TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 10, Octobe
r 20
14, pp. 7459
~ 746
2
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.557
9
7459
Re
cei
v
ed
Jan
uary 5, 2014;
Re
vised July
17, 2014; Accepted Augu
st
10, 2014
On the Security of a Dynamic and Secure Key
Management Model for Hierarchical Heterogeneous
Sensor Networks
Pengshu
ai Qiao
North Ch
ina U
n
iversit
y
of W
a
ter Conserv
anc
y & Electric Po
w
e
r, Z
hengz
ho
u, Chin
a
email: p
engs
hu
aiqi
ao
@16
3
.co
m
A
b
st
r
a
ct
W
i
th the d
e
vel
o
p
m
e
n
t of the
w
i
reless co
mmunic
a
tion
techn
o
lo
gy a
nd th
e
sensor tec
h
n
o
l
ogy, t
h
e
w
i
reless se
nso
r
netw
o
rk (W
SN) has
be
en
u
s
ed i
n
ma
ny
a
pplic
atio
ns. Ho
w
e
ver, W
S
Ns suffer from so
me
inh
e
rent w
eak
nesses
bec
au
se of restrict
ed co
mm
unic
a
tion
an
d har
dw
are cap
a
b
ili
ties. T
o
achi
e
v
e
essenti
a
lly
sec
u
re co
mmun
i
c
a
tion
in
W
S
Ns, a few
of
key
ma
na
ge
me
nt mo
de
ls
h
a
ve b
een
pro
pos
ed since
it is the crucial
imp
o
rtant bu
il
din
g
block for
all
sec
u
rity go
als in W
S
Ns. Rece
ntly, Alag
heb
an
d and A
r
ef
prop
osed
a s
i
gncrypti
on sc
h
e
me
and
use
d
it to
c
onstr
uct
a dyna
mi
c
key ma
na
g
e
ment mode
l for
hier
archic
al
he
teroge
ne
ous s
ensor
netw
o
rk
s. T
hey a
l
so
pr
oved
that th
eir
signcry
ption
sc
he
me
is
prov
a
b
ly
secure if
the elli
ptic
curv
e discr
ete
lo
garit
hm pro
b
l
e
m is
infeas
ib
le
. U
n
fortunate
l
y, b
y
givi
ng c
oncr
e
t
e
attacks, w
e
indicate that Ala
g
heb
an
d and Ar
ef
’
s
si
gncry
ptio
n sche
m
e is n
o
t secure in th
eir secur
e
mod
e
l
.
T
he an
alysis
al
so show
s that their key
man
a
g
e
m
e
n
t m
ode
l
is not sec
u
re.
T
o
solve th
ose
w
eaknesses,
w
e
also pr
opos
ed
an i
m
pr
oved si
gncrypti
on sch
eme.
Ke
y
w
ords
: ke
y man
a
g
e
m
ent
, signcryptio
n sche
m
e, el
liptic
curve cryptogr
aphy
Co
p
y
rig
h
t
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the ra
pi
d advan
cem
ent the wirel
e
ss
tech
nolo
g
y and the sensor techno
logy, the
wirel
e
ss
sen
s
or net
wo
rk
(WSN) ha
s b
e
en pe
rvasiv
el
y deployed i
n
many ap
plications. A
wire
less
sen
s
o
r
network
con
s
i
s
ts
of many resource
con
s
trained sen
s
o
r
node
s whi
c
h are capa
bl
e o
f
ac
compli
shi
n
g v
a
riou
s f
u
n
c
t
i
on
s su
ch a
s
se
nsi
ng,
proce
s
sing, tra
n
smitting an
d
receivin
g to meet
the appli
c
ati
on obj
ective
s. Ge
nerally sp
ea
ki
ng,
sensors n
ode
s a
r
e
deplo
y
ed in a
ho
stile
environ
ment.
Then th
ey
may be e
a
ve
sdropp
ed,
ca
ptured
an
d compromised
by the adve
r
sary.
