TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4379 ~ 4
3
8
6
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.
54
71
4379
Re
cei
v
ed
De
cem
ber 2
1
, 2013; Re
vi
sed
Februar
y 9, 2
014; Accepte
d
February 2
2
, 2014
Modeling and Simulation of DIGSILENT-based
Micro-grid System
Yang Zhang*
1
, Hongli Yun
2
, Qiang Li
3
, Tonghe Liu
4
1,2
North China
Univers
i
t
y
of Water Reso
urces
and
Electric P
o
w
e
r, Z
hen
gzh
ou, Chi
na, 45
0
045
3
Hena
n Electri
c
Po
w
e
r Res
e
a
r
ch Inst
itute, Zhen
gzh
ou, Chi
na, 450
05
2
4
Hena
n Pu
ya
n
g
po
w
e
r supp
l
y
Com
p
a
n
y
, P
u
yan
g
, Chi
na, 457
00
0
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: 2865
54
472
@
qq.com
A
b
st
r
a
ct
The acc
u
rate
m
o
deling of
micro-grid acc
e
ss
to power system
pl
anning and design
stage needs
is
the pri
m
ary
probl
e
m
to s
o
lve
.
T
h
is pa
per
mode
led
th
e mi
cro
gri
d
p
hotov
oltaic pow
er g
ener
ation
sys
t
e
m
,inclu
din
g
sil
i
c
on so
lar c
e
ll,
photov
olta
ic in
verter
s, batter
y
ener
gy stora
ge syste
m
, a
n
d
the
micr
o p
o
w
e
r
distribution sys
tem
.The us
e
of
power syst
em analys
is s
o
ftware (DIGSILENT) of act
u
al power system
simulation, the sim
u
lation
res
u
lts verify the m
o
del's correctness. In
the pow
er grid faul
t
disturba
nce, the
light intens
ity of disturba
nce and the load dis
t
urbanc
es, the
simulati
on r
e
sults show that
the optic
al storage
combi
ned
w
i
th
micr
o n
e
tw
ork has fast
dyna
mic resp
ons
e ch
aracteristics,
a
nd its
netw
o
rk of
gri
d
-con
nect
e
d
voltag
e i
n
flu
e
n
c
ed
by th
e ch
a
nges
of th
e l
i
g
h
t an
d
lo
ad
is
little, w
h
i
l
e
mo
re affected
by
the n
e
tw
ork fa
ult
influ
ence.
Ke
y
w
ords
:
mi
cro grid, silic
on
solar cel
l
, phot
ovolta
ic inve
rte
r
, battery energ
y
storage syste
m
intro
ducti
on
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the i
n
cre
a
si
ng
de
pletion of
conv
ention
a
l
energy source
s a
nd e
n
v
ironme
n
t
deterio
ratio
n
, the develop
ment of the clean en
erg
y
has beco
m
e our cou
n
try to solve the
sho
r
tage
of energy and
prote
c
t env
ironment i
s
a
n
impo
rtant stra
tegi
c ta
sk. Represente
d
by
photovoltai
c
power, the distrib
u
ted cl
ean ene
rg
y
has le
ss poll
u
tion, high re
liability, and high
efficien
cy of energy utiliza
t
ion . At the same
time distrib
u
ted e
nergy a
c
cess to power g
r
id
brou
ght ne
g
a
tive effect; photovoltai
c
, wind p
o
wer an
d othe
r intermittent
energy po
wer
fluctuation of
electri
c
e
nerg
y
quality prob
lems.
