Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 1,
April 201
6, pp. 107 ~ 11
4
DOI: 10.115
9
1
/ijeecs.v2.i1.pp10
7-1
1
4
107
Re
cei
v
ed
De
cem
ber 2
7
, 2015; Re
vi
sed
March 17, 20
16; Accepted
March 28, 20
16
Synchronverter Control for Parallel Operation of
Cascad
ed H-Bridge Inverter
Am
ar H
a
m
z
a
*
1
, Sara Alta
hir*
2
, Xiang
w
u Yan
3
State Ke
y
L
a
b
o
rator
y
of Alter
nate Electric
al
Po
w
e
r
S
y
stem
w
i
t
h
Re
ne
w
a
bl
e Energ
y
So
ur
ces (North Ch
i
na
Electric Po
w
e
r Univers
i
t
y
), Ch
ang
pin
g
Distric
t, Beijing 1
0
2
2
06, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: amarhamz
a
2
010
@hotma
il.c
o
m
1
, sara
yalta
her5
55@
ya
h
o
o
.com
2
,
xi
an
g
w
u
y
@
hot
mail.com
3
A
b
st
r
a
ct
A 21-lev
e
ls ca
scade
d H-bri
d
ge multil
eve
l
in
verter
topol
ogy
based o
n
thre
e-ph
ase volta
g
e
source
inverter h
a
s b
een pr
op
osed
as a super
i
o
r repl
ace
m
e
n
t
for conventi
ona
l tw
o-level
in hig
h
volta
g
e
app
licati
ons. In
this w
o
rk w
e
have
pres
ente
d
the
usa
g
e
of
the
new
tech
niq
ue c
a
ll
ed
vi
rtual sy
nchro
n
o
u
s
gen
erator b
a
se
d synchro
n ver
t
er mo
del to
op
erate the
multil
evel i
n
verter as
synchron
ous
g
ener
ator, and t
o
share
active
a
nd r
eactive
p
o
w
er auto
m
atic
ally
in
ca
se
of
par
all
e
l
op
era
t
ed i
n
verters
o
f
the sa
me typ
e
.
Carrier-
bas
ed
PW
M is use
d
t
o
co
ntrol
each
ph
ase
leg
of t
he c
a
scad
e
d
H-brid
ge
multi
l
e
vel
inv
e
rter. This
carrier-b
ase
d
PW
M sche
m
e
is d
e
rive
d fro
m
the c
a
rrier
p
h
a
se
disp
ositi
o
n
pu
lse w
i
d
th
modu
latio
n
strat
egy.
By aid
of MAT
L
AB/Simul
i
nk
packa
ge
a si
mulati
on ex
per
i
m
e
n
t is esta
bli
s
hed to v
e
rify the p
e
rfor
manc
e o
f
the prop
ose
d
techn
i
qu
e.
Ke
y
w
ords
:
di
stributed
gen
e
r
ation, casc
ad
ed H-Bri
dge
in
vert
er, synchro
nverter, ph
ase
dispos
itio
n pu
ls
e
w
i
dth mo
dul
ati
on,
para
lle
l op
eratio
n
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
For the fo
ssi
l
fuel co
st, pollution, an
d ot
her envi
r
onm
ental
eff
e
ct
s, the
Di
stributed
Gene
rato
rs (DG
)
ba
se
d o
n
re
ne
wabl
e
energy s
ources
are
conn
e
c
ted to
the p
o
we
r
system
via
power ele
c
tro
n
ic inverte
r
[1
]. Although, the 2-level
inv
e
rter offe
rs fa
st and a
c
cura
te control of t
h
e
output p
o
wer, it req
u
ire
s
a DC volta
g
e
high
er
th
an
the pe
ak AC voltage
whi
c
h is not
alwa
ys
dire
ctly available. In additio
n
, with just two le
vels, the inverter o
u
tpu
t
voltage can
have high Tot
a
l
Harmoni
c
Distortion (THD). This is
und
esirable
be
ca
use it requi
re
s hig
h
freq
ue
ncie
s a
bout (3
kHz- 1
0
kHz) and the addi
tion of
expensive AC filters to obtai
n high quality output voltage and
curre
n
t, thus,
it has limited
use
d
mainly
due to
swit
chi
ng lo
sses,
switching
device
voltage ratin
g
con
s
trai
ns, a
nd high Ele
c
troMa
gneti
c
Interferen
ce (EMI) [2, 3].