Therefore, secure
protoc
ol
s are required to ensur
e confidentiality,
integr
ity and availability of
informatio
n transmitted in
WSNs.
Among
different secure
p
r
otocols, th
e
key m
ana
g
e
ment p
r
oto
c
ol is the first
cruci
a
l
function to g
e
t secure
co
mmuni
cation
in WSNs
sin
c
e the both
of the sen
s
or node
s and t
he
clu
s
ter le
ade
rs
need
valid
comm
on
ke
ys to use ot
her
se
cu
re p
r
otocols. T
h
e
n
a few
of key
manag
eme
n
t proto
c
ol
s fo
r WS
Ns hav
e bee
n p
r
op
ose
d
to en
sure
se
cu
re
communi
catio
n
in
WSNs. According to they type
of the encryptio
n techniqu
es, the
key man
age
ment proto
c
o
l
s
coul
d be divided into thre
e categ
o
rie
s
,
i.e. symmetric key man
a
gement p
r
oto
c
ol, asymm
e
tric
key mana
ge
ment proto
c
o
l
and hybrid
key mana
ge
m
ent proto
c
o
l
[1]. In the
first type of th
ose
proto
c
ol
s, so
me keys
are
pre
-
loa
ded
i
n
the
sen
s
o
r
s befo
r
e
the
deployme
nt
pha
se. Howe
ver
,
su
ch protocol
s suffer from
some
proble
m
s su
ch a
s
prob
abili
st
ic
key distri
buti
on between the
sen
s
o
r
nod
e
s
[2, 3], non-scalability after depl
oyme
nt [4-7], mounting wea
k
n
e
ss a
gain
s
t node
comp
romi
se,
lack of mobili
ty and a high
-co
mmuni
cati
on overhea
d [8]. In the secon
d
types o
f
those
p
r
oto
c
ols, p
ubli
c
ke
y crypto
gra
p
h
y, su
ch
a
s
elliptical
curv
e cryptog
r
ap
hy (ECC) [9]
and
identity-ba
se
d cryptograp
hy (IBC) [1
0], is u
s
ed
to g
enerate
keys throu
gh o
n
-li
ne ma
nne
r. Such
proto
c
ol
s a
r
e
more flexibl
e
but very heav
yweight
in
se
nso
r
net
wo
rks. The thi
r
d t
y
pe of proto
c
ols
coul
d inhe
re
nt advantage
of other
two
types of pro
t
ocol
s. The it
is very suita
b
le hie
r
archi
c
al
hetero
gen
eo
us WS
Ns wit
h
different kin
d
s of nod
es.
Re
cently, Alaghe
band
an
d Aref p
r
op
o
s
ed [1
1]
a signcryption schem
e with forwa
r
d
se
curity ch
aracteri
stic a
n
d
used it to constr
uct a h
y
brid key m
anag
ement i
n
frast
r
u
c
ture
for
hiera
r
chi
c
al h
e
terog
ene
ou
s WSNs. T
h
e
y
claime
d th
at their
sche
me is p
r
ovab
ly se
cure if t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 745
9
– 7462
7460
elliptic
curve discrete logarithm
problem is i
n
feasible. However,
in thi
s
paper, by giving a
con
c
rete atta
ck,
we i
ndi
ca
te that Alagh
eban
d an
d A
r
ef’s
sig
n
cryp
tion sche
me i
s
not
se
cu
re
in
their secure
model, i.e. a
n
adversa
ry coul
d forg
e a
legal ci
phe
rtext of any messag
e. We
also
indicate that their
scheme
suffers from t
he priv
ate
ke
y comp
romi
sed problem, i
.
e. the receiver
coul
d get the
sen
d
e
r
’s
pri
v
ate key fro
m
the ci
phe
rt
ext. The anal
ysis al
so
sh
o
w
s th
at their
key
manag
eme
n
t model is n
o
t se
cure.
The re
st
of
t
h
is pap
er
i
s
orga
nized as
follows: Se
ction 2
de
scri
bes Alagh
eb
and
and
Aref’s
sig
n
cryption
scheme
.