In orde
r to red
u
ce the distri
buted
energy simpl
e
parall
e
l o
p
e
r
a
t
ion on
the
p
o
we
r g
r
id
an
d u
s
e
r
imp
a
ct
,
red
u
cin
g
it
s
ac
ce
ss
t
o
t
h
e
ele
c
t
r
i
c
e
ner
gy
quality and
ot
her
aspe
cts o
f
the impa
ct, micro po
we
r
grid i
s
con
s
id
ered
into the
resea
r
ch field
of
intelligent di
stribution
network [1
-3]. Micro g
r
id sy
ste
m
modelin
g i
s
a mi
cro
po
wer
grid
ope
ration
analysi
s
, mo
d
e
l in
clude
s th
e follo
wing
p
a
rts: the
ph
otovoltaic powe
r
ge
ne
ra
tion system
s,
batt
e
ry
energy storag
e system a
n
d
a micro
g
r
id
distrib
u
tion sy
stem [4-5].
2.
Photov
oltaic Po
w
e
r Sy
stem Modeling
Photovoltaic grid
-conn
ecte
d
ge
neration
system
con
s
ist
s
of
a ph
otovoltaic
array, the
inverter a
n
d
controll
er, i
n
verter p
hot
ovoltaic
cell is pro
d
u
c
ed
from the po
wer inve
rter
into
sinu
soi
dal
cu
rre
nt inje
ction
system; th
e
controlle
r tra
c
ks the
photo
v
oltaic maxim
u
m po
we
r p
o
i
n
t
to co
ntrol
the
grid
-con
ne
cted inve
rter’
s
curre
n
t wa
veform to the network
to
tra
n
smit power and
photovoltai
c
array maxim
u
m p
o
we
r
ph
ase
eq
uilibri
u
m
. The
co
ntroller i
s
comp
ose
d
of
a
sin
g
le-
chip mi
cro
c
o
m
puter
or g
eneral digital
sign
al
processing chi
p
as core
com
pone
nts;
voltage
sou
r
ce invert
er is mai
n
ly compo
s
ed of p
o
we
r ele
c
tro
n
i
c switchi
ng d
e
vice
s co
nne
cted ind
u
cto
r
,
a
pulse wi
dth
modulatio
n fo
rm to th
e po
wer tran
smissi
on g
r
id. Typi
cal photovoltai
c
g
r
id
-conne
cted
system
struct
ure
diag
ram i
n
clu
d
e
s
: phot
ovoltaic a
r
ray,
inverter and
integrated control prote
c
ti
ve
device [6-7], as sho
w
n in
Figure 1.
Figure 1 sh
ows the inv
e
rter i
s
the
core
of ph
otovoltaic g
r
id-con
ne
cted g
eneration
system, the
maximum po
wer t
r
a
cki
ng
cont
rolle
r a
nd a
synchronization
wa
veform controller
belon
g to the
inverter
pa
rt, so the
wh
ole
modelin
g wo
rk
ca
n be
divided into th
re
e part
s
:the
so
lar
photovoltai
c
cell model, gri
d
con
n
e
c
ted
control mod
e
l
and network prote
c
tion co
ntrol mod
e
l.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4379 – 4
386
4380
Figure 1. The
Structure of Photov
oltaic
Parallel
ed in System
2.1. Standard Test Env
i
r
onment of the Silic
on Sol
a
r Cell Engineering Simplification Model
A simplified n
online
a
r math
ematical m
o
d
e
l:
11
U
sc
II
e
(1)
sc
I
I
/
0
(2)
AkT
q
/
(3)
Whe
r
e q i
s
t
he ele
c
tro
n
cha
r
ge,T i
s
the ab
solute
temperature
of sola
r cell,K is the
Boltzman
n co
nstant, A is d
i
ode
cu
rve fa
ctor,
I
o
is reverse satu
ratio
n
current,
I
sc
is
s
hor
t c
i
rc
u
i
t
curre
n
t, U is
equivalent
di
ode volta
ge,
and
β
ar
e u
n
k
n
ow
n p
a
r
a
me
te
r
s
, ca
n
b
e
r
e
p
r
es
en
te
d
by the followi
ng method:
The form
ula (1) into a voltage expre
s
sio
n
s, availabl
e:
(1
)
1
ln
sc
sc
I
I
V
I
(4)
In the maximum power point,
I
I
m
,
U
U
m
in the op
en state
,
U
U
I
oc
,
0
.