On the other hand, multilevel
power i
n
vert
ers present t
he adva
n
tag
e
s of
pro
d
u
c
i
ng bette
r qu
ality waveform at the p
o
i
n
t of
con
n
e
c
tion to the grid
and facilitati
ng the la
rg
e scale inte
gration of DG due to their
modula
r
ity.thus, multilevel
inverters are
used a
s
a superi
o
r repla
c
eme
n
t for convention
a
l two-
level in high voltage ap
plications. Howe
ver,
the large
numbe
r of switche
s
su
bsta
ntially incre
a
ses
the req
u
ire
m
ent of the converte
r cont
rolle
r [4
-9].
One of the
most commo
nly use
d
wa
y of
gene
rating th
e gate sig
nal
s for the swit
che
s
is
the
carri
er ba
se
d pulse width
modulatio
n. Among
different m
e
thod
s of
ca
rri
er b
a
se p
u
lse wi
dth
mo
du
lation (P
WM
), the mo
st
co
mmon type
s
are:
a) ph
ase di
spositio
n (PD-PWM); b
)
ph
ase
oppo
si
tio
n
dispo
s
ition
(POD-PWM),
and
c) alte
rn
ate
pha
se opp
osi
t
ion
di
spo
s
itio
n
(APO
D-P
W
M).
PD-PWM
tech
niqu
e
i
s
based on a compa
r
ison of a
sinu
soi
dal si
g
nal at the fun
damental fre
quen
cy refe
rence and tri
a
ngula
r
high f
r
eque
ncy carri
e
r
sign
als to de
termine level
s
of output voltages. Th
e carrie
r sig
nals a
r
e in
pha
se an
d h
a
ve
amplitude off
s
et. This techniqu
e gene
rated lowe
r T
HD with hi
g
her mod
u
lati
on indices, see
Figure 10 [10
,
11].
Gene
rally, the DG
can
op
erate in i
s
la
n
d
mode
or g
r
i
d
co
nne
cted
mode. In case of islan
d
mode, ho
w to sha
r
e a
c
tive and re
activ
e
powe
r
amo
ng parallel conne
cted inv
e
rter b
e
come
a
chall
enge
[1]. Und
e
r i
s
la
nd
ing mo
de, vol
t
age ma
gnitu
de an
d fre
q
u
ency a
r
e
drift
at the poi
nt
o
f
comm
on cou
p
ling therefore islan
d
ing
p
r
otection i
s
important issu
e
s
.
In orde
r to
make
pa
rallel
co
nne
ction, t
he mo
st im
p
o
rtant p
o
int i
s
that th
e loa
d
shari
ng
among
invert
ers. Usually ther
e
are two types of
control
sc
he
m
e
s. Fi
rst
one
ba
sed
on t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 107 –
114
108
comm
uni
cati
on sy
stem, which limit the
system
relia
b
ility, and expanda
bility. The se
co
nd o
n
e
is
based o
n
d
r
oop m
e
thod
whi
c
h
ope
rate thro
ugh
tight adju
s
tm
ent over th
e
output volta
g
e
freque
ncy an
d amplitude o
f
the inverter to compe
n
sate the active and rea
c
tive p
o
we
r unb
alan
ce
[1, 12].
In [5], the integratio
n of a large
scale
PV plant was p
r
esented a
nd a study on the use of
a novel co
nverter top
o
log
y
for the reali
z
ati
on of the
VSG: a cascaded
H-b
r
id
g
e
topology ba
sed
on sin
g
le ph
a
s
e current so
urce inverte
r
s (CHB
-CSI
) was inve
stigate
d
.