In Sectio
n 3
,
we
give
se
curity analy
s
is of thei
r
sche
me. In Se
ctio
n,
we p
r
op
ose a
cou
n
term
easure to ove
r
co
me we
akne
ss in thei
r sch
e
me. Finally, the co
nclu
sio
n
s
are p
r
e
s
ente
d
.
2. Rev
i
e
w
o
f
Alaghe
band
and Ar
ef’s s
c
heme
In this se
ctio
n, we give th
e revie
w
of Alaghe
band
an
d Aref’s
sign
cryption sch
e
m
e usi
n
g
ECC. Some n
o
tations u
s
e
d
in this pape
r are defin
ed a
s
follows.
a)
q
: a large stron
g
prime n
u
mb
er, whe
r
e
160
2
q
.
b)
n
: a large stron
g
prime n
u
mb
er, whe
r
e
16
0
2
n
.
c)
,
ab
: two integer n
u
mbe
r
s whi
c
h a
r
e sm
aller than
q
and sati
sfy
32
42
7
(
m
o
d
)
0
ab
q
.
d)
E
: elliptic curve
defined by the equatio
n
23
(mo
d
)
y
xa
x
b
q
.
e)
G
: base poi
nt of the elliptic curve
E
with order
q
.
f)
BS
: base statio
n
.
g)
bs
p
:
BS
’s private key.
h)
bs
U
:
BS
’s pu
blic
key
,
where
bs
bs
Up
G
.
i)
i
CL
: the
i
th clu
s
te
r leade
r.
j)
i
cl
p
:
i
CL
’s private key.
k)
i
cl
U
:
i
CL
’s pu
blic
key
,
where
bs
bs
Up
G
.
l)
()
/
(
)
kk
ED
: lightweight symmetric en
cryption/de
cry
p
tion algo
rith
m with key
k
.
m)
H
: a lightweight
and se
cu
re o
ne-way ha
sh
function
Alagheb
and
and Aref’s
si
gncryption scheme is t
he
most impo
rta
n
t block of th
ere ke
y
manag
eme
n
t framework. The detail of
the
Sign
c
r
yp
tion
and
Uns
i
gn
cr
ypt
i
o
n
of the scheme
is
descri
bed a
s
follows.
S
i
gn
cr
ypt
i
o
n
:
BS
coul
d gen
erate a ciph
erte
xt through the
following
ste
p
s.
1)
BS
generat
es a rand
o
m
numbe
r
i
r
and co
mp
utes
12
(,
)
i
Rr
G
r
r
a
nd
(,
)
i
ic
l
Kr
U
k
l
.
2)
BS
com
pute
s
()
k
CE
m
,
1
(|
|
)
hH
C
r
,
1
(|
|
)
EH
h
r
G
,
1
(
|
|
)(m
o
d
)
bs
s
pH
h
r
q
and
s
sh
.
3)
BS
outputs
(,
,
,
)
CR
s
E
as the cip
herte
xt of
the messag
e
m
.
U
n
signc
ry
ption
:
i
CL
run
s
the alg
o
rithm to de
crypt the ciphertext.
1)
i
CL
compute
s
(,
)
i
cl
Kp
R
k
l
,
()
k
mD
C
,
1
(|
|
)
hH
C
r
, and
s
sh
.
2)
i
CL
che
c
ks whether
s
GE
and
bs
U
are e
qual. If they are
not e
qual,
i
CL
reject
s
the ciph
ertext; otherwi
se,
i
CL
accept
s the ci
phertext and
outputs the m
e
ssag
e
m
.
3. Anal
y
s
is o
f
Alagheband and Aref’s
Scheme
3.1. Attack
Against Existential Un
for
g
eabilit
y
As a sign
cryption sche
me, Alagheb
and and Aref’s schem
e
should p
r
o
v
ide the
confid
entiality and the unforgea
bility.