U
oc
is
the op
en-ci
rcuit voltage,
I
m
is
the
maxim
u
m power point current,
U
m
is th
e
maximum p
o
w
er poi
nt
voltage,
P
m
is maximum power.
Subs
tituted into type (4):
(1
)
1
ln
s
cm
m
sc
II
U
I
(5)
1(
1
)
ln
oc
U
(6)
Con
s
id
erin
g the normal te
mperat
ure
co
ndition can b
e
solved:
m
OC
OC
m
U
UU
sc
sc
II
I
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Sim
u
lation of DIGSILENT-
based Micro
-
grid System
(Yang Zha
ng)
4381
ln
(
)
11
OC
U
(8)
Therefore,
b
a
se
d o
n
th
e 4
elect
r
ic paramete
r
s
I
U
I
U
m
m
sc
oc
\
\
\
provid
ed
b
y
the
manufa
c
turers ,the e no
nlinear m
a
the
m
atical mo
de
l can b
e
crea
ted .or a
s
lon
g
as the
use of
manufa
c
turers to
provide
4
ele
c
tric
para
m
eter
s,
according
to
type (7) an
d (8) to d
e
rive
para
m
eters
a
nd, agai
n by t
y
pe (1
)
can
b
e
obtain
ed by
the IV ch
ara
c
teri
stics of
solar
cell. In th
is
pape
r, ba
se
d
on the
DIgS
ILENT
simula
tion platform
controlled
DC
curre
n
t so
urce e
s
tabli
s
hed
the arbitra
r
y intensity and t
e
mpe
r
ature o
f
the
silicon
solar cell engi
neeri
ng si
mpl
i
fication mod
e
l.
In ord
e
r to ve
rify the a
c
curacy of th
e m
odel, the
sim
u
lation
re
sult
s
with the
ph
otovoltaic
battery and the paramete
r
s (su
c
h a
s
sho
w
n in
Ta
ble 1) provid
ed by the manufa
c
ture
rs are
c
o
ns
is
tent [8-9].
Table 1. The
Tech
nical Parameter of ST
P180S-2
4/Ad
125 Single
-
crystal Silico
n
Photovoltaic
Module
Parameter
value
T
y
pe
STP180S-24/A
d
Uoc 44.8V
Um 36V
Isc 5.29A
Im 5A
Pmax 180Wp
Takin
g
the da
y illumination 1000
W / m2,
comp
one
nt temperature 2
5
DEG C, usi
ng the
DIgSILENT/P
o
we
rFa
c
tory
simulation
tools in the
controlled
curre
n
t sou
r
ce can d
r
a
w
a
photovoltai
c
cell IV curve as sh
own in Fi
gure 2,
whi
c
h
shows the si
mulation re
su
lts is con
s
i
s
te
nt
with the real
data (the
be
st working volt
age 36V,
the
optimal worki
ng cu
rrent pe
ak po
we
r of 5
A
,
180
Wp)
Figure 2. The Characteri
stic
Curve of 125 Single-cry
s
tal
Silicon Photovoltaic Module
The bl
ock
of
modificatio
n
of flux error status
has two main func
tions
,
i.e. to
det
ec
t flux
se
ctors a
nd t
o
perfo
rm
dynamic
overm
odulatio
n.
