin
k
s
ar
e
th
e
f
lo
w
o
f
t
h
e
p
r
o
d
u
cts.
T
h
e
co
m
p
u
tatio
n
p
e
r
f
o
r
m
an
ce
o
f
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
m
ea
s
u
r
ed
b
y
co
m
p
ar
in
g
t
h
e
n
u
m
b
er
o
f
iter
atio
n
s
i
t
n
ee
d
s
to
ac
h
ie
v
e
a
d
esire
d
er
r
o
r
to
th
e
r
esu
lts
o
f
HI
T
S
an
d
P
ag
eRan
k
(
n
o
te
t
h
a
t
it
is
o
n
l
y
u
s
ed
f
o
r
p
er
f
o
r
m
a
n
ce
co
m
p
ar
is
o
n
,
n
o
t
f
o
r
r
esu
lts
co
m
p
ar
is
o
n
)
.
I
n
th
e
ex
p
er
i
m
en
t
s
ter
m
i
n
atio
n
cr
iter
io
n
is
s
et
to
1
0
-
8
an
d
β
is
s
et
to
0
.
5
.
T
h
e
n
u
m
b
er
o
f
iter
atio
n
s
i
s
c
h
o
s
e
n
i
n
s
tead
o
f
co
m
p
u
tatio
n
al
ti
m
e
b
ec
au
s
e
t
h
e
s
ize
o
f
tr
ad
in
g
n
et
w
o
r
k
s
is
v
er
y
s
m
a
ll
,
s
o
p
o
w
er
m
e
th
o
d
ap
p
lied
to
th
e
d
ata
p
r
o
d
u
ce
s
n
eg
l
ig
ib
le
c
o
m
p
u
tatio
n
al
t
i
m
e.
T
h
en
s
i
m
ilar
it
y
m
ea
s
u
r
es,
(
1
)
co
s
in
e
o
f
t
h
e
a
n
g
le
b
et
w
ee
n
r
an
k
in
g
v
ec
to
r
o
f
p
r
o
p
o
s
ed
alg
o
r
ith
m
(
u
)
an
d
v
ec
to
r
o
f
to
tal
ex
p
o
r
t
i
m
p
o
r
t (
v
),
2
2
c
os
v
u
v
u
(
6
)
an
d
(
2
)
Sp
ea
r
m
an
r
a
n
k
o
r
d
er
co
r
r
elatio
n
co
ef
f
icie
n
t,
1
)
(
)
(
6
1
2
1
2
N
N
v
r
u
r
N
i
i
i
(
7
)
ar
e
u
s
ed
to
m
ea
s
u
r
e
th
e
r
an
k
i
n
g
q
u
ali
t
y
,
w
h
er
e
r
(
u
)
i
s
r
a
n
k
i
n
g
o
r
d
er
o
f
v
ec
to
r
u
.
Fo
r
e
x
a
m
p
le
i
f
u
=
[
0
.
3
3
9
7
0
.
1
8
1
9
0
.
3
3
2
8
]
th
en
r
(
u
)
=
[
1
3
2
]
.
T
ab
le
1
g
iv
es s
u
m
m
ar
y
o
f
th
e
r
es
u
lt
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
S
ea
r
ch
E
n
g
i
n
e
I
n
s
p
ir
ed
R
a
n
ki
n
g
A
lg
o
r
ith
m
fo
r
Tr
a
d
in
g
N
etrw
o
r
ks
(
A
n
d
r
i Mir
z
a
l
)
817
T
ab
le
1
.
T
h
e
P
e
r
f
o
r
m
a
n
ce
o
f
t
h
e
P
r
o
p
o
s
ed
A
lg
o
r
ith
m
D
a
t
a
#
N
o
d
e
s
#
N
o
n
z
e
r
o
N
u
mb
e
r
o
f
i
t
e
r
a
t
i
o
n
c
o
s
θ
ρ
H
I
T
S
P
a
g
e
R
a
n
k
P
r
o
p
o
se
d
a
l
g
o
r
i
t
h
m
S
t
e
e
l
P
r
o
d
u
c
t
s
97
2
6
2
7
26
54
42
0
.