Confid
entia
lity means tha
t
any adversary without the
private key of
the re
ceiver (
i
CL
) ca
nnot
de
crypt of the
m
e
ssag
e
m
. Unf
o
rgeability m
eans that
any adversa
ry without the
pr
ivate key of the sen
d
e
r
(
BS
)
cann
ot ge
nerate
a lega
l ciphe
rtext.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
On the Securi
ty of a Dyn
a
m
ic and Secu
re Key M
ana
gem
ent Mode
l for… (Peng
shuai Qia
o
)
7461
Alagheb
and
and A
r
ef
clai
med th
at thei
r
scheme
is se
cu
re if
the
e
lliptic
curve
di
screte
loga
rit
h
m
probl
em i
s
i
n
feasi
b
le. In thi
s
se
cti
on, we
will sh
ow
an
adversa
ry
wi
thout
BS
’s p
r
ivate key could
forge a l
egal
ciph
ertext
(,
,
,
)
CR
s
E
, i.e.
could
pass
i
CL
’s
verific
a
tion. The
attac
k
is
descri
bed a
s
follows.
1) Th
e a
d
versary
gen
erat
es a
ra
ndom
numbe
r
i
r
and
comp
utes
12
(,
)
i
Rr
G
r
r
and
(,
)
i
ic
l
Kr
U
k
l
.
2) The adve
r
sary ge
ne
rat
e
s a ra
ndom
numbe
r
s
, computes
()
k
CE
m
,
1
(|
|
)
hH
C
r
,
s
sh
and
()
bs
EU
s
h
G
.
3) The a
d
versary outp
u
ts
(,
,
,
)
CR
s
E
as the ci
phe
rtext of the message
m
.
Since
12
(,
)
i
Rr
G
r
r
,
(,
)
i
ic
l
Kr
U
k
l
,
()
k
CE
m
,
1
(|
|
)
hH
C
r
,
s
sh
and
()
bs
EU
s
h
G
, then we hav
e
s
sh
and:
(
()
)
)
(
s
s
b
b
Us
sG
E
sh
h
G
G
U
(1)
From the ab
o
v
e descriptio
n
, we kn
ow t
hat
the adversary could fo
rge a leg
a
l ci
phertext
without
BS
’s private key
B
S
p
.
Therefore, Al
aghe
band a
nd Aref
’s scheme cann
ot provide
unforgeability
.
3.2. Attack
Against the Sender’s Priv
ate Ke
y
In this sub
s
e
c
tion, we
will indicate that
Alagheb
and
and Aref’
s
scheme suffers from the
private key
compromised
probl
em, i.e. the re
ceive
r
(
i
CL
) could g
e
t the private key o
f
the sende
r
(
BS
) from a
ci
phertext. Thi
s
is
a very
dang
ero
u
s
vulnera
b
ility sin
c
e a
re
ceiver
could
imperso
nate
the se
nde
r t
o
othe
r recei
v
ers
on
ce h
e
gets th
e p
r
i
v
ate key. Su
ppo
se
i
CL
is a
malicio
us cl
uster lea
der and
re
cei
v
es a
cip
h
e
rtext
(,
,
,
)
CR
s
E
from
BS
, w
h
er
e
12
(,
)
i
Rr
G
r
r
and
(,
)
i
ic
l
Kr
U
k
l
,
()
k
CE
m
,
1
(|
|
)
hH
C
r
,
1
(|
|
)
EH
h
r
G
,
1
(
|
|
)(m
o
d
)
bs
s
pH
h
r
q
and
s
sh
. He
co
uld g
e
t
BS
’s p
r
i
v
ate key th
ro
ugh th
e follo
wing
st
ep
s.
1)
i
CL
compute
s
(,
)
i
cl
Kp
R
k
l
,
()
k
mD
C
,
1
(|
|
)
hH
C
r
, and
s
sh
.
2)
i
CL
compute
s
1
(|
|
)
(
m
o
d
)
bs
ps
H
h
r
q
.
From
the d
e
s
cription,
we
kn
ow that t
he mali
cio
u
s clu
s
ter lea
d
e
r
i
CL
co
uld
get
BS
’s
private
key when h
e
get
s
a cip
hertext.