Some blo
c
k co
mpone
nts in
side this
blo
c
k are
depi
cted in Fi
gure
5. For
convenie
n
ce, t
he tasks of th
e blo
c
ks
can
be group
ed i
n
to two a
r
ea
s as
marked i
n
th
e Figu
re 2. T
he up
per gro
up a
r
ea i
s
re
spo
n
si
ble to
determi
ne th
e app
rop
r
iate
flux
error
status a
c
cordi
ng to the flux
secto
r
and the thre
shold value of
Ψ
sq,2
. The bottom grou
p area
is a
s
sign
ed t
o
dete
r
min
e
t
he flux
se
ctor and
t
he th
re
shol
d valu
es
for e
a
ch
se
ctor. Th
e dyn
a
m
ic
overmo
dulati
on mod
e
is a
c
tivated whe
n
a sudd
en
la
rge to
rqu
e
e
r
ror det
ected
b
y
the relay bl
ock
(as
hysteresi
s
co
mpa
r
ato
r
) req
u
e
s
ts th
e “switch2”
(as sele
ctor)
to sele
ct the
approp
riate flux
error
status
(i.e. produ
ce
d
by the uppe
r gro
up a
r
ea
), otherwi
se, t
he “swit
c
h2
”
will sel
e
ct the
origin
al flux erro
r statu
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4379 – 4
386
4382
2.2. Photov
o
l
taic In
v
e
rter
Contr
o
l Model
There Witho
u
t
consi
deri
n
g
the saturatio
n
factor
of in
verter un
der
the influen
ce
of ideal
inverter by type (9
) simul
a
tion:
0
0
A
Cd
m
d
D
C
A
Cq
m
q
D
C
UK
P
U
UK
P
U
(9)
Whe
r
e th
e
DC
U
is AC voltage,
AC
d
U
and
A
Cq
U
rep
r
esented
the
d axis an
d
q axi
s
comp
one
nt resp
ectively.
Und
e
r th
e Si
ne
wave m
o
d
u
lation,
0
3
22
K
,
md
P
and
mq
P
re
presented
Inverter M
o
d
u
lation ratio.
The oth
e
r
co
ntrol p
o
int inv
e
rters g
e
t the
modulatio
n ratio as th
e in
put
of the inverte
r
. In ge
neral,
the inverte
r
u
s
e
s
t
he l
oop
curre
n
t feedb
ack
control, a
c
cordi
ng to th
e
outer loo
p
co
ntrol targ
et to determine th
e inner
loop
curre
n
t feedb
ack co
ntrol a
s
the referen
c
e
value, and th
en thro
ugh th
e loop
curre
n
t
feedback
c
ontrol to get
the modul
atio
n ratio. Usual
ly
the inverter
control obj
ectives are th
e output
a
c
tive powe
r
, reactive po
wer, but in the
photovoltai
c
power g
ene
ra
tion system
i
n
the outp
u
t power of the
sy
stem i
s
cha
nging
with th
e as
the extern
al
condition
s.
Wh
en light i
n
ten
s
ity, te
mperature ch
ang
e,
the controller will
ta
ke
a
c
tio
n
,
adju
s
t the worki
ng voltag
e to the optimal ope
ra
tin
g
point. The
r
efore the in
verter contai
ned
controlle
r can
get the d axi
s
an
d q ax
i
s
comp
one
nt. by the cont
rol
target
_
dc
re
f
U
and referen
c
e
value of rea
c
tive powe
r
re
f
Q
.
2.3. Photov
o
l
taic Sy
stem
Photovoltaic
power ge
ne
ra
tion sy
stem a
s
sh
own in Figure 3:
Figure 3. The
Model of Photovoltaic Paralleled in System
In the modeli
ng pro
c
e
s
s, think inve
rter i
deal, with po
wer g
r
id
con
n
e
cted th
roug
h
reacto
r.