In [
13
],
carrie
r-b
ased P
W
M is
used to
sep
a
rately
co
ntrol e
a
ch ph
ase
leg
of the
modul
ar
multilevel inverter
and to
allow the li
ne
-to-lin
e
voltag
e to be devel
oped im
plicitl
y
. These
ca
rrier-
based PWM
scheme
s
a
r
e
derived from t
he ca
rri
er di
spositio
n strat
egy.
In
order
to mi
mic a synchronou
s gen
era
t
or cha
r
a
c
teri
stic, th
e mai
n
functio
n
of V
S
G is to
control the inj
e
cted p
o
wer
at AC side in
verter of a DG.
In this p
ape
r,
a twe
n
ty on
e-level volta
g
e
source
inverter cascad
ed H-b
r
idg
e
t
opolo
g
y
based i
s
pre
s
ented
as a
ca
se
study i
n
o
r
der t
o
st
udy t
he imp
a
ct
of
different
conv
erter topol
ogi
es
on the d
e
si
gn
and o
peratio
n of the Virtu
a
l Sync
h
r
on
o
u
s G
ene
rato
rs (VSG
s). T
h
e VSG ben
efits
its inherent o
peratio
n freq
uen
cy and vo
ltage dro
opi
n
g
mech
ani
sm
for load sh
ari
ng.
The rest
of this p
ape
r i
s
orga
nized a
s
follows: se
ct
ion II rep
r
e
s
e
n
ts the m
a
th
ematical
model
of SG. Detail
s of u
s
ed casca
ded
H-b
r
id
ge
s inv
e
rter and
the
VSG co
ntrol
are
pre
s
e
n
te
d in
s
e
c
t
ion III. In s
e
c
t
ion IV the s
i
mulation
res
u
lt
s
ar
e disc
us
sed. All the s
i
mulations are
performed
in MATLAB/SIMULINK. Fin
a
lly, concl
u
si
ons a
r
e me
ntioned in
se
ction V.
2.
Mathem
atica
l
Model of Sy
nchrono
v
e
rter
The m
a
them
atical m
odel
of the th
re
e-ph
as
e cylindri
c
al
-roto
r SG
that
de
scrib
ed by
equatio
n (1
-1
3) is u
s
ed in t
h
is pa
per a
s
controlle
r [4, 5, 14].
(1)
(2)
Whe
r
e
is th
e pha
se te
rminal voltage
.
is the stat
or ph
ase current.
i
s
t
h
e
t
h
r
e
e
-
pha
se ge
nerated voltage.
and
are th
e re
sista
n
ce and ind
u
cta
n
c
e of the stat
or wi
nding
s,
r
e
spec
tively.
2
(3)
‚
(4)
(5)
‚
(6)
‚
(7)
2
3
2
3
2
3
2
3
(8)
(9)
_
(10
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Synchron
vert
er Co
ntrol for
Parallel O
peration
of Ca
scaded
H-Bri
d
g
e
Invert
er (A
m
a
r Ham
z
a)
109
1
(11
)
(12
)
2
√
3
(13
)
Whe
r
e
is the mecha
n
ical torqu
e
appli
e
d
to the rotor.
is the elect
r
o
m
agneti
c
torq
ue.
is
the
rotor angl
e.
and
are th
e
active an
d re
active po
we
r
respe
c
tively.
is the in
ertia
consta
nt.
is the field e
x
citation.
is
the angula
r
speed.
is the nominal mecha
n
ical spe
ed.
is
the
freque
ncy droop co
efficie
n
t.
is
the
voltage droo
p coefficie
n
t.
is the output voltage
amplitude.
3.
In
v
e
rter De
s
c
ription and
VSG Contr
o
l
Figure 1
depi
cts th
e thre
e-pha
se inve
rte
r
whic
h con
s
i
s
ts of
ca
scad
ed conn
ectio
n
of 10
cell
s of H-b
r
i
dge in ea
ch
pha
se of the inverter
. Each bri
dge
co
nsi
s
ts of four insulated
-
g
a
t
e
bipola
r
tran
si
stor (IGBT) switch
es drive
n
by
pulse width-mo
dulate
d
(PWM
) gat
e circuit
s
, an
d
isolate
d
DC sou
r
ce. The
VSC use
d
to perform
the
function
s of the DC/AC co
nversi
on an
d
to
interface with
the grid if deeded.