8
6
2
0
.
8
7
4
Et
h
y
l
e
n
e
43
1
6
9
7
44
54
0
.
8
4
9
0
.
9
1
6
P
r
o
p
y
l
e
n
e
38
1
4
4
10
40
1
4
3
0
.
9
7
4
0
.
9
0
5
S
o
d
i
u
m
49
2
6
8
11
53
1
4
3
0
.
8
0
8
0
.
8
5
0
H
y
d
r
o
g
e
n
P
e
r
o
x
i
d
e
47
2
6
1
51
61
99
0
.
7
5
2
0
.
9
0
2
C
a
r
b
o
n
51
5
3
5
22
37
65
0
.
9
1
2
0
.
9
2
9
R
a
d
i
o
-
a
c
t
i
v
e
53
7
1
7
25
23
26
0
.
8
8
4
0
.
9
2
7
P
l
a
st
i
c
s
53
1
4
1
0
20
37
39
0
.
9
8
5
0
.
9
6
8
M
e
d
i
c
i
n
a
l
P
r
o
d
u
c
t
s
53
1
5
0
4
9
18
14
0
.
9
8
9
0
.
9
6
5
A
v
e
r
a
g
e
54
8
4
8
20
41
69
0
.
8
9
1
0
.
9
1
5
As
s
h
o
w
n
i
n
tab
le
1
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
ta
k
es
m
o
r
e
iter
atio
n
s
to
co
n
v
er
g
e,
b
u
t
b
ec
au
s
e
t
h
e
tr
ad
in
g
n
et
w
o
r
k
s
ar
e
u
s
u
all
y
m
u
c
h
s
m
al
ler
th
a
n
W
W
W
n
et
w
o
r
k
,
t
h
i
s
w
ill
n
o
t
b
ec
o
m
e
a
p
r
o
b
lem
.
An
d
th
e
s
i
m
ilar
it
y
m
ea
s
u
r
es i
n
b
o
th
cr
i
ter
io
n
s
g
i
v
e
p
r
o
m
is
in
g
r
es
u
lts
,
8
9
.
1
% a
n
d
9
1
.
5
% in
av
er
ag
e
r
esp
ec
tiv
el
y
.
I
n
s
tead
o
f
r
el
y
i
n
g
o
n
o
n
l
y
li
n
k
s
tr
u
ct
u
r
e
r
an
k
i
n
g
,
w
e
p
r
o
p
o
s
e
to
co
m
b
i
n
e
b
o
th
s
co
r
es
to
g
et
o
v
er
al
l
s
co
r
es.
T
h
is
is
b
ec
au
s
e
w
e
b
eliev
e
t
h
at
o
u
r
al
g
o
r
ith
m
is
n
o
t
to
r
ep
lace
th
e
co
n
v
e
n
tio
n
a
l
m
eth
o
d
,
b
u
t
to
r
ef
i
n
e
it.
T
ab
le
2
an
d
3
s
h
o
w
t
h
e
r
an
k
in
g
s
co
r
es
o
f
t
w
o
d
ata,
h
y
d
r
o
g
en
p
er
o
x
id
e
(
s
i
m
ilar
it
y
m
ea
s
u
r
e
0
.
7
5
2
,
th
e
least
s
i
m
ilar
to
s
ta
n
d
ar
d
m
ea
s
u
r
e
i
n
co
s
i
n
e
cr
iter
io
n
)
a
n
d
m
ed
ici
n
al
p
r
o
d
u
cts
(
s
i
m
ilar
it
y
m
ea
s
u
r
e
0
.
9
8
9
,
th
e
m
o
s
t
s
i
m
ilar
to
s
tan
d
ar
d
m
ea
s
u
r
e
in
co
s
in
e
cr
iter
io
n
)
f
o
r
to
p
ten
co
u
n
tr
ies.
T
ab
le
2
.