Photovoltaic
array emitted power:
P
VP
V
P
V
PU
I
(10)
Photovoltaic
power ge
ne
ra
tion system i
s
inject
ed into
the comm
uni
cation
system
for the active
:
si
n(
)
ta
c
ac
t
a
c
T
UU
P
x
(11)
Injected into t
he com
m
uni
cation system
for the rea
c
tive power:
2
cos
(
)
ta
c
a
c
ac
t
a
c
TT
UU
U
Q
x
x
(12)
Con
s
id
er the
pro
c
e
ss of
ch
ar
ge a
nd di
scharg
e
ca
pa
citance:
ac
a
c
P
jQ
PV
U
P
V
I
DC
I
C
I
tt
U
ac
ac
U
T
x
C
S
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Sim
u
lation of DIGSILENT-
based Micro
-
grid System
(Yang Zha
ng)
4383
PV
P
VP
V
P
V
P
V
a
c
dU
PU
I
C
U
P
dt
(13)
And
sep
a
rat
e
ly for volta
g
e
sou
r
ce inv
e
rter
expo
rt
AC voltag
e
magnitud
e
a
nd p
h
a
s
e
angle, the in
verter control
syst
em de
ci
sion. In addit
i
on, the inverter AC / DC voltage is as
follows
:
(14)
M is mo
dula
t
ion ratio, type (1
0) to
(14) t
hat d
e
termin
es th
e
overall m
ode
l of grid
con
n
e
c
ted int
e
rface.
2.4. Batter
y
Energ
y
Stor
age Sy
stem
Modeling
Energy
stora
ge batte
ry in
micr
o po
we
r
netwo
rk is ve
ry impo
rtant. It is used fo
r optimal
power o
u
tput
and
stable
control
of cle
a
n
ene
rgy
system and it i
s
possibl
e to
adopt the
sm
all
cap
a
city en
ergy storage, th
roug
h
rapid e
nergy acce
ss,
reali
z
e
la
rge
power
adju
s
t
m
ent an
d rapi
d
absorptio
n of
" saved e
n
e
r
gy" or" po
we
r sh
or
ta
ge", thereby im
provi
ng cl
ean
energy syste
m
operation
sta
b
ility, improving ele
c
tri
c
e
nergy q
uality,enhan
ce th
e
reliability of
the syste
m
to
reali
z
e rapid
corre
s
p
ondin
g
to powe
r
.
Equivalent ci
rcuit mo
del i
s
often u
s
ed
In
the field of electri
c
al
engin
eeri
ng, detailed
energy sto
r
a
ge batte
ry eq
uivalent ci
rcui
t as
sho
w
n
in
Figu
re 4.
Th
e ope
n
circuit
voltage i
s
S
O
C
(important parameters
reflec
ting the
battery charg
ed state
fun
c
tion),
used
to describe t
h
e
dynamic cha
r
acteri
stics
of
the impe
dan
ce of b
a
ttery
b
y
the inte
rnal
resi
stan
ce
of
the batte
ry a
nd
the other resi
stan
ce.
Figure 4. The
Detailed Equ
i
valent Circuit
of Stored Energy Battery
(15)
Type (15), i
n
addition to
th
e op
en
circuit
volt
age,
the other pa
rame
ters and
current
are
nonrelated
wi
th soc. Th
e Table 2 is a typical mo
del p
a
ram
e
ters.
Table 2. The
Model Param
e
ter of LiFeP
04 Battery Typed A123
-M1
Parameter
value
R
0
0.07
K -0.047288
K
1
597.56
K
2
32.668
K
3
1996.7
3
22
tP
V
Um
U
12
0
11
2
2
1
0
23
11
1
11
OC
V
OC
V
RR
VV
S
o
C
R
I
sR
C
s
R
C
Ks
K
VS
o
C
R
I
I
sK
sK
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4379 – 4
386
4384
2.5. Distribu
tion Sy
stem Modeling
w
i
th the Micro
Grid
Electro
n
ic
system
s with
micro gri
d
ca
n be mo
dele
d
con
s
id
eri
n
g the ch
aracteristic
of
variou
s pa
rts of it: if there is bi
g diffe
ren
c
e of
each part
s
, then
need to
est
ablish practi
cal
netwo
rk top
o
l
ogy of the system;
if each part contai
ns ide
n
tical
or
clo
s
e
cha
r
act
e
ri
st
ic
s,
t
h
en
establi
s
h
eq
u
i
valent net
wo
rk topol
ogical
structu
r
e
of
the sy
stem.