From th
en o
n
,
he co
uld im
person
a
te
BS
to other
clu
s
ter
leade
r. There
f
ore, Alaghe
b
and an
d Aref
’s schem
e suffers fro
m
the private ke
y compromised
probl
em.
4. Counterm
easur
e
T
o
w
i
ths
t
a
nd th
e
ab
o
v
e
w
e
ak
ne
ss
es
, w
e
propo
se
an im
prove
d
sch
e
me
b
a
se
d o
n
Alagheb
and
and Aref’
s
scheme with lig
htweig
ht mod
i
fication.
S
i
gn
cr
ypt
i
o
n
:
BS
coul
d gen
erate a ciph
erte
xt through the
following
ste
p
s.
1)
BS
generat
es a rand
o
m
numbe
r
i
r
and co
mp
utes
12
(,
)
i
Rr
G
r
r
a
nd
(,
)
i
ic
l
Kr
U
k
l
.
2)
BS
compute
s
()
k
CE
m
,
1
(|
|
)
hH
C
r
, and
1
(|
|
)
(
m
o
d
)
bs
i
s
pH
h
r
r
q
.
3)
BS
outputs
(,
,
)
CR
s
as the cip
herte
xt of
the messag
e
m
.
U
n
signc
ry
ption
:
i
CL
run
s
the alg
o
rithm to de
crypt the ciphertext.
1)
i
CL
compute
s
(,
)
i
cl
Kp
R
k
l
,
()
k
mD
C
and
1
(|
|
)
hH
C
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 745
9
– 7462
7462
2)
i
CL
che
c
ks
whether
1
(|
|
)
s
GH
h
r
R
and
bs
U
are
equ
al. If they are n
o
t e
qual,
i
CL
reje
cts the
ciphertext; othe
rwi
s
e,
i
CL
accept
s the cip
herte
xt
and outputs the me
ssag
e
m
.
In the imp
r
o
v
ed sch
e
me,
Schn
orr’s si
gnature
sche
me [12] i
s
u
s
ed
to g
ene
rate the
sign
ature
of the me
ssage
C
. Schno
rr h
a
s
dem
on
strat
ed that hi
s schem
e is
pro
v
ably in the
random oracl
e
. Therefore,
the
proposed scheme coul
d
provide unforgeability.
In orde
r to ge
t
BS
’s p
r
ivate ke
y from the cip
hertext
(,
,
)
CR
s
,
i
CL
has to compute
i
r
from
i
Rr
G
, where
12
(,
)
i
Rr
G
r
r
,
(,
)
i
ic
l
Kr
U
k
l
,
()
k
CE
m
,
1
(|
|
)
hH
C
r
and
1
(|
|
)
(
m
o
d
)
bs
i
s
pH
h
r
r
q
. Then he will face the
elliptic curv
e discrete lo
garithm p
r
ob
lem.
Therefore, t
he propo
se
d
schem
e co
uld solve
th
e private
ke
y comp
romi
sed proble
m
in
Alagheb
and
and Aref’
s
scheme.
5. Conclusio
n
In this
pap
er,
we
indi
cate
d
that Alag
heb
and
and
Aref’
s
sign
cryption sch
e
me
[1
1] is
not
secure against the
existential unfor
geability. We al
so
indicate that t
heir
scheme
suffers from t
h
e
k
e
y
c
o
mp
r
o
mis
e
d pr
o
b
l
em. T
h
e s
i
gnc
r
y
p
t
io
n
s
c
he
me
is
the
mo
s
t
imp
o
r
t
an
t b
l
oc
k o
f
th
e
i
r
dynamic key manag
eme
n
t
model
for hi
era
r
chical
he
teroge
neo
us
sen
s
o
r
net
wo
rks. The
r
efo
r
e,
their key ma
n
ageme
n
t mod
e
l is also not se
cure for practical appli
c
ations.
Referen
ces
[1]
Z
hang J, V
a
ra
dhar
aja
n
V. W
i
reless s
ensor
net
w
o
rk k
e
y m
ana
geme
n
t sur
v
e
y
an
d ta
xo
n
o
m
y
.