T
h
e
T
o
p
T
en
C
o
u
n
tr
ies in
H
y
d
r
o
g
en
P
er
o
x
id
e
T
r
a
d
in
g
R
a
n
k
i
n
g
b
y
t
o
t
a
l
e
x
p
o
r
t
a
n
d
i
mp
o
r
t
(
n
o
r
mal
i
z
e
d
)
R
a
n
k
i
n
g
b
y
l
i
n
k
st
r
u
c
t
u
r
e
O
v
e
r
a
l
l
r
a
n
k
i
n
g
C
o
u
n
t
r
y
S
c
o
r
e
C
o
u
n
t
r
y
S
c
o
r
e
C
o
u
n
t
r
y
S
c
o
r
e
N
e
t
h
e
r
l
a
n
d
s
0
.
1
3
2
2
9
0
Jap
a
n
0
.
1
7
2
9
7
0
N
e
t
h
e
r
l
a
n
d
s
0
.
1
2
3
2
5
0
C
a
n
a
d
a
0
.
0
9
5
0
1
4
N
o
r
w
a
y
0
.
1
2
3
3
6
0
Jap
a
n
0
.
1
1
0
8
2
0
US
0
.
0
8
8
6
9
4
N
e
t
h
e
r
l
a
n
d
s
0
.
1
1
4
2
0
0
C
a
n
a
d
a
0
.
0
8
8
6
3
8
M
o
l
d
o
v
a
0
.
0
6
5
0
8
8
C
a
n
a
d
a
0
.
0
8
2
2
6
1
N
o
r
w
a
y
0
.
0
7
1
1
4
8
A
u
st
r
i
a
0
.
0
5
9
8
5
0
T
u
r
k
e
y
0
.
0
5
3
1
7
0
US
0
.
0
6
7
8
7
7
C
h
i
n
a
0
.
0
5
4
1
9
4
US
0
.
0
4
7
0
5
9
M
o
l
d
o
v
a
0
.
0
5
1
7
1
6
Jap
a
n
0
.
0
4
8
6
7
6
R
e
p
.
K
o
r
e
a
0
.
0
4
3
6
8
4
C
h
i
n
a
0
.
0
4
5
5
5
5
I
t
a
l
y
0
.
0
4
5
7
4
4
M
o
l
d
o
v
a
0
.
0
3
8
3
4
4
T
u
r
k
e
y
0
.
0
4
5
2
6
1
C
o
l
o
mb
i
a
0
.
0
3
7
7
7
2
C
h
i
n
a
0
.
0
3
6
9
1
6
A
u
st
r
i
a
0
.
0
4
3
1
1
5
T
u
r
k
e
y
0
.
0
3
7
3
5
3
T
h
a
i
l
a
n
d
0
.
0
3
4
5
4
5
I
t
a
l
y
0
.
0
3
3
3
1
8
T
ab
le
3
.
T
h
e
T
o
p
T
en
C
o
u
n
tr
ies in
Me
d
ici
n
al
P
r
o
d
u
cts T
r
a
d
in
g
R
a
n
k
i
n
g
b
y
t
o
t
a
l
e
x
p
o
r
t
a
n
d
i
mp
o
r
t
(
n
o
r
mal
i
z
e
d
)
R
a
n
k
i
n
g
b
y
l
i
n
k
st
r
u
c
t
u
r
e
O
v
e
r
a
l
l
r
a
n
k
i
n
g
C
o
u
n
t
r
y
S
c
o
r
e
C
o
u
n
t
r
y
S
c
o
r
e
C
o
u
n
t
r
y
S
c
o
r
e
G
e
r
man
y
0
.
1
3
3
5
3
0
G
e
r
man
y
0
.
1
3
9
4
9
0
G
e
r
man
y
0
.
1
3
6
5
1
0
US
0
.
1
1
4
5
2
0
UK
0
.
1
0
7
2
7
0
US
0
.
1
0
6
5
2
0
UK
0
.
0
9
6
0
0
1
US
0
.