Con
s
id
erin
g t
he p
hotovolta
ic
comp
one
nt a
nd the
sa
me
ch
ara
c
te
risti
c
of th
e
sto
r
age battery use
d
in pract
i
cal engin
e
e
r
i
n
g
field, usually
PV module and sto
r
ag
e battery
are the sam
e
type produ
ct
s with the same
manufa
c
turers. The
cha
r
a
c
teri
stics of the Micro
po
wer
gri
d
loa
d
are
almo
st
the sam
e
. This
pape
r e
s
tabli
s
he
d mi
cro
grid
ele
c
tro
n
i
c
e
qui
vale
nt syste
m
mo
del, the
pho
tovoltaic p
o
wer
gene
ration
sy
stem, an
en
e
r
gy sto
r
a
ge b
a
ttery sy
ste
m
ado
pt ce
ntral
i
zed
equival
e
nt model,
micro
grid lo
ad cha
r
acte
ri
stics n
ear the
sam
e
load
with
Gene
ral L
o
a
d
-2
said, G
e
neral
Loa
d-1
said
other loa
d
s, the load
cha
r
a
c
teri
stics and
size ca
n be i
n
the simulati
on acco
rdin
g to requi
reme
nts
s
e
t.
3. Simulation Analy
s
is o
f
the Micro G
r
id D
y
namic
Resp
onse
In the validation of the accura
cy, this pa
per
fo
cu
se
s o
n
the analysi
s
of micro g
r
id
acce
ss
to distri
bution
of the network an
d no
ene
rgy sto
r
ag
e u
nder
extreme
con
d
ition
s
, the outp
u
t po
we
r
of the power
netwo
rk volta
ge and th
e d
y
namic resp
o
n
se
cha
r
a
c
te
ristics. Th
e main po
we
r
grid
con
s
id
erin
g f
ault di
sturb
a
n
ce, li
ght lo
ad di
sturban
ce
distu
r
ba
n
c
e, th
ree
ca
se,
rega
rdl
e
ss of
power gri
d
fa
ult co
ndition
and
micro
gri
d
an
d o
ff
net
work op
eratio
n mo
de
switch. In el
ectron
ic
system
with
equivalent
to
pologi
cal
stru
cture
of
th
e
n
e
twork enviro
n
ment
as foll
ows: Simulati
o
n
of fault distu
r
ban
ce
simul
a
tion, light intens
ity dist
urba
nce sim
u
lation an
d l
oad di
sturba
nce
s
i
mulation.
3.1. Grid Fau
l
t Distur
banc
e
Figure 5 sh
o
w
s a
n
exampl
e system
e
q
u
i
valent netwo
rk dia
g
ram.
Figure 5. The
Topologi
cal
Diag
ram of Equiva
lent Network of Di
stri
bution Sub
s
ystem
The Fig
u
re
5
sho
w
s the e
quivalent net
wo
rk, a mi
cro po
wer
grid
and
China
Southern
power
gri
d
conne
ction
lin
e L1
-10
in
1.1s fa
ult, 1.
3s three
-
p
h
a
s
e
sh
ort-circuit
fault cle
a
ra
nce.
Micro gri
d
lo
ad for the p
u
re a
c
tive lo
ad 0.2M
W.
Photovoltaic
power g
ene
ration syste
m
with
maximum p
o
w
er poi
nt tra
cki
ng,
control
model,
wh
i
c
h is equ
al to
0. Ene
r
gy storage
sy
ste
m
usin
g,
control
,
whi
c
h = - 0.2MW, 0.
Power sy
stem
fau
l
t distu
r
ban
ce
, and th
e dyn
a
mic
re
sp
on
se
cha
r
a
c
teri
stics of netwo
rk voltage as
sh
own in Fig
u
re
6.