J. Netw.
Co
mp
ut. Appl
., 2010; 33: 63
–75.
[2]
Eschen
au
er L,
Gligor
VD.
A
key
man
a
g
e
m
ent sch
eme fo
r distrib
u
ted s
ensor
netw
o
rk
s.
Ninth A
C
M
Conf. on Com
p
uter and C
o
m
m
unic
a
tion Se
curit
y
. 2
002: 4
1–4
7.
[3]
Chan H, Perrig, A.
Rando
m
key pred
istribu
t
ion sche
m
es for sensor n
e
tw
orks
. IEEE Sy
mp. Securit
y
and Priv
ac
y
,
2
003; 19
7–
21
3.
[4]
Liu D, Nin
g P.
Establishi
n
g
pairw
ise ke
ys in distribut
ed sens
or net
w
o
rks
. 10th ACM Conf. o
n
Comp
uter and
Commun
i
cati
o
n
s Securit
y
(C
CS03)
, ACM P
r
ess, W
a
shingt
on, DC, 200
3; 41–
7.
[5]
Blun
do C, San
t
ix, AD, Herzb
e
rg
A, Kutten S, VaccaroU, Yung M.
Perfectly secure key
distribution for
dyna
mic confe
r
ences
. 12th A
nnu
al Int. Cr
y
p
tolog
y
C
onf. on Advanc
es in Cr
yptol
o
g
y
, Sp
ring
er. 1992
;
471
–4
86.
[6]
Camtep
e SA, Yener B. C
o
mbin
at
oria
l des
i
gn of ke
y d
i
stributi
on mec
h
a
n
isms for
w
i
r
e
less sens
o
r
net
w
o
rks. J.
ACM/IEEE Trans. Netw
., Springer.
200
7; 15(2
)
: 346–3
58.
[7]
Yu Z, Guan Y.
A ro
bust
grou
p-bas
ed k
e
y
mana
ge
me
nt sc
he
me
for w
i
rel
e
ss se
nsor
net
w
o
rks
. IEEE
W
i
reless Com
m
unic
a
tions a
n
d
Net
w
ork
i
ng
Conf. (W
CNC), Ne
w
Orl
e
a
n
s, LA, USA, 2005
; 137.
[8]
Perrig A, Sz
ew
c
z
y
k
R, We
n
V, Cul
l
ar
D, Tyg
a
r JD.
SPIN
S
: Security pr
o
t
ocols for s
ens
or netw
o
rks
.
Seventh A
nnu
al ACM/IEEE Int. Conf. Mobil
e
Comp
uting
a
nd Net
w
o
r
kin
g
. 2001; 1
89–
99.
[9]
Kobl
itz N. Ellipt
i
c curve cr
ypto
s
y
stems.
Math. Com
p
ut.,
198
7; 48: 203
–20
9
.
[10]
Bone
h D, F
r
a
n
klin, M.
Ide
n
t
ity-based
enc
ryption fro
m
t
he W
e
il
pair
i
n
g
, adva
n
ces i
n
cryptol
ogy-
CRYPTO.
Lect. Notes Compu
t. Sci., 2001; 2
139: 21
3–
22
9.
[11]
Alag
heb
an
d
MR, Aref MR. D
y
namic
and s
e
cu
re
ke
y
m
a
n
age
ment mod
e
l
for hierarc
h
ic
a
l
hetero
g
e
neo
us
sensor net
w
o
r
ks.
Inform
ation Security, IET,
201
2; 6(4): 271
-280.
[12]
Schnorr
CP. E
fficient id
entific
at
ion
an
d si
gn
atures for sm
a
r
t cards, in G.
Brassard, e
d
.
Advanc
es i
n
Cr
yptol
o
g
y
-Cr
y
pto '
89,
Springer-Verlag
. Lect
u
re Notes i
n
C
o
mputer Sci
e
n
c
e, nr 435. 19
9
0
; 239-2
52.
Evaluation Warning : The document was created with Spire.PDF for Python.