0
9
8
5
0
9
UK
0
.
1
0
1
6
4
0
F
r
a
n
c
e
0
.
0
9
2
4
0
8
S
w
i
t
z
e
r
l
a
n
d
0
.
0
9
5
9
3
8
S
w
i
t
z
e
r
l
a
n
d
0
.
0
8
9
5
9
1
S
w
i
t
z
e
r
l
a
n
d
0
.
0
8
3
2
4
4
F
r
a
n
c
e
0
.
0
8
5
4
6
3
F
r
a
n
c
e
0
.
0
8
8
9
3
5
I
t
a
l
y
0
.
0
6
7
7
0
7
I
t
a
l
y
0
.
0
6
4
7
1
1
I
t
a
l
y
0
.
0
6
6
2
0
9
B
e
l
g
-
L
u
x
e
mb
.
0
.
0
5
6
6
9
6
B
e
l
g
-
L
u
x
e
mb
.
0
.
0
5
1
1
6
9
B
e
l
g
-
L
u
x
e
mb
.
0
.
0
5
3
9
3
2
N
e
t
h
e
r
l
a
n
d
s
0
.
0
5
1
5
6
4
N
e
t
h
e
r
l
a
n
d
s
0
.
0
4
7
2
7
0
N
e
t
h
e
r
l
a
n
d
s
0
.
0
4
9
4
1
7
Jap
a
n
0
.
0
4
9
3
0
8
I
r
e
l
a
n
d
0
.
0
4
3
6
6
3
Jap
a
n
0
.
0
3
9
4
7
1
S
w
e
d
e
n
0
.
0
3
3
5
7
3
S
w
e
d
e
n
0
.
0
4
1
1
3
4
S
w
e
d
e
n
0
.
0
3
7
3
5
3
5.
CO
NCLU
SI
O
N
Du
e
to
t
h
e
d
i
f
f
er
en
t
n
at
u
r
e
o
f
tr
ad
in
g
n
et
w
o
r
k
s
a
n
d
W
W
W
n
et
w
o
r
k
,
t
h
e
li
n
k
s
tr
u
ct
u
r
e
r
an
k
i
n
g
alg
o
r
ith
m
f
o
r
W
W
W
n
et
w
o
r
k
th
at
p
r
ev
io
u
s
l
y
ap
p
lied
in
(
K
a
w
ac
h
i
et
al.
,
2
0
0
6
)
to
an
al
y
z
e
tr
ad
in
g
n
et
w
o
r
k
ca
n
n
o
t
b
e
u
s
ed
.
C
o
n
s
eq
u
e
n
tl
y
s
p
ec
ial
r
a
n
k
i
n
g
al
g
o
r
ith
m
m
u
s
t
b
e
d
ev
elo
p
ed
to
d
ea
l
w
ith
t
h
e
d
if
f
er
e
n
t
li
n
k
ad
d
itio
n
p
r
o
ce
s
s
.
B
y
co
n
s
id
er
in
g
t
h
e
n
ee
d
ed
co
s
t
in
li
n
k
ad
d
itio
n
p
r
o
ce
s
s
,
w
e
p
r
o
p
o
s
e
n
e
w
r
an
k
i
n
g
al
g
o
r
it
h
m
f
o
r
class
o
f
n
et
w
o
r
k
s
th
at
r
eq
u
ir
es
r
eso
u
r
ce
s
to
b
e
ex
c
h
an
g
ed
i
n
li
n
k
ad
d
itio
n
p
r
o
ce
s
s
.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
n
o
t
o
n
l
y
co
n
s
id
er
s
t
h
e
to
tal
v
o
l
u
m
es
o
f
ex
p
o
r
t/i
m
p
o
r
t,
as
u
s
u
al
l
y
u
s
ed
to
r
a
n
k
t
h
e
m
o
s
t
i
m
p
o
r
ta
n
t
co
u
n
tr
ies,
b
u
t a
ls
o
tak
e
s
in
to
ac
co
u
n
t t
h
e
n
et
w
o
r
k
s
tr
u
ctu
r
e
i
n
th
e
tr
ad
i
n
g
n
et
w
o
r
k
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
8
1
2
–
818
818
RE
F
E
R
E
NC
E
S
[1
]
.