Figure 2 sho
w
s th
e po
we
r circuit for o
n
e
pha
se le
g
of a three
-
lev
e
l ca
scade
d i
n
verter.
The
circuit ge
nerate
s
th
ree
voltages at the outp
u
t (+
V
d
c, 0, -V
dc) a
s
in ta
ble 1.
We a
s
sum
e
that
the DC bu
s
of the VSC i
s
con
s
tant. T
hen, Th
e AC output ph
ase voltage i
s
con
s
tru
c
ted
by
addin
g
the vo
ltages
gen
era
t
ed by the dif
f
erent
cells.
One a
d
vanta
ge of this
structure i
s
that
the
output wavef
o
rm is n
early
sinu
soi
dal [
15
,
16
].
The ove
r
all structu
r
e a
s
d
epicte
d
in Fi
gure
3 is
sh
o
w
n to be
equ
ivalent to a SG with
cap
a
cito
r ba
n
k
conn
ecte
d i
n
parallel
with the st
ato
r
t
e
rmin
al. Figu
re 4 a
nd 5
d
epict
s the bl
o
c
k
diagram of the VSG contro
l and two VSGs suppli
ng a
commo
n loa
d
, resp
ectivel
y
[14].
Table 1. the switchi
ng stat
e
s
co
rrespon
di
ng to Figure 2
S1
S2 S3 S4
Vo
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
0
+Vdc
0
0
-Vdc
Figure 1. Three pha
se 2
1
-l
evel ca
scade
d H-
Bri
dge m
u
ltilevel inverter (Y-
con
n
e
c
ted)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 107 –
114
110
Figure 2. One
cell structu
r
e
of cascad
ed
inverter
Figure 3. The
main circuit
of three pha
se inverter
with load an
d gri
d
Figure 4. Block di
agram of
VSG control
Figure 5. Isol
ated syste
m
inclu
d
ing two VSGs
4. Resul
t
s
and
Analy
s
is
To examine the pro
p
o
s
ed
method, the mat
hemati
c
al
model descri
bed by equati
ons (1-
13
) is applied
to
the casca
ded H-brid
ge inverter
that shown in Figure 1
and the isolate
d
syste
m
of figure 5 i
s
simulate
d in
MATLAB/Simulink.
Th
e
para
m
eters f
o
r sim
u
lation
are p
r
e
s
ent
ed in
table II. As a result, the inverter behav
es as a
sy
nchronous generator. Sinc
e, it’s important
for
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Synchron
vert
er Co
ntrol for
Parallel O
peration
of Ca
scaded
H-Bri
d
g
e
Invert
er (A
m
a
r Ham
z
a)
111
large
scal
e in
verters to
sh
are th
e lo
ad i
n
propo
rti
ona
l to their cap
a
citie
s
to im
p
r
ove the
sy
stem
reliability a
n
d
re
dund
an
cy, the
real
an
d
rea
c
tive
po
wer delivered by
syn
c
h
r
onv
erters co
nne
cted
in
pa
rallel ca
n
be autom
atically sha
r
ed. From Fi
gu
re
s 6 an
d 7
it ca
n be
ob
se
rve
that, the out
put
active and
re
active po
wer for two simil
a
r inverte
r
s most be
sam
e
, so it is no
t nece
s
sary to
repe
at the sa
me re
sult. Also both active
and re
ac
tive
power tra
c
k their refere
nces very well.
Two
cases a
r
e
simul
a
ted
to evaluate
the p
e
rfo
r
man
c
e
of the
pro
posed
metho
d
un
de
r
different in
ert
i
a con
s
tant. We
note that
the ove
r
sho
o
ts in th
e a
c
tive and
rea
c
tive powe
r
are
limited in case of small ine
r
tia. As a result, for a give
n freque
ncy
droo
p co
effici
ent D
p
,
J sho
u
ld
be made
sma
ll.
The result
s o
b
tained fo
r the load
can b
e
see
n
in Fig
u
re 8 a
nd 9,
whi
c
h sho
w
the loa
d
power an
d ou
tput frequen
cy, respe
c
tively. When
an active load increase from 22
0kW to 240kW,
at t =
0.2
s, the
system
re
spo
nde
d very
fast.