Figure 6
sh
o
w
s and
net
work voltage
failure
fault d
u
ring
0.96
8p.
u, and
netwo
rk volta
g
e
fluctuation
s
d
o
wn to 0.012
p.u, fault after ex
cision a
n
d
network voltage re
sto
r
ed
to 0.969p.u. The
qualified level
[10].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Sim
u
lation of DIGSILENT-bas
ed Micro
-
grid System
(Yang Zha
n
g)
4385
Figure 6. The
Voltage Dyn
a
mic Respon
se
of Parall
el Point (ba
s
ed
1kV)
3.2. Light Intensit
y
Distur
bance
Hypothe
si
s o
f
photovoltaic powe
r
ge
ne
ration
syste
m
initial wo
rking lig
ht intensity of
1000
W/m2 condition
s, a time of light intensity
jump to 900
W
/m2, as sho
w
n in
Figure 7.
Figure 7. The
Step Chang
e
of Intensity of Illumination
The Fig
u
re
7
sho
w
s the e
quivalent n
e
twork,
p
hotovoltaic p
o
wer
gene
r
ation
system in
light inten
s
ity distu
r
ba
nce
con
d
ition
s
,
and the
dyn
a
mic re
spo
n
s
e cha
r
a
c
teri
stics
of
n
e
twork
voltage as
sh
own in Fig
u
re
8:
Figure 8. The
Voltage Dyn
a
mic Respon
se
of Parall
el Point (ba
s
ed
1kV)
Figure 8
sho
w
s th
e light i
n
tensity muta
tion
and
net
work voltag
e
stability in 0
.
978p.u,
light inten
s
ity after m
u
tation a
nd n
e
twork voltage
i
s
al
way
s
in
0.978p.u. So
nea
r the
small
fluctuation
s
, final voltage re
store
d
to 0.97
8p.u. the qual
ified level.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4379 – 4
386
4386
3.3. Chang
e
of Load
Disturbanc
e
A micro
po
we
r gri
d
in the i
n
itial loading
of 300
kW, in th
e 1.1s
step i
n
increme
n
ts o
f
20%,
this time
and
netwo
rk volta
ge respon
se
cha
r
a
c
teri
stics a
s
sh
own in
Figu
re
9 (re
d
,
blue li
ne
as
to
load an
d net
work voltage
):
Figure 9. The
Voltage Dyn
a
mic Respon
se
of Parall
el Point (ba
s
ed
1kV)
4. Conclu
sion
This pa
per b
a
se
d o
n
the
DIGSILENT
simulati
o
n
pl
atform
cont
ro
lled
DC curre
n
t so
urce
establi
s
h
ed e
ngine
erin
g si
mplification
m
odel fo
r
arbitrary inten
s
ity and tem
perature
of the
silico
n
sola
r
cell, ph
otovoltaic inv
e
rters, batte
ry ener
gy
sto
r
age
sy
stem, and el
ect
r
o
n
ic
system
with
micro gird. T
he sim
u
lation
results
sho
w
that t
he mod
e
l ha
s high
a
c
cura
cy. In p
o
we
r g
r
id fau
l
t,
illumination v
a
riation, mut
a
tion load u
nder the
co
n
d
itions of the simulatio
n
analysi
s
sh
o
w
s:
optical
sto
r
a
ge
combi
n
e
d
with
micro net
work
with fa
st dy
namic respo
n
se,
both i
n
the
disturban
ce
after tran
sien
t respo
n
se. The acce
ss, in netwo
rk fa
ult disturb
a
n
c
e an
d network
voltage flu
c
tu
ations; i
n
lig
h
t
and
load
di
sturban
ce,
an
d outlet
s
of the voltag
e
ca
n be
mai
n
tain
ed
in the norma
l rang
e. The
optical
storage comb
i
n
e
d
with micro
netwo
rk
on
powe
r
sy
ste
m
s
voltage by light and the influen
ce of load
chan
ge
s
little, affected by the network fault influence.