Ka
w
a
c
h
i,
Y.,
Yo
sh
ii
,
S
.
a
n
d
F
u
r
u
k
a
w
a
,
M
.
L
a
b
e
led
li
n
k
a
n
a
lys
is
f
o
r
e
x
tra
c
ti
n
g
u
se
r
c
h
a
ra
c
ter
isti
c
s
in
e
-
c
o
mm
e
rc
e
a
c
ti
v
it
y
n
e
two
rk
.
I
EE
E/
W
IC/A
C
M
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
W
e
b
In
telli
g
e
n
c
e
.
2
0
0
6
.
7
3
-
8
0
.
[2
]
.
Ko
h
o
n
e
n
,
T
.
T
h
e
se
lf
-
o
rg
a
n
izin
g
m
a
p
.
Ne
u
ro
c
o
m
p
u
ti
n
g
2
1
(
1
).
1
9
9
8
,
1
-
6.
[3
]
.
Un
it
e
d
Na
ti
o
n
s.
A
n
n
u
a
l
Bu
ll
e
ti
n
o
f
S
tatisti
c
s o
f
W
o
rld
T
ra
d
e
in
S
tee
l
1
9
9
8
.
De
stin
a
ti
o
n
o
f
Ex
p
o
rt
o
f
S
tee
l
P
ro
d
u
c
ts
(T
o
tal).
Un
it
e
d
Na
ti
o
n
,
1
9
9
9
.
[4
]
.
Un
it
e
d
Na
ti
o
n
s.
A
n
n
u
a
l
Bu
l
letin
o
f
T
ra
d
e
in
Ch
e
m
ic
a
l
P
r
o
d
u
c
ts
1
9
9
6
.
U
n
it
e
d
Na
ti
o
n
s
,
1
9
9
6
.
[5
]
.
Brin
,
S
.
a
n
d
P
a
g
e
,
L
.
T
h
e
a
n
a
to
m
y
o
f
a
larg
e
-
s
c
a
le
h
y
p
e
rtex
tu
a
l
we
b
se
a
rc
h
e
n
g
in
e
.
Co
m
p
u
ter
n
e
two
rk
s
a
n
d
IS
D
N
sy
ste
ms
3
0
(1
).
1
9
9
8
,
1
0
7
-
1
1
7
.
[6
]
.
P
a
g
e
,
L
.
,
Brin
,
S
.
,
M
o
tw
a
n
i,
R.
a
n
d
W
in
o
g
ra
d
,
T
.
T
h
e
P
a
g
e
Ra
n
k
c
it
a
ti
o
n
ra
n
k
in
g
:
Brin
g
in
g
o
r
d
e
r
to
th
e
w
e
b
.
T
e
c
h
n
ica
l
Re
p
o
rt
1
9
9
9
-
0
1
2
0
,
C
o
m
p
u
ter S
c
ien
c
e
De
p
a
rt
m
e
n
t,
S
tan
f
o
rd
Un
iv
e
rsity
.
1
9
9
9
.
[7
]
.
Kle
in
b
e
rg
,
J.
M
.
A
u
th
o
ri
tativ
e
so
u
rc
e
s in
a
h
y
p
e
rli
n
k
e
d
e
n
v
iro
n
m
e
n
t.
J
o
u
rn
a
l
o
f
t
h
e
ACM
4
6
(5
).
1
9
9
9
,
6
0
4
-
6
3
2
.
[8
]
.
L
a
n
g
v
il
le,
A
.
N.
a
n
d
M
e
y
e
r,
C.
D.
G
o
o
g
le'
s
P
a
g
e
Ra
n
k
a
n
d
b
e
y
o
n
d
:
T
h
e
sc
ien
c
e
o
f
se
a
r
c
h
e
n
g
in
e
ra
n
k
in
g
s.