F
i
gu
r
e
s
1
1
an
d
1
2
dep
ic
t th
e in
ve
r
t
e
r
ou
tp
u
t
ph
as
e
voltage whi
c
h
comp
rise 21-level and its redu
ced
o
r
de
r THD. The m
easure
d
outp
u
t voltage THD
wa
s 2.02%. Figure
s
13
and
14 sho
w
the
purely
sinu
so
idal load volt
age
s and
cu
rrents
whi
c
h a
r
e
in pha
se.
Figure 6. Output active po
wer of on
e in
verter with: (H=1s& H=0.0
05s)
Figure 7. Output rea
c
tive powe
r
of
one i
n
verter
with: (H=1s& H=0.0
05s)
Figure 8. Loa
d active for two pa
rallel in
verters with: (H=1s& H=0.0
05s)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0
5
10
15
x 1
0
4
Ti
m
e
(
s
)
Ac
t
i
v
e
P
o
we
r
(
W
)
H
=
0.
0
05s
H=
1
s
0
0.
1
0.
2
0.
3
0.
4
0.
5
0
500
0
1
000
0
1
500
0
Ti
m
e
(s
)
R
e
c
t
i
v
e
P
o
we
r
(
Va
r
)
H
=
0
.
005
s
H=
1
s
0
0.
1
0.
2
0.
3
0.
4
0.
5
0
1
2
3
x 1
0
5
Ti
m
e
(
s
)
lo
a
d
P
o
w
e
r
(
W
)
H
=
0.
0
05s
H=
1
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 107 –
114
112
Figure 9. The
system freq
u
ency with (H=1s & H=0.005
s)
Figure 10. Simulation of carri
er-ba
s
e
d
PWM sc
he
m
e
usin
g the in
phase dispo
s
ition (IPD),
(a) Mo
dulatio
n sign
al and i
n
-ph
a
se ca
rri
er wavefo
rm
s (b) Pha
s
e “a” output voltage
Figure 11. Inverter o
u
tput p
hase voltage
21-level
s
0
0.
1
0.
2
0.
3
0.
4
0.
5
0
10
20
30
40
50
60
Ti
m
e
(
s
)
F
r
e
que
nc
y (
H
z
)
H
=
0.
0
05s
H=
1
s
-1
0
-8
-6
-4
-2
0
2
4
6
8
10
(a
)
(b
)
-1
0
V
d
c
+1
0
V
d
c
+
v
e
n
ode
-
v
e
n
ode
0.
12
0.
1
4
0.
1
6
0.
1
8
0.
2
0.
2
2
-
5
000
0
5
000
Ti
m
e
(
s
)
P
h
as
e V
o
l
t
a
g
e
(
V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Synchron
vert
er Co
ntrol for
Parallel O
peration
of Ca
scaded
H-Bri
d
g
e
Invert
er (A
m
a
r Ham
z
a)
113
Figure 12. Ha
rmoni
c Spe
c
trum of 21
-level
Phase Volt
age at modul
ation index
=0
.98
Figure 13. Th
ree
-
ph
ase loa
d
voltages
Figure 14. Th
ree
-
ph
ase loa
d
curre
n
ts
Table 2. sim
u
lation parame
t
ers
Parameters
Values
Parameters
Values
V
V
RMS
P
Q
D
D
V
ω
500
V
6.2kV
120kW
12.9kVar
94
117
5058
314
r
a
d/sec
H
K
R
L
C
P
f
f
0.005s
150000
0.13Ω
2.02mH
1.15µ
F
240kW
7.5kHz
50Hz
5. Conclu
sion
In this
pap
er
a control
st
rat
egy nam
ed
synchr
onve
r
ter that provide i
nertial
and
da
mping
effect wa
s u
s
ed to co
ntrol
a 21-l
e
vel ca
scade
d
H-bri
dge inve
rter t
opolo
g
y base
d
on thre
e-ph
ase
0
100
0
2
000
300
0
40
00
50
00
60
00
7
000
0
10
20
30
40
50
F
r
e
q
ue
nc
y (
H
z
)
F
u
nda
m
e
n
t
a
l
(
5
0H
z
)
=
4
148
,
T
H
D=
2.