Ackn
o
w
l
e
dg
ements
This wo
rk was supp
orte
d
by
the
Natura
l S
c
ien
c
e Fo
und
ation of the Education
Dep
a
rtme
nt of Henan Province (No. 20
1
0
A4700
04
、、
No. 12A4700
0
5
No. 12A4
7
0006
).
Referen
ces
[1]
Yang Zhic
hu
n, Le Jian, Li
u
Kaip
ei, W
an Zilin, G
ong H
a
n
y
a
ng. Ana
l
ytical Metho
d
o
f
Distribute
d
Generati
on on Static
. T
E
LKOMNIKA Indon
e
s
ian J
ourn
a
l
of Electrica
l
Eng
i
neer
ing
. 201
3;
11(9):
50
18-
502
9.
[2]
Sun
Hon
g
b
i
n,
T
i
an Ch
un
gu
ang.
Optimiz
i
n
g
Mu
lti-ag
ent
MicroGrid
Res
ource
Sch
edu
l
i
ng
b
y
Co-
Evoluti
onar
y with
Prefere
n
ce.
T
E
LKOMNIKA Indo
nesi
an
Journ
a
l
of Ele
c
trical En
gi
ne
erin
g
. 20
13
;
11(1
2
):
72
22-
7
229.
[3]
Lakshm
i
R, B
harath
i
SG. PSO base
d
Optimal P
o
w
e
r F
l
o
w
w
i
t
h
H
y
br
i
d
Distri
bute
d
Generators
an
d
UPFC PDF.
TELKOMNIKA Indo
nesi
an Jo
u
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(3): 4
09-4
18.
[4]
LU Z
ong
xian
g,
W
A
NG Caixi
a
, MIN Yong, et al. Overvie
w
on micr
o-g
r
id rese
arch
. Autom
a
tion of
Electric Power System
s.
20
07
; 3l(19): 100-
10
7.
[5]
DING Ming, Z
H
ANG Yin
g
y
u
an, MAO Mei
q
in. Ke
y t
e
chn
o
lo
gies f
o
r m
i
crogri
d
s b
e
i
n
g
researc
h
e
d
.
Pow
e
r System
T
e
chno
logy
. 2
009; 33(
11): 6-
11.
[6]
CAO Xi
an
g qi
n
,
JU Ping, CAI
Cha
ngch
un. Si
mulati
v
e
an
al
ysis an
d eq
uiva
l
ent red
u
ction f
o
r micro-gr
id.
Electric Power Auto
m
a
tion Equipment.
201
1; 31(5): 94-9
8
.
[7]
JU Ping, CAI Cha
ngch
un, C
A
O Xian
gq
in. Genera
l
micro
g
rid mod
e
l b
a
s
ed on p
h
y
sic
a
l back
g
rou
n
d
.
Electric Power Auto
m
a
tion Equipment.
201
0; 30(3): 8-11.
[8]
GUOLi, W
A
NG Chen
gsha
n.
D
y
namic
al si
mulati
on o
n
m
i
crogri
d
w
i
th
d
i
fferent t
y
pes
of distrib
u
ted
gen
eratio
ns.
Automation of Electric Power System
s.
20
09; 33(2): 82-
86.
[9]
T
A
O Qiong, W
U
Z
a
ijun, C
H
ENG Junzh
a
o
,et al. Mode
li
ng an
d Simu
la
tion of Microgr
id Co
ntain
i
n
g
Phototaic Arra
y a
nd F
uel C
e
ll
.
Automati
on of
Electric Pow
e
r Systems.
201
0; 34(1): 89-9
3
.
[10]
HAN Yi, Z
H
A
N
G Don
g
x
i
a
, HU
Xu
eh
ao,et
al. A
Stu
d
y
on Micr
ogri
d
Standar
d S
y
st
em in
Ch
ina
.
Autom
a
tion of Electric Power System
s.
20
10
; 34(1): 69-72.
Evaluation Warning : The document was created with Spire.PDF for Python.