P
ri
n
c
e
to
n
Un
iv
e
rsity
P
re
ss
,
2
0
1
1
.
[9
]
.
M
e
y
e
r,
C.
D.
M
a
tri
x
a
n
a
ly
sis a
n
d
a
p
p
li
e
d
li
n
e
a
r
a
lg
e
b
ra
.
S
IA
M
,
P
h
i
lad
e
lp
h
ia,
2
0
0
0
,
p
p
.
5
3
4
.
[1
0
]
.
Dw
o
rk
,
C.
,
Ku
m
a
r,
R.
,
Na
o
r,
M
.
a
n
d
S
iv
a
k
u
m
a
r,
D.
Ra
n
k
a
g
g
re
g
a
ti
o
n
me
t
h
o
d
s
fo
r
t
h
e
we
b
.
P
ro
c
e
e
d
in
g
s
o
f
th
e
1
0
t
h
i
n
tern
a
ti
o
n
a
l
c
o
n
f
e
re
n
c
e
o
n
W
o
rld
W
id
e
W
e
b
,
2
0
0
1
,
6
1
3
-
6
2
2
.
[1
1
]
.
F
a
g
in
,
R.
,
Ku
m
a
r,
R.
,
M
c
Cu
rley
,
K.
S
.
,
N
o
v
a
k
,
J.,
S
iv
a
k
u
m
a
r,
D.,
T
o
m
li
n
,
J.
A
.
a
n
d
W
il
li
a
m
so
n
,
D.
P
.
S
e
a
rc
h
in
g
th
e
wo
rk
p
l
a
c
e
we
b
.
P
r
o
c
e
e
d
in
g
s o
f
th
e
1
2
t
h
in
tern
a
ti
o
n
a
l
c
o
n
f
e
re
n
c
e
o
n
W
o
rl
d
W
id
e
W
e
b
,
2
0
0
3
,
3
6
6
-
3
7
5
.
[1
2
]
.
F
a
g
in
,
R.
,
Ku
m
a
r,
R.
a
n
d
S
iv
a
k
u
m
a
r,
D.
Co
m
p
a
rin
g
to
p
k
li
sts.
S
IAM
J
o
u
rn
a
l
o
n
Disc
re
te
M
a
th
e
ma
ti
c
s
1
7
(
1
),
2
0
0
3
,
1
3
4
-
1
6
0
.
[1
3
]
.
Ha
v
e
li
w
a
l
a
,
T
.
E
ff
icie
n
t
c
o
m
p
u
tatio
n
o
f
P
a
g
e
Ra
n
k
.
Tec
h
n
ica
l
Re
p
o
rt
1
9
9
9
-
3
1
,
C
o
m
p
u
ter
S
c
ien
c
e
De
p
a
rt
m
e
n
t,
S
tan
f
o
rd
Un
iv
e
rsity
,
1
9
9
9
.
[1
4
]
.
Ha
v
e
li
w
a
l
a
,
T
.
H.
T
o
p
ic
-
se
n
siti
v
e
p
a
g
e
ra
n
k
.
P
ro
c
e
e
d
i
n
g
s o
f
th
e
1
1
th
in
tern
a
ti
o
n
a
l
c
o
n
f
e
re
n
c
e
o
n
W
o
rld
W
id
e
W
e
b
,
2
0
0
2
,
5
1
7
-
5
2
6
.
[1
5
]
.
M
e
n
d
e
lzo
n
,
A
.
O.
a
n
d
Ra
f
iei,
D.
An
a
u
to
n
o
mo
u
s
p
a
g
e
ra
n
k
i
n
g
me
th
o
d
fo
r
me
ta
se
a
rc
h
e
n
g
i
n
e
s
.
T
h
e
El
e
v
e
n
th
In
tern
a
ti
o
n
a
l
W
W
W
Co
n
f
e
r
e
n
c
e
,
Ne
w
Yo
rk
,
2
0
0
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.