02%
M
a
g (
%
of
F
u
nda
m
e
nta
l
)
0.
2
0.
2
5
-5
0
0
0
0
50
00
Ti
m
e
(
s
)
L
o
a
d
Vo
l
t
a
ge
s
(
V)
0.
2
0.
2
5
-4
0
-2
0
0
20
40
Ti
m
e
(s
)
L
o
ad
C
u
r
r
en
t
s
(
A
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 107 –
114
114
voltage source inverte
r
in
orde
r to e
m
ul
ate t
he dyna
mic a
nd tra
n
sient perf
o
rma
n
ce
of SGs
a
n
d
to produ
ce b
e
tter quality waveform at the termi
nal. More
over, pa
rallel op
erati
on of two large
scale DGs
wi
th an isol
ate
d
load
wa
s investigat
e
d
. The overall p
e
rform
a
n
c
e
wa
s evaluate
d
for
two different ca
se
s of inertia consta
nt. The
pro
p
o
s
e
d
method wa
s verified through si
mulati
on
res
u
lts.
To the
be
st
of ou
r
kno
w
l
edge, S
G
p
o
pular
to give excelle
nt
re
spon
se
s whe
n
ope
rate
with hi
ghly in
ductive
syste
m
a
s
in
case
of high
voltag
e po
we
r
syst
em, thu
s
, this pap
er confirmed
a benefit of usin
g VSG tech
niqu
e for large
scale
d
i
stribute
d
gen
erato
r
s in re
gard of b
r
ing
the
whol
e pe
rformance of SG
in high volta
ge po
we
r
sy
stem. This
can
open
ne
w a
pplication
s
in
the
future.
6. Ackn
o
w
l
e
dg
ement
This pa
pe
r is
sup
porte
d by The Natu
ral
Scien
c
e Fu
nd
ings of Hebei
(E2014
502
1
09) an
d
The Fun
dam
ental Re
se
arch Fun
d
s fo
r t
he Ce
ntraln
Universitie
s
(2014Z
D3
0).
The autho
rs woul
d like to than
k Oma
r
Busati, for hi
s help.
Referen
ces
[1]
Z
hang G et a
l
.
A novel c
ontr
o
l strategy for
para
lle
l-con
nec
ted conv
erters
in low
volta
ge
micr
ogri
d
, in
T
r
ansportation Electrificati
on Asia-Pac
ific
(ITEC
Asia-Pac
ifi
c
). IEEE Conference a
nd E
x
p
o
. 2014: 1-
6
[2]
Adam GP et al. Quasi-t
w
o
-
l
e
v
e
l an
d three-
le
vel op
eratio
n o
f
a diode-c
l
am
ped mu
ltilev
e
l i
n
verter usi
n
g
space vector m
odu
latio
n
.
Power Electronics, IET
. 2012; 5(5): 542-55
1.
[3]
Rodri
g
u
e
z J, JS Lai an
d F
Z
Peng. Multil
evel i
n
verters:
a surve
y
of topol
ogi
es, co
ntrols, and
app
licati
ons.
IEEE Transactions on Industrial Electronics
. 2
002; 49(
4): 724
-738.
[4]
Malin
o
w
ski M
et al. A survey on c
a
scad
e
d
multil
evel i
n
verters
.
IEEE
Transactio
n
s o
n
Industria
l
Electron
ics.
20
10; 57(7): 2
197
-220
6.
[5]
T
o
rres M, et al.
Integratio
n of
a lar
ge-sc
ale
photov
olta
ic
pl
ant usi
ng
a
multilev
e
l c
onv
er
ter topol
og
y
and virtu
a
l sy
nchro
nous
ge
nerator co
ntrol
, in IEEE 23rd Internationa
l S
y
mposium
on Industrial
Electron
ics (ISIE). 2014: 26
20
-262
4.
[6]
Shinta
i T
,
Y
Miura
and
T
Ise.
Reactiv
e
p
o
w
e
r control
for lo
ad s
hari
n
g w
i
th virtua
l
synchro
no
u
s
gen
erator co
ntro
l. in 7th Inte
rnatio
nal P
o
w
e
r Electroni
cs
a
nd Motio
n
C
o
n
t
rol Confer
enc
e (IPEMC)
.
201
2: 846-
853.
[7]
Z
hong QC an
d
T
Hornik.
Con
t
rol of pow
er inverters in rene
w
able en
ergy
and s
m
art grid
integrati
o
n
.
John W
i
l
e
y
& S
ons. 201
2; 97.
[8]
Rash
eed M, R
Omar and M
Sula
iman. H
a
r
m
onic R
e
d
u
ct
i
on in M
u
ltil
eve
l
Inverter Base
d on S
upe
r
Cap
a
citor as a
Storage.
T
E
LK
OMNIKA Indon
esia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g
. 201
5; 16(3).
[9]
Murali M. A Ca
scade Mu
ltilev
e
l Z
-
Source
Inv
e
rter for Photo
v
oltaic S
y
stem.
T
E
LKOMNIKA Indones
ia
n
Journ
a
l of Elec
trical Eng
i
ne
eri
ng.
201
5; 16(3)
.
[10]
Mc Grath BP and DG Ho
lmes
.
Multicarrier P
W
M strategies
for mu
ltilev
e
l i
n
verters.
IEEE Transactions
on
Industri
a
l El
ectronics
. 20
02
; 49(4): 858-8
6
7
.
[11]
Konstanti
n
o
u
GS and
VG
Agel
idis.
P
e
rfo
r
ma
nce
eva
l
u
a
tion
of h
a
lf-b
ridg
e casc
ad
e
d
multi
l
ev
el
converters
op
erated w
i
th
multicarri
er sin
u
s
oid
a
l PW
M techn
i
qu
es
. in 4th IEEE
Conferenc
e on
Industria
l Elect
r
onics a
nd A
p
p
licatio
ns, ICIEA. 2009.
[12]
Lazzar
i
n T
B
,
GA Bauer an
d
I Barbi.
A control strategy for parall
e
l o
per
ation of sin
g
l
e
-
phas
e volta
g
e
source inv
e
rte
r
s:
analys
is, desi
gn and
e
x
peri
m
e
n
tal
re
sults
.
IEEE Transactions
on
In
du
stri
a
l
Electron
ics. 20
13; 60(6): 2
194
-220
4.
[13]
Adam GP et al. Modul
ar multilev
e
l i
n
ve
rter:
Pulse
w
i
dth modu
lati
o
n
and ca
pac
itor bal
anci
n
g
techni
qu
e.
Power Electronics, IET
. 2010; 3(5): 702-7
15.
[14]
Aoui
ni R et
al.
Virtual syn
chron
ous g
e
n
e
rators dyn
a
m
ic perfor
m
a
n
c
e
s
, in IEEE International
Confer
ence
on
Electrical Sci
e
nces an
d T
e
chnol
ogi
es in Ma
ghre
b
(CIST
E
M). 2014: 1-6.
[15]
Lin B
R
, YP
Chie
n
and
H
H
Lu.
M
u
ltil
ev
el i
n
verter w
i
t
h
seri
es co
nn
ection
of H-
br
idg
e
ce
lls
, in
Proceedings of
the IEEE 1999 In
ternational Confer
enc
e on Po
w
e
r
Electronics
and Driv
e S
y
stem
s
,
PEDS'
99. 19
99
: 859-86
4.
[16]
Kouro S
et a
l
.
Sing
le
D
C
-li
n
k cascad
ed H-bri
dge multil
eve
l
mu
ltistring
ph
ot
ovolta
ic e
nergy
convers
i
o
n
system w
i
th in
here
n
t bala
n
ce
d oper
ation
. in
IECON 2012-
3
8
th Annu
al
Co
nferenc
e on IEEE Industria
l
Electron
ics So
ciet
y
,
IEEE. 20
12: 499
8-5
005.
Evaluation Warning : The document was created with Spire.PDF for Python.